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Abstract. This paper shows how to make the QR decomposition algorithm run faster on 

Intel multi-core processors by exploiting explicit parallelism and memory hierarchy. 

Streaming SIMD extensions and multithreading computation on multiple cores are used 

to exploit data-level parallelism (DLP) and thread-level parallelism (TLP), respectively. 

In addition, memory hierarchy is exploited by performing the QR computation on blocks 

of data to reduce the impact of memory latency by reusing the loaded data in cache 

memories. On Core 2 Duo E7500 with two cores (2-physical/2-logical processors), Core 

i5 M520 with two cores supporting Hyper-Threading technology (2-physical/4-logical 

processors), and Xeon E5410 with four cores (4-physical/4-logical processors), the 

speedups of multithreaded SIMD implementations of the block QR decomposition on 

20000×20000 dense matrices range 6.6-80, 11-103, and 6.6-80 times higher than the 

unparallel execution, respectively, when changing the block size from 4×4 to 100×100. 

Further increasing the block size to 500×500 reduces the speedups to 20, 34, and 19, 

respectively. Our results show performances of 80, 90, and 65 GFLOPS achieved on 

Core 2 Duo E7500, Core i5 M520, and Xeon E5410, respectively. 

 

Keywords - DLP; Householder transformation; matrix blocking; memory hierarchy; 

multi-core processors; multithreading; QR decomposition; performance 

evaluation; SIMD; TLP. 

 

 

1. INTRODUCTION 

 

Although transistor densities continue to improve according to Moore’s Law [1], 

computer architects are finding it difficult to turn these transistors into single-thread 

performance. This is because the general-purpose single-threaded processors have 

become significantly limited by power consumption and they have reached the point of 

diminishing returns in performance. Thus, the industry has begun to de-emphasize single-

thread performance and focus on integrating multiple cores onto a single die (multi-core 

processors) [2-7]. Moreover, the number of cores is expected to approximately double 

every two years [4]. According to Amdahl’s Law [8], if programmers can parallelize their 

applications, then whole application performance should be doubled every two years and 

started again to track Moore’s Law.  
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On multi-core processors, various forms of parallelism can be exploited to provide 

increases in performance above and beyond those made possible just by improvements in 

IC processing technology. Instruction-level parallelism (ILP), thread-level parallelism 

(TLP), and data-level parallelism (DLP) are the major ways in which processor designs 

can exploit parallelism to improve performance [9]. Whereas the compiler and hardware 

conspire to exploit ILP implicitly without the programmer’s attention, TLP and DLP are 

explicitly parallel, requiring the programmer to write parallel code to gain performance. 

The common approach to exploit TLP is to decompose each parallel section into a set of 

tasks and distributes these tasks to different threads (see [10-12] for more detail). In 

addition to ILP and TLP, the use of multimedia extensions, such as Intel streaming SIMD 

extensions (SSE, SSE2, SSE3, and SSSE3 [13]), represents a good way to exploit DLP 

on a single processor core by processing multiple data using a single instruction. Thus, 

multi-core processors provide applications with an opportunity to achieve much higher 

performance than single-core processors. Furthermore, the number of cores on multi-core 

processors is likely to continue growing, increasing the performance potential of multi-

core processors [4].  

This paper shows how the performance of the QR decomposition algorithm can be 

improved on Intel multi-core processors through the exploitation of TLP, DLP, and 

memory hierarchy. Multithreading computation on multiple cores and streaming SIMD 

extensions are used to exploit TLP and DLP, respectively. In addition, memory hierarchy 

is exploited by performing the QR computation on blocks of data to reduce the impact of 

memory latency by reusing the loaded data in cache memories. The target systems are (1) 

Dell OptiPlex 380, which has Intel Core 2 Duo E7500 with two cores (2-physical/2-

logical processors, see Figure 1a) running at 2.93 GHz and 4 GB memory, (2) HP 

ProBook 6550b, which has Intel Core i5 M520 with two cores supporting Hyper-

Threading technology (2-physical/4-logical processors, see Figure 1b) running at 2.4 

GHz and 4 GB memory, and (3) Fujitsu Siemens CELSIUS R550, which has Intel Xeon 

E5410 with four cores (4-physical/4-logical processors, see Figure 1c) running at 2.33 

GHz and 4 GB memory. Table 1 illustrates the specifications of the Intel multi-core 

Figure 1: Target Intel multi-core processors. 
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processors used in our implementation of QR decomposition algorithm. C++ 

programming language has been used to code various implementations of QR 

decomposition algorithms using Microsoft Visual Studio 2008. Since C++ stores 2-D 

matrices in row major order in linear memory, row oriented QR decomposition algorithm 

is demonstrated in this paper.   

The rest of the paper is organized as follows. Section 2 provides a brief discussion of 

related work. Section 3 presents the Householder QR performance improvements on Intel 

multi-core processors using Intel streaming SIMD extensions and multithreading. Section 

4 describes the block QR algorithm and its multithreaded SIMD performance. Finally, the 

conclusion is drawn in Section 5. 

  

 

2. RELATED WORK  

 

In linear algebra, a QR decomposition (factorization) of a matrix is a decomposition of a 

matrix A into a product of an orthogonal matrix Q and an upper triangular matrix R (A = 

Q×R) [14]. QR decomposition is often used to solve the linear least squares problem, 

which has been used in many scientific fields such as mathematics, physics, statistics, and 

economics [15, 16]. Thus, in recent years, many researchers are working in the 

improvement of the parallel performance of the QR factorization algorithm to reduce its 

execution time.  

Agullo et al. [17] tackled the issue of tuning a dense QR factorization on multi-core 

architectures using a fully empirical approach. Their method is automatic, fast, and 

reliable. They achieved an average performance varying from 97% to 100% of the 

optimum performance depending on the platform. 

Dongarra et al. [18] described new QR factorization algorithm which is especially 

designed for massively parallel platforms combining parallel distributed multi-core 

nodes. Their new algorithm falls in the category of the tile algorithms [19-21] which 

naturally enables good data locality for the sequential kernels executed by the cores, low 

number of messages in a parallel distributed setting, and fine granularity. Their 

Table 1: Specifications of the target multi-core processors. 

Processor 
Intel Core™ 2 Duo 

E7500 
Intel Core™ i5 

520M 
Intel Xeon

®
 E5410 

# Cores 2 2 4 

# Threads 2 4 4 

Hyper-Threading Not support Support Not support 

Clock Speed 2.93 GHz 2.4 GHz 2.33 GHz 

Cache L2: 3 MB L3: 3 MB L2: 12 MB 

Bus/Core Ratio 11 18 7 

FSB Speed 1066 MHz 1066 MHz 1333 MHz 

Instruction Set 64-bit 64-bit 64-bit 

Lithography 45 nm 32 nm 45 nm 

Processing Die Size 82 mm
2
 81 mm

2
 214 mm

2
 

# Transistors/Processing Die  228 million 382 million 820 million 

Max TDP 65 W 35 W 80 W 

 

 

http://en.wikipedia.org/wiki/Linear_algebra
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Matrix_decomposition
http://en.wikipedia.org/wiki/Orthogonal_matrix
http://en.wikipedia.org/wiki/Upper_triangular_matrix
http://en.wikipedia.org/wiki/Linear_least_squares_(mathematics)
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experiments on the Grid’5000 edel platform showed the following gains at both ends of 

the matrix shape spectrum: (1) on tall and skinny matrices, they reached 57.5% of 

theoretical computational peak performance, to be compared with 6.4% for 

SCALAPACK (9.0x speedup) and (2) on square matrices, they reached 68.7% of 

theoretical computational peak performance, to be compared with 44.2% for 

SCALAPACK (1.6x). 

Hadri et al. [22] presented a new fully asynchronous method for computing a QR 

factorization on shared memory multi-core architectures that overcame the limited 

performance when factorizing tall and skinny matrices or small square matrices. They 

adapted an existing algorithm that performs a panel factorization in parallel (named 

Communication-Avoiding QR and initially designed for distributed-memory machines), 

to the context of tile algorithms using asynchronous computations. Experimental study 

showed significant improvement (up to almost 10 times faster) compared to state of the 

art approaches.  

Kurzak and Dongarra [23] presented implementation of tile QR factorization on the 

CELL processor (3.2 GHz CELL processor of a QS20 dual-socket blade) allowed for 

factorization of a 4000×4000 dense matrix in single precision in exactly half a second. 

They demonstrated how the potential of the CELL processor could be utilized to the 

fullest by employing the new algorithmic approach and successfully exploiting the 

capabilities of the CELL processor in terms of ILP and TLP. 

Demmel et al. [24] presented parallel and sequential dense QR factorization 

algorithms that are both optimal in the amount of communication they perform, and just 

as stable as Householder QR. Their first algorithm, TSQR (Tall Skinny QR), factors m×n 

matrices in a 1-D block cyclic row layout, and is optimized for m>>n. The second 

algorithm, CAQR (Communication-Avoiding QR), factors general rectangular matrices 

distributed in a 2-D block cyclic layout. It invokes TSQR for each block column 

factorization. They implemented parallel TSQR on several machines, with speedups of 

up to 6.7× on 16 processors of a Pentium III cluster, and up to 4× on 32 processors of a 

BlueGene/L. They also modeled the performance of our parallel CAQR algorithm, 

yielding predicted speedups over ScaLAPACK’s PDGEQRF of up to 9.7× on an IBM 

Power5, up to 22.9× on a model Petascale machine, and up to 5.3× on a model of the 

Grid.  

Quintana-Orti et al. [25] examined the scalable parallel implementation of QR 

factorization of a general matrix, targeting SMP and multi-core architectures. They 

presented two implementations of algorithms-by-blocks, where each implementation 

viewed a block of a matrix as the fundamental unit of data, and likewise, operations over 

these blocks as the primary unit of computation. On SGI Altix 350 server (ccNUMA 

architecture with eight nodes, each with two 1.5 GHz Intel Itanium2 processors, 

providing a total of 16 CPUs and a peak performance of 96 GFLOPS), they achieved 

73% of the peak performance. Moreover, on NEUMANN (SMP server with eight AMD 



BLOCK QR DECOMPOSITION ALGORITHM                                         115 

Opteron processors, each one with two cores at 2.2 GHz, providing a total of 16 cores 

and a peak performance of 70.4 GFLOPs), they achieved 65% of the peak performance. 

This paper shows how to make the QR decomposition algorithm run faster on Intel 

multi-core processors by exploiting explicit parallelism (TLP and DLP) and memory 

hierarchy. 

 

 

3. HOUSEHOLDER QR DECOMPOSITION ON  

INTEL MULTI-CORE PROCESSORS  

 

Given an m×n real matrix A, with m ≥ n, its QR factorization is given by A = Q×R, 

where the m×m matrix Q is orthogonal (Q
T
Q = QQ

T
 = I), and the m×n matrix R is upper 

triangular. There are many different methods for computing the QR factorization, where 

the standard algorithm involves successive Householder transformations (see [14] for 

more detail). 

Householder transformations (reflectors) are rank-1 modifications of the identity and 

they can be used to zero selected elements of a vector. Suppose that x is n-element row 

vector and xP is needed to be a multiple of e1 = {1, 0, 0, …. , 0}. Matrix P is called 

Householder transformation and is calculated as follows: 

P = I – (2v
T
v/vv

T
), 

where the vector v is called Householder vector and xP is reflected in the hyperplane span 

v

. Note that v

T
v results in outer-product and vv

T
 produces dot-product. Moreover, 

Householder matrix P is symmetric and orthogonal. P is used to annihilate selected 

elements of vector x as follows:  

xP = x(I – 2v
T
v/vv

T
) = x – (2xv

T
/vv

T
)v. 

Let v = x + e1, then  

xv
T
 = xx

T
 + x1 and vv

T
 =xx

T
 + 2x1 + 

2
. 

Thus, in order to make coefficient of x to be zero, set 

 = ±||x||2. 

Therefore, if v = x – ||x||2e1, then  

xP = +||x||2e1. 

See [14] for more detail. 

In Listing 1, lines 2-14 show the calculation of Householder vector v and its scalar 

value b = (2/vv
T
) of row i of an n×n matrix A (A[i][1:i-1]), where i varies from n to 1. It is 

clear that the calculation of Householder vector is based on Level-1 BLAS [26]. It 

involves about 3n floating-point operations (FLOPs), mainly for dot-product (2n FLOPs) 

in line 2 and vector scaling (n FLOPs) in line 14, where n is the vector length. Moreover, 

applying Householder reflection (see Listing 1, lines 15-17) to the rows of matrix A 

(A×P) is based on Level-2 BLAS [27]. It involves a matrix-vector multiplication (2n
2
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FLOPs) and outer-product update (2n
2
 FLOPs) by exploiting the structure of 

Householder reflector, where the matrix size is n×n, as follows:  

A×P = A(I – 2v
T
v/vv

T
) = A – 2Av

T
v/vv

T
 = A – w

T
v, 

where, w
T
 = bAv

T
. In Listing 1, lines 1-17 show how Householder transformation is used 

to perform QR factorization on n×n matrix A. Lines 2-14 calculate Householder vector v 

and its scalar value b, while lines 15-17 apply v on the remaining rows.  

The total number of FLOPs needed for QR factorization shown in Listing 1 on an n×n 

matrix is 4n
3
/3 [14]. The execution time for applying Householder reflection dominates 

the overall time for calculating the QR factorization (see Figure 2). On reasonably large 

matrix size, accelerating the calculation of Householder vector v and its scalar value b 

(Level-1 BLAS) improves the performance of QR decomposition with negligible value 

(1%) by applying Amdahl’s Law [8]. This means, improving the performance of QR 

decomposition requires reducing the execution time of applying Householder reflections 

(Level-2 BLAS) using parallel processing techniques. However, the performance of 

Level-2 BLAS is limited by the memory access bandwidth [28]. It involves O(n
2
) 

Listing 1: QR factorization using Householder reflector. 

01 FOR i = n to 1 step -1 

02   s = A[i][1:i-1]×A[i][1:i-1]T  

03   v[i] = 1 

04   v[1:i-1] = A[i][1:i-1] 

05   IF( s = 0 )  

06     b = 0 

07   ELSE  

08     u = sqrt(A[i][i]2 + s ) 

09     IF(A[i][i] < 0)  

10       v[i] = A[i][i] – u 

11     ELSE 

12       v[i] = -s/( A[i][i] + u ) 

13     b = 2*v[i]2/( v[i]2 + s ) 

14     v[1:i] = v[1:i]/v[i]    

15   FOR  j = i to 1 step -1 

16     w[j]
T
 = b*(A[j][1:i]×v[1:i]

T
)   

17     A[j][1:i] = A[j][1:i] – w[j]T*v[1:i]  

 

Figure 2: Percentage of Level-2 BLAS in QR decomposition Algorithm. 
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arithmetic operations on O(n
2
) data, where the dimension of the matrix involved is n×n. 

The ratio of arithmetic operations to memory references is O(1), which is not enough to 

improve the performance of multi-core processors with a hierarchy of memory because of 

the low-level of reusing data. 

 Figure 3a shows the performance in clock cycles of unparallel QR decomposition 

illustrated in Listing 1 on Intel multi-core processors shown in Figure 1. On 1000×1000 

matrices, the execution times are (3.83*10
9
)/(2.93*10

9
), (3.56*10

9
)/(2.4*10

9
), and 

(3.75*10
9
)/(2.33*10

9
), or 1.3, 1.5, and 1.6 seconds on Core 2 Duo, Core i5, and Xeon 

processors, respectively. Moreover, on matrices of size 4000×4000, the execution times 

are (2.45*10
11

)/(2.93*10
9
), (2.3*10

11
)/(2.4*10

9
), and (2.46*10

11
)/(2.33*10

9
), or 83.6, 

95.8, and 105.6 seconds, respectively. This means, on the unparallel version of QR 

factorization shown in Listing 1, the performance of Core 2 Duo is the best because it has 

the highest running frequency (2.93 GHz) and only one logical processor is exploited. 

For the same reason, the performance of Core i5 is better than Xeon even though the 

processing die size of the Xeon processor is the largest (see Table 1).  

 On large matrices, the execution time is unacceptable (more than 3 hours on 

20000×20000). Thus, parallel processing techniques are used for improving the 

performance (reducing the execution time) of QR decomposition. Figure 3b shows that 

 

 
(a) Performance of unparallel QR 

 

 

 
(b) Performance of SIMD QR 

 

 
(c) Performance of multithreaded QR 

 
(d) Performance of multithreaded SIMD QR 

  

Figure 3: Performance evaluation of Householder QR decomposition on Intel multi-core processors. 
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the use of Intel streaming SIMD extensions by processing four single-precision floating-

point data using a single instruction reduces the execution QR decomposition. In 

addition, the speedups due to SIMD on various sizes of matrices are listed in Table 2a. 

The performance of Core i5 is the best because its memory hierarchy has three levels of 

cache memory. 

 Moreover, the effect of using multithreading technique is shown in Figure 3c and its 

speedup is listed in Table 2b. As expected, the performance of multithreaded QR on 

Xeon is the best since it has four execution cores, however, Core 2 Due and Core i5 each 

has two execution cores. In total, Figure 3d shows the effect of using both SIMD and 

multithreading techniques on the performance of QR decomposition. As Table 2c lists 

and Figure 3d shows, the best performance is on Core i5 because its memory hierarchy 

system supports the memory requirement of SIMD technique Moreover, Hyper-

Threading technology enables two threads to run on each core (two logical processors) of 

Core i5. Excluding Core i5, the performance on Xeon is better than on Core 2 Duo 

because the former has greater number of cores than the later. Further improvements on 

performance can be achieved by switching to the block QR decomposition algorithm to 

exploit memory hierarchy in addition to SIMD and multithreading as the following 

section shows.
 

 

 

Table 2: Speedup due to parallel processing serial QR. 

(a) Speedup due to SIMD 

Matrix Size Core 2 Duo E7500 Core
TM

 i5 M520 
Xeon 
E5410 

500 4.43 5.00 4.48 
1000 3.14 4.51 4.74 
2000 2.12 3.66 2.60 
4000 2.14 3.58 2.31 

Average 3 4.2 3.5 

 

(b) Speedup due to multithreading 

Matrix Size Core 2 Duo E7500 Core
TM

 i5 M520 
Xeon  
E5410 

500 0.81 0.88 0.83 
1000 1.4 1.67 2.09 
2000 1.67 2.24 3.15 
4000 1.62 2.25 2.84 

Average 1.4 1.8 2.2 

 

(c) Speedup due to multithreaded SIMD 

Matrix Size Core 2 Duo E7500 Core
TM

 i5 M520 
Xeon  
E5410 

500 1.21 1.13 0.88 
1000 2.31 2.88 3.02 
2000 2.19 3.82 4.66 
4000 2.19 3.98 2.96 

Average 2 3 2.9 
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4. BLOCK HOUSEHOLDER QR DECOMPOSITION ON  

INTEL MULTI-CORE PROCESSORS 

  

 The gap between CPU speed and memory speed is increasing rapidly as new 

generations of computer systems are introduced [9]. To address this memory access 

bottleneck, most modern computers use multi-level memory hierarchies in their 

architectures. The key to improve the performance of applications on multi-level memory 

hierarchies is to avoid unnecessary memory references as well as to exploit locality by 

reusing the loaded data into a higher-level cache. Since the movement of data between 

memory and registers can have the same (or even more) cost as arithmetic operations, an 

algorithm performance can be dominated by the amount of memory traffic rather than by 

the number of arithmetic operations involved (like QR algorithm shown in Listing 1). 

This provides a considerable motivation to restructure existing algorithms and to devise 

new algorithms that minimize data movement by reusing the loaded data into cache 

memories [29]. A number of researchers have demonstrated the effectiveness of block 

algorithms on a variety of modern computer architectures (see [30] for more detail).  

 On multi-core Intel processors [13], the given problem can be partitioned into 

blocks. Parallel proceeding of these blocks are performed on multiple cores using 

multithreading technique to reduce the total execution time. Besides, Intel SIMD 

instructions can be used to perform operations on a block in parallel to further improve 

the performance. This approach provides for full reuse of data while the block is held in 

cache memory. It avoids excessive movement of data to/from main memory and gives a 

surface-to-volume effect for the ratio of arithmetic operations to data movement, i.e., 

O(n
3
) arithmetic operations to O(n

2
) data movement [31].  

 By reorganizing the computations of Householder QR decomposition shown in 

Listing 1, which is rich in the Level-2 BLAS [27], block Householder QR decomposition 

based on Level-3 BLAS [32] is constructed as shown in Listing 2. A product Q = P1 P2 

…. Pr of n×n Householder matrices can be written in the form Q = I + W
T
Y , where W 

and Y are each r×m matrices (see [33, 34] for more detail). 

AQ = AP1P2 …. Pr =  

A(I – 2v1
T
v1/v1v1

T
)(I – 2v2

T
v2/v2v2

T
) ……(I – 2vr

T
vr/vrvr

T
) = A(I + W

T
Y) = A + AW

T
Y, 

where, W and Y matrices can be calculated from Householder vectors v1, v2, … ,vr and 

their scalar values b1, b2, …. , br, as follows: 

 Y = v1    // first row of Y is v1 

 W = –b1v1   // first row of W is scalar –b1 times v1 

 FOR  j = 2 to r step 1 

       z = –bj(I + W
T
Y)vj 

       W = [W z]  // concatenate row z after W rows 

      Y = [Y vj]  // concatenate row vj after Y rows 
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Figure 4: Percentage of Level-3 BLAS in block QR. 

 

Figure 5: Increasing the number of FLOPs in the block QR. 

 

Listing 2: Block Householder QR decomposition. 

01 FOR i = n to 1 step -b 

02   FOR p = 0 to b-1 step 1 

03     s = A[i-p][1:i-p-1]×A[i-p][1:i-p-1]T  

04     v[i-p] = 1 

05     v[1:i-p-1] = A[i-p][1:i-p-1] 

06     IF(s = 0) 

07       b = 0 

08     ELSE  

09       u = sqrt(A[i-p][i-p]2 + s ) 

10       IF(A[i-p][i-p] < 0) 

11         v[i-p] = A[i-p][i-p] – u 

12       ELSE 

13         v[i-p] = -s/( A[i-p][i-p] + u ) 

14       b = 2*v[i-p]2/( v[i-p]2 + s ) 

15       v[1:i-p] = v[1:i-p]/v[i-p]    

16     FOR j = i-p to i-b-1 step -1 

17       w = b*(A[j][1:i-p]×v[1:i-p]T)   

18       A[j][1:i-p]=A[j][1:i-p] - w*v[1:i-p] 

19     IF(p = 0) 

20       Y[1][1:i] = v[1:i] 

21       W[1][1:i] = -b * v[1:i]  

22     ELSE 

23       FOR j = 1 to p-1 step 1 

24         y[j] = Y[j][1:i]×v[1:i]T 

25       W[p+1][1:i] = -b*(W[1:j][1:i]T×y[1:j]+v[1:i]) 

26       Y[p+1][1:i] = v[1:i] 

27   T[1:i-b][1:b]=A[1:i-b][1:i]×W[1:b][1:i]T   

28   A[1:i-b][1:i]+=T[1:i-b][1:b]×Y[1:b][1:i]   
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 Figure 4 shows the percentage of Level-3 BLAS in the block QR decomposition for 

multiple block sizes (4×4, 10×10, 20×20, 25×25, 50×50, 100×100, 125×125, 200×200, 

250×250, and 500×500). It is clear that as the block size increases the percentage of 

Level-3 BLAS decreases because of the overhead of constructing W and Y matrices. 

Thus, the performance of the block QR decomposition is better on larger block size when 

the problem size is reasonably large, as we shall discuss. Moreover, increasing the block 

size increases the number of FLOPs needed for block QR decomposition. Figure 5 shows 

the percentage of increasing the number of FLOPs over the unblocked version (see 

Listing 1), which requires (4n
3
/3 FLOPs). On 1000×1000 (4000×4000), the block QR 

decomposition needs 104%, 115%, 130%, and 175% (102%, 104%, 108%, and 119%) 

FLOPs when using blocks of sizes 25×25, 100×100, 200×200, and 500×500, 

respectively. This means, increasing the problem size or decreasing the block size or both 

results in decreasing the number of FLOPs of block QR factorization algorithm. 

 Figure 6a shows the performance in clock cycles of block QR decomposition 

illustrated in Listing 2 on Intel processors, where the block size is 4×4. The use of 

blocking technique only speeds up the execution of Householder QR decomposition by 

factors of 1.7, 1.9, 1.6 on Core 2 Duo, Core i5, and Xeon processors, respectively (see 

Table 3a). Furthermore, processing 4×4 blocks of QR using SIMD improves the 

performance, as shown in Figure 6b. On 4000×4000 matrices, the execution times on 

 

 
(a) Perfoemance of block QR 

 
(b) Perfoemance of block SIMD QR 

 

 
(c) Perfoemance of block multithreaded QR 

 
(d) Perfoemance of block multithreaded SIMD QR 

  

Figure 6: Performance evaluation of QR based on block Householder transformation.  
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Core 2 Duo, Core i5, and Xeon are (4.34*10
10

)/(2.93*10
9
), (2.94*10

10
)/(2.4*10

9
), and 

(5*10
10

)/(2.33*10
9
), or 14.8, 12.25, and 21.5 seconds. This means that the performance of 

Core i5 is the best because of the exploitation of three levels of memory hierarchy for 

reusing the loaded blocks. Table 3b shows the average speedup due to the use of blocking 

SIMD (6.5, 8.2, and 6.5, respectively). 

 Processing multiple blocks of QR decomposition algorithm on multiple execution 

cores using multithreading technique improves the performance furthermore (see Figure 

6c). The average speedup on Xeon is the best (four times) since it has four execution 

cores (see Table 3c). Moreover, the speedup on Core i5 is better than Core 2 Due because 

its cores supports Hyper-Threading technology (each core can process two threads in 

parallel, see Table 1). In total, Figure 6d shows the effect of using blocking, SIMD, and 

multithreading techniques on the performance of QR decomposition. As Figure 7 and 

Table 3d show, on small matrix size, the speedup due to using blocking, SIMD, and 

multithreading techniques is almost equal on the three types of Intel multi-core 

processors. On large matrix size fitted in cache memory, the speedup on Xeon is the best 

because it has the largest number of physical cores. When the matrix size cannot fit in 

 

Table 3: Speedup due to parallel processing block QR. 

(a) Speedup due to blocking 

Matrix Size Core 2 Duo E7500 Core
TM

 i5 M520 
Xeon  
E5410 

500 1.81 2.03 1.82 
1000 1.61 1.88 1.67 
2000 1.69 1.9 1.53 
4000 1.68 1.92 1.53 

Average 1.7 1.9 1.6 

 

 (b) Speedup due to block SIMD 

Matrix Size Core 2 Duo E7500 Core
TM

 i5 M520 
Xeon  
E5410 

500 7.3 8.11 7.58 
1000 7.23 8.87 8.25 
2000 5.96 7.91 5.43 
4000 5.64 7.81 4.93 

Average 6.5 8.2 6.5 

 

(c) Speedup due to block multithreading 

Matrix Size Core 2 Duo E7500 Core
TM

 i5 M520 
Xeon  
E5410 

500 1.71 1.85 2.21 
1000 2.45 2.59 3.85 
2000 2.71 2.94 4.99 
4000 2.63 2.97 5.12 

Average 2.4 2.6 4 

 

(d) Speedup due to block multithreaded SIMD 

Matrix Size Core 2 Duo E7500 Core
TM

 i5 M520 
Xeon  
E5410 

500 3.37 3.72 3.31 
1000 6.94 7.88 10.1 
2000 6.59 9.64 12.1 
4000 6.25 10.7 6.99 

Average 5.8 8 8.1 
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cache memory, the speedup on Core i5 is the best since it has the three levels of memory 

hierarchy. 

 Figure 7 shows the effect of increasing block size from 4×4 to 10×10, 20×20, 25×25, 

50×50, 100×100, 125×125, 200×200, 250×250, and 500×500 on the multithreaded SIMD 

implementation of the block QR decomposition. The performance is measured in 

GFLOPS (Giga floating-point operations per second) and is calculated as dividing the 

number of FLOPs of the main QR factorization algorithm (4n
3
/3 for unblocked version in 

Listing 1) by the execution time in seconds (number of clock cycles times clock cycle 

time). The best performance can be achieved when the percentage of Level-3 BLAS is 

95% or more with a largest block size because increasing the block size leads to 

decreasing the percentage of Level-3 BLAS (see Figure 4). Figures 8a, 8c, and 8e show 

performances of about performances of 80, 90, and 65 GFLOPS achieved on Core 2 Duo 

E7500, Core i5 M520, and Xeon E5410, respectively. On a fixed problem size, increasing 

the block size decreases the percentage of Level-3 BLAS and increases the numbers of 

FLOPs. However, increasing the block size increases the locality of data and decreases 

the execution time (number of clock cycles). Thus these tradeoffs results in turnover 

points as increasing the block sizes and fixing the problem size. The locations of these 

turnover points change with increasing the problem size. 

 Figures 8b, 8d, and 8f show the speedup of the multithreaded SIMD implementation 

of block QR factorization over the unparallel implementation of the unblocked version. 

Speedups of multithreaded SIMD implementation of the block QR decomposition on 

20000×20000 dense matrix range 6.6-80, 11-103, and 6.6-80 times higher than the 

unparallel execution on Core 2 Duo E7500, Core i5 M520, and Xeon E5410, 

respectively, on block size varies from 4×4 to 100×100. 

  

 

 

 

 
 

Figure 7: Speedup due to block multithreaded SIMD QR on small matrices. 
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(a) Performance of Block QR on Core 2 Due 

 

 

 
(b) Speedup on Core 2 Due  

 

 
(c) Performance of Block QR on Core i5 

 

 

 
(d) Speedup on Core i5 

  

 
(e) Performance of Block QR on Xeon 

 

 

 
(f) Speedup on Xeon 

 

Figure 8: The effect of changing block size on the performance of the block Householder QR decomposition.  
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5. CONCLUSION 

 

A combination of using efficient algorithms and well designed implementations 

leads to great high performance applications. This paper shows how the performance of 

the QR decomposition is enhanced through the exploitation of data-level parallelism 

(DLP), thread-level parallelism (TLP), and memory hierarchy on Intel multi-core 

processors. Streaming SIMD extensions and multithreading computation are used to 

exploit DLP and TLP, respectively. To facilitate the exploitation of TLP on multiple 

execution cores, the block QR algorithm is used.  

On Core 2 Duo E7500 with two cores, Core i5 M520 with two cores supporting 

Hyper-Threading technology, and Xeon E5410 with four cores, the average speedup of 

block multithreaded SIMD implementation of the 4×4 block QR decomposition on 

matrices of small sizes 500×500 up to 1500×1500 in step of 100 are about 6.2, 7.1, and 

9.7 times higher than the unparallel execution, respectively. As the matrices sizes 

increase (1500×1500 up to 4000×4000 in step of 100), the average speedup of 4×4 

blocked multithreaded SIMD implementation are about 6.4, 10.2, and 9.5 times on Core 2 

Duo E7500, Core i5 M520, and Xeon E5410, respectively. However, speedup of 

multithreaded SIMD implementation of the 4×4 block QR decomposition on 

20000×20000 dense matrix range 6.6, 11, and 6.6 times higher than the unparallel 

execution on Core 2 Duo E7500, Core i5 M520, and Xeon E5410, respectively. 

Increasing the block size from 4×4 to 100×100 leads to improving the multithreaded 

SIMD implementation by 80, 103, and 80 times higher than the unparallel execution, 

respectively. Further increasing the block size to 500×500 reduces the speedups to 20, 34, 

and 19, respectively. Our results show performances of 80, 90, and 65 GFLOPS achieved 

on Core 2 Duo E7500, Core i5 M520, and Xeon E5410, respectively. 
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