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ON RELIABILITY OF STOCHASTIC NETWORKS

JEWGENI H. DSHALALOW AND RYAN WHITE

Department of Mathematical Sciences, College of Science, Florida Institute of

Technology, Melbourne, Florida 32901 USA

ABSTRACT. In the recent times we hear increasingly often about cyber attacks on various com-

mercial and strategic sites that manage to escape any defense. In this article we model such attacks

on networks via stochastic processes and predict the time of a total or partial failure of a network

including the magnitude of losses (such as the number of compromised nodes, lost weights, and a

loss of other associated components relative to some fixed thresholds). To make such modeling more

realistic we also assume that the information about the attacks is delayed as per random observa-

tions. We arrive at analytically and numerically tractable results demonstrated by examples and

comparative simulation.
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1. INTRODUCTION

In this paper, we consider a model of a large-scale stochastic network under a

series of cyber attacks wherein successive random subgraphs are compromised (de-

stroyed or otherwise prevented from normal operation) upon random time increments.

With each node is an associated random weight representing the value of the node.

Furthermore, we do not learn in real-time the extent of the damage: rather, the status

of the cumulative damage is ascertained only upon an independent delayed renewal

observation process.

Random graphs are very common in modeling various types of networks [6–7,

23, 27, 29–30, 32, 36], but few had cyber-crime as a focus [28, 31]. The classical

random graphs of Erdös and Rènyi, G(n, M), consist of n vertices with M edges

chosen uniformly at random from the set of all possible adjacencies among the n

vertices [17–18], but we consider rather pre-existing random graphs with randomly

weighted nodes. As such, we model each individual attack as removing some random

number of nodes along with their total weight.

Models of cyber attacks sometimes consider a viral process spreading from one

node to another according to a branching process. While this can lead to valuable in-

sights in some domains, we aim to capture the incapacitation of institutional network
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assets under existing defensive strategies (firewalls, quarantining affected machines,

and so forth), which result in uncertain graphs on which viral attacks may spread

and the loss of operational capacity of potentially non-infected nodes, rendering the

estimates of infected nodes an incomplete picture of losses.

Also, there may be multiple sources of viral and non-viral attacks (e.g. distributed

denial of service). Further, batches of nodes are commonly lost because (1) some vi-

ral attacks, once beyond a firewall, can spread to an entire subnet very quickly [8],

(2) viral detection often prompts administrators to quarantine subnets, (3) attacks

may knock out a hub necessary for proper operation of adjacent nodes (e.g. a router)

[4], and (4) many communication networks can be characterized by scale-free net-

works, yielding clusters of highly interconnected groups of nodes [22, 28, 31] associ-

ated with particular subnets, increasing the threat of practically immediate internal

contamination.

The primary target of our analysis will be the process in the vicinity of the

first time that either a cumulative node loss component reaches a threshold M or a

cumulative weight loss component reaches a threshold V . Formally, this will be an

exit time of a multivariate marked point process with mutually dependent components

from the open rectangle [0, M)×[0, V ). As such, we draw upon the extensive literature

on fluctuation theory [19–20, 24–26, 33–34] and properties of exit times of stochastic

processes [1–3, 10–16, 21–22, 35].

The crossing of these critical thresholds correspond to points at which network

activity undergoes some important change in operation, whether it corresponds to

the detection of malicious attacks as opposed to benign losses (e.g. temporary main-

tenance or ordinary hardware failures), the point at which the situation dictates a

change in defensive policy, or the destruction of the network. Thus, we want to pre-

dict when such crossings will happen, the values of the components of the process at

the crossing, and the like.

Now, since the present paper focuses on application of previously obtained general

results [10, 16] for random walks to the prediction of a failure of networks, we show

in Section 3 that if the attacks form a marked Poisson process, special cases under

delayed observations are tractable and they agree with results obtained by direct

simulation.

2. EXIT TIME MODEL FOR NETWORKS

Let (Ω,F (Ω) , P ) be a probability space and let

(2.1) (N ⊗W ⊗P) =
∑

k≥0

(nk, wk, pk) εtk
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(where εc is a Dirac point measure) be a marked atomic random measure describing

the evolution of damage to a network where attacks arrive upon each tk, at which

nk nodes are incapacitated and their associated weights, wk = wk1 + · · ·+ wknk
(wkj

represents the nonnegative real weight of the jth node destroyed in the kth attack).

In addition, a real random n-vector representing the change in passive components

for each node lost, yielding the last component of the mark: pk = pk1 + · · ·+ pknk
,

where pkj represents the change in the n passive components due to loss of the jth

node of the kth attack). Altogether, we have

(2.2) (nk, wk, pk) : Ω→ N×R0 ×R
n

We assume the increments (nk, wk, pk) are jointly independent and identically

distributed (iid) for k ∈ N and each is independent of (n0, w0, p0), though components

are mutually dependent.

Furthermore, we assume the common probability-generating function (PGF) of

each nk is g (z), the common Laplace-Stieltjes transform (LST) of each wkj is l (v), and

the common n-variate moment-generating function of each pkj is m (α). In addition,

we assume each wk and pk are conditionally independent given nk.

We define the joint transform of the increments as

(2.3) γ (z, v, α) = E
[

znke−vwkeα·pk
]

where k ∈ N, |z| ≤ 1, v ∈ R, α ∈ Rm.

Using the transforms above with iterated expectation and the conditional inde-

pendence of wk and pk given nk, we can simplify this as

(2.4) γ (z, v, α) = g [zl (v) m (α)]

Consider the continuous time parameter process associated with the random mea-

sure N ⊗W ⊗P introduced in (2.1),

(2.5) (N (t) , W (t) , P (t)) = (N ⊗W ⊗P) [0, t]

However, we will suppose the process is observed only upon the following delayed

renewal process (rather than in real-time)

(2.6) T =
∑

k≥0

ετk

where ∆k = τk − τk−1 for k ∈ N0 and τ−1 = 0, where each ∆k is iid for k ≥ 1, and

independent of ∆0.

Next, we define the increments of the process upon the observations at each τk,

(X0, Y0, π0) = (N ⊗W ⊗P) [0, τ0](2.7)

(Xk, Yk, πk) = (N ⊗W ⊗P) (τk−1, τk](2.8)
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where k ∈ N. We will also denote the values of the cumulative process upon the

observations

(2.9) Nk = N (τk) , Wk = W (τk) , Pk = P (τk)

Therefore, we can write the increments as

Xk = Nk −Nk−1(2.10)

Yk = Wk −Wk−1(2.11)

πk = Pk −Pk−1(2.12)

for k ∈ N0, with N−1 = W−1 = 0, π−1 = 0.

With the delayed observation, the joint functionals of the increments depend on

the amount of time since the previous observation because some nonnegative integer

number of attacks will occur during each observation epoch (τk−1, τk] whereas previ-

ously we knew the increment (nk, wk, pk) corresponded to exactly 1 attack. As such,

the modified functional of the increment is

(2.13) γk (z, v, θ, α) = E
[

zXke−vYke−θ∆keα·πk
]

, k ∈ N0

where |z| ≤ 1, Re(v) ≥ 0, Re(θ) ≥ 0, α ∈ Cn. Note that since the increments (other

than the initial one) are identically distributed, we will have just two unique joint

increment transforms

γ0 (z, v, θ, α) = E
[

zX0e−vY0e−θ∆0eα·π0
]

(2.14)

γ (z, v, θ, α) = E
[

zX1e−vY1e−θ∆1eα·π1
]

(2.15)

where (2.15) is equal to γk for all k ∈ N.

We will be interested in the first observation epoch when the cumulative node loss

component crosses a fixed threshold M ∈ N, or the cumulative weight loss component

crosses a threshold V ∈ R+, whichever comes first. Then, we define the first observed

passage index

(2.16) ρ = inf {n : (Nn, Wn) /∈ [0, M)× [0, V )}

while τρ is called the first observed passage time. We refer to N and W as the active

components of the process (whereas P and time are passive).

Throughout the rest of this article, we consider various marginal and semi-

marginal variants of the joint functional

(2.17) Φ (y, z, u, v, η, θ, α, β) = E
[

yNρ−1zNρe−uWρ−1−vWρe−ητρ−1−θτρeα·Pρ−1+β·Pρ
]

of the cumulative number of nodes lost, cumulative weight lost, time, and additional

components at the observation before (i.e. the pre-observed passage time) and af-

ter (i.e. the first observed passage time) the first threshold crossing under special

assumptions.
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3. APPLICATION TO POISSONIAN ATTACK PROCESS

In this section we will derive analytically tractable probabilistic results for the

network exit time model under delayed observation for a special case. First, we

assume attacks occur according to a marked Poisson process,

(3.1) Π =
∑

k≥1

(nk, wk, pk) εtk

where {t1, t2, . . .} is a Poisson point process of rate λ on the nonnegative real line with

the marks (nk, wk, pk) under observation by the delayed renewal process {τ0, τ1, τ2, . . .}

as explained in Section 2.

We will derive expressions for marginal and semi-marginal versions of the func-

tional Φ as well as show how they lead to probabilistic results, such as moments and

distributions, for the values of each component of the process in the random vicinities

of the exit time.

By assuming Poisson attack occurrences, we can make the joint transforms of the

increments of the process (2.14)–(2.15) more explicit (see Lemma A.1 from Appen-

dix A):

γ0 (z, v, θ, β) = L0 [θ + λ− λg (zl (v)m (β))](3.2)

γ (z, v, θ, β) = L [θ + λ− λg (zl (v)m (β))](3.3)

where L0 and L are the Laplace-Stieltjes transforms of ∆0 and ∆k (for k ∈ N),

respectively.

The following transforms will be a useful tool through which we derive analytically

tractable results. Denote

(3.4) Dpq = LCp ◦ Dq

Here LCp is the Laplace-Carson transform:

(3.5) LCp (·) (w) = w

∫ ∞

p=0

e−wp (·) dp, Re (w) > 0

with the inverse

(3.6) LC−1
w (·) (p) = L−1

w

(

·
1

w

)

(p)

where L−1
w is the inverse of the Laplace transform. The operator Dq is defined as

(3.7) Dq (f) (x) = (1− x)

∞
∑

q=0

xqf (q) , ‖x‖ < 1

where {f (q)} is a sequence, with the inverse (for r ∈ N)

(3.8) Dr
x (ϕ (x, w)) = lim

x→0

1

r!

∂r

∂xr

[

1

1− x
ϕ (x, w)

]
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The inverse of Dpq is denoted

(3.9) D−1
xw (·) = LC−1

w ◦ D
q−1
x (·) (p, q)

According to [10], under the assumption (N (0) , W (0) , P (0)) = (0, 0, 0),

Φ = Φ (1, z, 0, v, 0, θ, 0, β) = E
[

zNρe−vWρe−θτρeβ·Pρ
]

= 1− (1− γ)D−1
xw

[

1

1− γ

]

(M, V )
(3.10)

where

γ = γ (z, v, θ, β)(3.11)

γ = γ (zx, v + w, θ, β)(3.12)

3.1. Results for a Special Case. We will derive analytically tractable results under

a special case according to the following assumptions

1. Observation ∆k = τk − τk−1 ∈ [Exponential (µ)], so L (u) = µ

µ+u

2. Nodes lost per strike n1 ∈ [Geometric (a)] (and b = 1− a), g (z) = az
1−bz

3. Weight lost per node lost w11 ∈ [Exponential (ξ)], so l (u) = ξ

ξ+u

4. Zero initial state (γ0 ≡ 1)

We will find explicitly under these conditions the joint functional (2.17), i.e. the

joint functional of each component at the observed passage time only.

Theorem 3.1. Under assumptions 1–4,

Φ (1, z, 0, v, 0, θ, 0, β) = 1− (1− γ)

×

(

1 +
bµ

λ + bθ
+

aλµ

(λ + bθ) (λ + θ)
φ (z, v, θ, β)

)

(3.13)

where

φ (z, v, θ, β) =
ξ + v

v + ξ (1− d)
−

(dξ)M
(

1− e−(v+ξ)V
∑M−2

j=0
[(ξ+v)V ]j

j!

)

(v + ξ (1− d)) (ξ + v)M−1

−
dξe−(ξ+v)V

∑M−2
j=0

(dξV )j

j!

ξ − dξ + v

(3.14)

d = zm (β)
λ + bθ

λ + θ
(3.15)

Proof. Using assumption 1, we have

γ = L [θ + λ− λg (zl (v) m (β))] = L [θ∗] =
µ

µ + θ∗
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where we set

θ∗ = θ + λ− λg (zl (v)m (β)) = θ + λ− λ
azl (v) m (β)

1− bzl (v)m (β)

θ∗ = θ + λ− λg (xzl (v + w)m (β)) = θ + λ− λ
axzl (v + w)m (β)

1− bxzl (v + w)m (β)

Combining this with (3.10),

Φ = 1− (1− γ)D−1
xw

{

1

1− µ

µ+θ∗

}

(M, V )

= 1− (1− γ)

(

1 + µD−1
xw

{

1

θ∗

}

(M, V )

)

(3.16)

We will explicitly calculate D−1
xw

{

1
θ∗

}

(M, V ) = LC−1
w ◦ D

M−1
x

{

1
θ∗

}

(V ), so first we

manipulate 1
θ∗

into a form for which applying DM−1
x is possible. Firstly,

1

θ∗
=

1

θ + λ− λ axzl(v+w)m(β)
1−bxzl(v+w)m(β)

=
b

λ + bθ
+

aλ

(λ + bθ) (θ + λ)

1

1− Cx

where

C = zl (v + w)m (β)
λ + bθ

λ + θ
= c

λ + bθ

λ + θ

which is constant with respect to x, allowing us to find

DM−1
x

{

1

θ∗

}

=
b

λ + bθ
+

aλ

(λ + bθ) (λ + θ)

1− CM

1− C

Denote

(3.17) d =
C

l (v + w)
= zm (β)

λ + bθ

λ + θ

and calculate the inverse Laplace-Carson transform LC−1
w :

LC−1
w

{

DM−1
x

{

1

θ∗

}}

(V ) =
b

λ + bθ
+

aλ

(λ + bθ) (λ + θ)

× L−1
w

{

1

w

1− dM l (v + w)M

1− dl (v + w)

}

(V )

(3.18)

After applying assumption 4 for l, we manipulate the expression into an appropriate

form and carry out the inversion

1

w

1− dM l (v + w)M

1− dl (v + w)
=

ξ + v

w (ξ + v + w − dξ)
+

1

ξ + v + w − dξ

−
(dξ)M

ξ − dξ + v

1

(ξ + v + w)M−1

[

1

w
−

1

ξ + v + w − dξ

]
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We are left with

φ (z, v, θ, β) = L−1
w

{

ξ + v

w (w + v + ξ (1− d))
+

1

w + v + ξ (1− d)

−
(dξ)M

v + ξ (1− d)

(

1

w

1

(w + v + ξ)M−1

−
1

w + v + ξ (1− d)

1

(ξ + v + w)M−1

)}

(V )

=
ξ + v

v + ξ (1− d)
−

(dξ)M
(

1− e−(v+ξ)V
∑M−2

j=0
[(ξ+v)V ]j

j!

)

(v + ξ (1− d)) (ξ + v)M−1

−
dξe−(ξ+v)V

v + ξ (1− d)

M−2
∑

j=0

(dξV )j

j!

(3.19)

Compiling equations (3.16)–(3.19), we have the desired result.

3.2. Marginal Transforms upon τρ. In this section, we will find the marginal

transforms of the active components and time upon the first observed passage time.

First, we find the marginal PGF of the cumulative node loss component at the first

observed passage time, Nρ.

Corollary 3.2. Under assumptions 1–4,

(3.20) E
[

zNρ
]

= Φ (1, z, 0, 0, 0, 0, 0, 0) =
aµ [1− φ∗ (z, 0, 0, 0)]

λ + µ− (λ + bµ) z

where

(3.21) φ∗ (z, 0, 0, 0) = 1− zM

(

1− e−ξV

M−2
∑

j=0

(ξV )j

j!

)

− e−ξV

M−2
∑

j=0

(ξV )j

j!
zj+1

(i.e. φ∗ (z, 0, 0, 0) = (1− z) φ (z, 0, 0, 0)).

Proof. We have d = z and

θ∗ = λ− λg (z) = λ

(

1− z

1− bz

)

Therefore,

1− γ =
θ∗

µ + θ∗
= λ

(

1− z

µ (1− bz) + λ (1− z)

)

and

1 +
bµ

λ + bθ
+

aλµ

(λ + bθ) (λ + θ)
φ (z, v, θ, β)

∣

∣

∣

v=θ=0,β=0

=
λ + bµ + aµφ (z, 0, 0, 0)

λ

and

φ (z, 0, 0, 0) =
1

1− z
−

zM
(

1− e−ξV
∑M−2

j=0
(ξV )j

j!

)

1− z
−

ze−ξV
∑M−2

j=0
(ξV )j

j!
zj

1− z
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Altogether, we have

E
[

zNρ
]

= 1−

(

1− z

µ (1− bz) + λ (1− z)

)

(λ + bµ + aµφ (z, 0, 0, 0))

=
aµ (1− φ∗ (z, 0, 0, 0))

λ + µ− (λ + bµ) z

Next, we find the marginal LST of the cumulative weight lost upon the first

observed passage time, Wρ.

Corollary 3.3. Under assumptions 1–4,

E
[

e−vWρ
]

= Φ (1, 1, 0, v, 0, 0, 0, 0)

=
Ke−vV

1 + kv
−

M−2
∑

j=0

V j

j!

ξM−1e−(v+ξ)V

(1 + kv) (v + ξ)M−1−j
+

ξM−1

(1+kv)(v+ξ)M−1

(3.22)

where

(3.23) K = e−ξV

M−2
∑

j=0

(ξV )j

j!
and k =

λ + µ

aµξ

Proof. We have

θ∗ = λ− λg (l (v)) = λ

(

1−
al (v)

1− bl (v)

)

=
λv

v + aξ

(1− γ)

(

1 +
bµ

λ + bθ
+

aλµ

(λ + bθ) (λ + θ)
φ (z, v, θ, β)

)

∣

∣

∣

z=1,θ=0,β=0

=
λv + bµv + aµvφ (1, v, 0, 0)

aξµ + (λ + µ) v

Since d = zm (β) λ+bθ
λ+θ

= 1,

φ (1, v, 0, 0) =
ξ + v

v
−

ξM
(

1− e−(v+ξ)V
∑M−2

j=0
[(ξ+v)V ]j

j!

)

v (ξ + v)M−1
−

ξe−(ξ+v)V
∑M−2

j=0
(ξV )j

j!

v

E
[

e−vWρ
]

= 1−
λv + bµv + aµvφ (1, v, 0, 0)

aξµ + (λ + µ) v
=

aµξ + aµv − aµvφ (1, v, 0, 0)

aµξ + (λ + µ) v

=
1

ξ

ξ + v − vφ (1, v, 0, 0)

1 + kv

=
Ke−vV

1 + kv
−

M−2
∑

j=0

V j

j!

ξM−1e−(v+ξ)V

(1 + kv) (v + ξ)M−1−j
+

ξM−1

(1+kv)(v+ξ)M−1
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Lastly, we find the marginal Laplace-Stieltjes transform of the first observed

passage time τρ, Φ (1, 1, 0, 0, 0, θ, 0, 0) = E
[

e−θτρ
]

, which follows trivially from Theo-

rem 3.1.

Corollary 3.4. Under assumptions 1–4,

E
[

e−θτρ
]

= Φ (1, 1, 0, 0, 0, θ, 0, 0)

= 1−
θ

µ + θ

[

1 +
bµ

λ + bθ
+

aλµ

(λ + bθ) (λ + θ)
φ (1, 0, θ, 0)

]

(3.24)

where

φ (1, 0, θ, 0) =
1

1− d
−

dM
(

1− e−ξV
∑M−2

j=0
(ξV )j

j!

)

1− d

−
de−ξV

∑M−2
j=0

(dξV )j

j!

1− d

(3.25)

d =
λ + bθ

λ + θ
(3.26)

3.3. Additional Probabilistic Results. In this section, we provide a sampling of

the explicit results that can be found via the marginal transforms from the previous

section and demonstrate how well they match their respective random variables found

via simulations of the process (as explained in Appendix B).

Theorem 3.5. Under assumptions 1–4,

(3.27) E [Nρ] =
λ + bµ

aµ
+ M − (M − 1) e−ξV

M−2
∑

j=0

(ξV )j

j!
+ e−ξV

M−2
∑

j=0

(ξV )j

(j − 1)!

Proof. Using E[zNρ ] of Corollary 3.2, we can find the mean

E [Nρ] = limz→1−
d
dz

E
[

zNρ
]

. We manipulate the PGF into a more suitable form, with

s = λ+µ

λ+bµ
,

E
[

zNρ
]

=
aµ

λ + bµ

1

s− z

[

zM

(

1− e−ξV

M−2
∑

j=0

(ξV )j

j!

)

+ e−ξV

M−2
∑

j=0

(ξV )j

j!
zj+1

]

Then,

E [Nρ] = lim
z→1−

d

dz
E
[

zNρ
]

= (1−K)
M (s− 1) + 1

(s− 1)
+ e−ξV

M−2
∑

j=0

(ξV )j

j!

[j (s− 1) + s]

(s− 1)

=
λ + bµ

aµ
+ M + (1−M) K + e−ξV

M−2
∑

j=0

(ξV )j

(j − 1)!

Next, we find the mean of the cumulative weight loss component upon the first

observed passing time.
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Theorem 3.6. Under assumptions 1–4,

E [Wρ] =
1

ξ

(

λ + bµ

aµ
+ M − (M − 1) e−ξV

M−2
∑

j=0

(ξV )j

j!
+ e−ξV

M−2
∑

j=0

(ξV )j

(j − 1)!

)

=
E [Nρ]

ξ
= E [w11]E [Nρ]

(3.28)

Proof. Using the LST E
[

e−vWρ
]

of Corollary 3.3, we use the property E [Wρ] =

− d
dv

E
[

e−vWρ
]

∣

∣

∣

v=0
. We manipulate the LST into a suitable form

E
[

e−vWρ
]

=
Ke−vV

1 + kv
−

M−2
∑

j=0

V j

j!

ξM−1e−(v+ξ)V

(1 + kv) (v + ξ)M−1−j
+

ξM−1

(1+kv)(v+ξ)M−1

Then, applying the derivative and limit,

E [Wρ] =
1

ξ

[

λ + bµ

aµ
+ M − (M − 1)K + e−ξV

M−2
∑

j=0

(ξV )j

(j − 1)!

]

Simulations of the process agree with the above formulas. For each set of pa-

rameters, we generated 1,000 realizations of the process by the method described in

Appendix B, yielding the following results (with sample means and absolute errors):

(λ, µ, a, ξ, M, V ) E [Nρ] S. Mean Error E [Wρ] S. Mean Error

(.2, 2, .5, 1, 1000, 1000) 989.08 988.82 0.26 989.08 990.06 0.98

(1, 2, .5, 1, 1000, 1000) 989.88 989.01 0.87 989.88 989.30 0.58

(3, 2, .5, 1, 1000, 1000) 991.88 990.59 1.29 991.88 989.18 2.70

(1, 2, .4, 1, 1000, 1000) 990.63 990.39 0.24 990.63 990.27 0.36

(1, 2, .2, 1, 1000, 1000) 994.38 994.04 0.34 994.38 994.86 0.48

(1, 2, .5, 1, 1000, 1000) 998.88 992.70 6.18 998.88 994.99 3.89

(1, 1, .5, 1, 1000, 1000) 990.88 990.00 0.88 990.88 989.71 1.17

(1, 5, .5, 1, 1000, 1000) 989.28 989.92 0.64 989.28 988.97 0.31

(1, 10, .5, 1, 1000, 1000) 989.08 989.08 0.00 989.08 989.68 0.31

(1, 2, .5, .5, 1000, 1000) 503.00 502.73 0.27 1006.00 1005.04 0.96

(1, 2, .5, 1.01, 1000, 1000) 994.09 993.06 1.03 984.25 983.65 0.60

(1, 2, .5, 2, 1000, 1000) 1002.00 1001.57 0.43 501.00 500.91 0.09

(1, 2, .5, 1, 1000, 800) 803.00 802.68 0.32 803.00 802.67 0.33

(1, 2, .75, 1, 1000, 750) 752.00 752.10 0.10 752.00 751.68 0.32

(1, 2, .5, .5, 500, 1000) 493.57 493.46 0.11 987.14 986.59 0.55

The highest error occurs for E [Nρ] with parameter set 6, but the relative error

even here is only 0.00619, and it is typically much smaller.

Lastly, we will derive the PDF of the first observed passage time τρ.
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Theorem 3.7. Under assumptions 1–4,

Fτρ
(ϑ) = P {τρ ≤ ϑ}

= λ (1−K)
M−1
∑

i=0

ciφi (ϑ) + λe−ξV

M−2
∑

j=0

(ξV )j

j!

j
∑

i=0

diφi (ϑ)
(3.29)

where

K = e−ξV

M−2
∑

j=0

(ξV )j

j!
(3.30)

ci =

(

M − 1

i

)

(aλ)i bM−1−i(3.31)

di =

(

j

i

)

(aλ)i bj−i(3.32)

φi (ϑ) =
1

λi+1

(

1− e−λϑ

i
∑

r=0

(λϑ)r

r!

)

−
e−µϑ

(λ− µ)i+1

(

1− e−(λ−µ)ϑ
i
∑

r=0

[(λ− µ) ϑ]r

r!

)
(3.33)

and λ, µ, and λ
b

are distinct.

Proof. We will use the LST E
[

e−θτρ
]

from Corollary 3.4 and

Fτρ
(ϑ) = L−1

θ

{

E
[

e−θτρ
]

θ

}

(ϑ)

So we have

Fτρ
(ϑ) = L−1

θ

{

1

θ
−

1

θ

θ

µ + θ

(

1 +
bµ

λ + bθ
+

aλµφ (1, 0, θ, 0)

(λ + bθ) (λ + θ)

)}

(ϑ)

= 1−
λe−µϑ − bµe−

λ
b
ϑ

λ− bµ
−

aλµ

b
L−1

θ

{

φ (1, 0, θ, 0)

(θ + µ) (θ + λ)
(

θ + λ
b

)

}

(ϑ)

and 1 − d = λ+θ−λ−bθ
λ+θ

= aθ
λ+θ

. Using this and the formula above, we can write

φ (1, 0, θ, 0) in a more convenient form

φ (1, 0, θ, 0) =
θ + λ

aθ
−

1−K

a

(bθ + λ)M

θ (θ + λ)M−1
−

e−ξV

a

M−2
∑

j=0

(ξV )j

j!

(bθ + λ)j+1

θ (θ + λ)j
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Thus, the remaining inverse transform can be separated into three parts

1

a
L−1

θ

{

1

θ (θ + µ)
(

θ + λ
b

)

}

(ϑ)(3.34)

− b
1−K

a
L−1

θ

{

(bθ + λ)M−1

θ (θ + µ) (θ + λ)M

}

(ϑ)(3.35)

−
be−ξV

a

M−2
∑

j=0

(ξV )j

j!
L−1

θ

{

(bθ + λ)j

θ (θ + µ) (θ + λ)j+1

}

(ϑ)(3.36)

Suppose µ, λ, and λ
b

are distinct, then we can give a more explicit form of the inversion.

With this, we can do the inversion in (3.34):

L−1
θ

{

1

θ (θ + µ)
(

θ + λ
b

)

}

(ϑ) =
b

µλ

(

1−
λe−µϑ − bµe−

λ
b
ϑ

λ− bµ

)

Next, the inversion from (3.35) L−1
θ

{

(bθ+λ)M−1

θ(θ+µ)(θ+λ)M

}

(ϑ) = e−λϑL−1
θ

{

(bθ+aλ)M−1

(θ−λ)(θ+µ−λ)θM

}

(ϑ)

=
e−λϑ

µ
L−1

θ

{

M−1
∑

i=0

ci

[

1

θi+1 (θ + µ− λ)
−

1

θi+1 (θ − λ)

]

}

(ϑ)

=
1

µ

M−1
∑

i=0

ci

[

1

λi+1

(

1− e−λϑ

i
∑

r=0

(λϑ)r

r!

)

−
e−µϑ

(λ− µ)i+1

(

1− e−(λ−µ)ϑ
i
∑

r=0

[(λ− µ)ϑ]r

r!

)]

The inversion of (3.36) is the same as the previous with M = j + 1. Combining the

completed inverse transform with these yields

Fτρ
(ϑ) = λ (1−K)

M−1
∑

i=0

ciφi (ϑ) + λe−ξV

M−2
∑

j=0

(ξV )j

j!

j
∑

i=0

diφi (ϑ)
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Appendices

Appendix A. Proof of the Value of γk (z, v, θ, β)

Lemma A.1. For k ∈ N,

(A.1) γk (z, v, θ, β) = L [θ + λ− λg (zl (v) m (β))]

Proof. Since the increments (Xk, Yk, πk) are iid for k ∈ N and stationary, and the

observation intervals ∆k = τk − τk−1 are iid for k ∈ N, we have a common joint

functional for all k ∈ N, we have

γ (z, v, θ, β) = E
[

zX1e−vY1e−θ∆1eβ·π1

]

= E
[

e−θ∆1E
[

zX1e−vY1eβ·π1

∣

∣

∣
∆1

]]

Let J = Λ (∆1) be the number of strikes during an observation epoch (τ0, τ1]. Then,

= E
[

e−θ∆1E
[

(

zn1e−vw1eβ·p1

)

× · · · ×
(

znJ e−vwJ eβ·pJ
)

∣

∣

∣
∆1

]]

= E

[

e−θ∆1E

[

zn1e−v(w11+···+wn11)eβ·(p11+···pn11) × · · ·

× znJ e−v(w1J+···+wnJ J)eβ·(p1J +···pnJ J)
∣

∣

∣

∣

∆1

]]

Since wjk’s and pjk’s are iid for k ≥ 1,

= E
[

e−θ∆1E
[

g (zl (v)m (β))J
∣

∣

∣
∆1

]]

Since Λ is a Poisson counting measure, J = Λ (∆1) ∈ [Poisson(λ∆1)], so we know

E
[

zJ

∣

∣

∣
∆1

]

= eλ∆1(z−1) that yields

γ (z, v, θ, β) = E
[

e−θ∆1eλ∆1[g(zl(v)m(β))−1]
]

= E
[

e−[θ+λ−λg(zl(v)m(β))]∆1
]

= L [θ + λ− λg (zl (v)m (β))]

where L is the LST of ∆1

Similarly, γ0 (z, v, θ, β) = L0 [θ + λ− λg (zl (v) m (β))] where L0 is the LST of

∆0.



156

Appendix B. Simulation

The following is a high-level overview of one simulation of the process until the

first observed passage time for a particular set of parameters (λ, µ, a, ξ, M, V ):

cumulativeNodeLoss ← 0

cumulativeWeightLoss ← 0

cumulativeTimePassed ← 0

while cumulativeNodeLoss < M and cumulativeWeightLoss < V do

observationTime ← Exponential(µ) R.V.

strikesInEpoch ← Poisson(λ∗observationTime) R.V.

nodesLostInEpoch ← 0

weightLostInEpoch ← 0

nodesLostInEpoch ←
∑StrikesInEpoch

i=1 Xi (Xi ∈ [Geometric (a)])

weightLostInEpoch gets
∑StrikesInEpoch

i=1

∑Xi

j=1 Yij (Yij ∈ [Exponential (ξ)]

cumulativeNodeLoss ← cumulativeNodeLoss + nodesLostInEpoch

cumulativeWeightLoss ← cumulativeWeightLoss + weightLostInEpoch

cumulativeTimePassed ← cumulativeTimePassed + observationTime

if cumulativeNodeLoss ≥M or cumulativeWeightLoss ≥W then

CrossingValues[1]=cumulativeTimePassed

CrossingValues[2]=cumulativeNodeLoss

CrossingValues[3]=cumulativeWeightLoss

end if

end while

In other words, we generate an observation time, generate the number of attacks

within the observation time, generate the number of nodes lost in each attack, gener-

ate a weight for each node lost, and repeat with successive observation epochs until

the first threshold is crossed, at which time we record the crossing values of each

component.

While this code generates the observation before the attacks rather than generat-

ing attacks and then observing them (which we are actually modeling), the indepen-

dent increments property of the attack process (Poisson point process) renders this

strategy probabilistically equivalent and yields simpler code.

In the numbers provided in Section 3, we generate a sample by running the

simulation many times and average the crossing values, each of which are iid random
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variables with finite mean, so each converges almost surely to the true mean by the

strong law of large numbers.

Appendix C. Validation that Fτρ
is a PDF

We will next prove that Fτρ
of Theorem 3.7 is a PDF as some supporting confir-

mation of the many calculations leading up to it.

Since φi (0) = 0, Fτρ
(0) = 0. Since limϑ→∞ e−λϑϑr = 0 for all r ∈ N0, we have

(C.1) lim
ϑ→∞

φi (ϑ) =
1

λi+1
(1− 0− 0)−

1

(λ− µ)i+1 (0− 0− 0) =
1

λi+1

Since the rest of Fτρ
(ϑ) is independent of ϑ, we find

lim
ϑ→∞

M−1
∑

i=0

ciφi (ϑ) =

M−1
∑

i=0

(

M − 1

i

)

(aλ)i bM−1−i

λi+1

=
1

λ

M−1
∑

i=0

(

M − 1

i

)

aibM−1−i =
(a + b)M−1

λ
=

1

λ

(C.2)

and the same follows for
∑j

i=0 diφi (ϑ), so we have

(C.3) lim
ϑ→∞

Fτρ
(ϑ) = (1−K) + K = 1

Lastly, we show that Fτρ
(ϑ) is monotone increasing. First, note that K is the

probability that a Poisson(ξV ) R.V. is less than or equal to M −2, so 0 < 1−K < 1.

Thus, if φi (ϑ) is monotone increasing (which would imply φi (ϑ) is nonnegative since

φi (0) = 0) for each i, then Fτρ
(ϑ) is monotone increasing.

Lemma C.1. φi (ϑ) is monotone increasing.

Proof. First, we find the derivative with respect to ϑ

φ′
i (ϑ) =

1

λi+1

(

λe−λϑ

i
∑

r=0

(λϑ)r

r!
− e−λϑ

i
∑

r=1

λr

r!
rϑr−1

)

+
µe−µϑ

(λ− µ)i+1

(

1− e−(λ−µ)ϑ

i
∑

r=0

[(λ− µ)ϑ]r

r!

)

−
e−µϑ

(λ− µ)i+1

(

(λ− µ) e−(λ−µ)ϑ
i
∑

r=0

[(λ− µ)ϑ]r

r!

− e−(λ−µ)ϑ
i
∑

r=1

(λ− µ)r

r!
rϑr−1

)

(C.4)
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Clearly limϑ→∞ φ′
i (ϑ) = 0 as the terms of the type e−cϑ (with c ≥ 0) dominate the

polynomial terms. We will consider the first set of parentheses first

1

λi+1

(

λe−λϑ

i
∑

r=0

(λϑ)r

r!
− e−λϑ

i
∑

r=1

λr

r!
rϑr−1

)

=
λe−λϑ

λi+1

(

i
∑

r=0

(λϑ)r

r!
− λ

i−1
∑

r=0

(λϑ)r

r!

)

=
e−λϑ

λi

(λϑ)i

i!
=

e−λϑϑi

i!

The third set of parenthesis can be evaluated similarly

−
e−µϑ

(λ− µ)i+1

(

(λ− µ) e−(λ−µ)ϑ
i
∑

r=0

[(λ− µ)ϑ]r

r!
− e−(λ−µ)ϑ

i
∑

r=1

(λ− µ)r

r!
rϑr−1

)

= −
e−µϑe−(λ−µ)ϑϑi

i!
= −

e−λϑϑi

i!

These sum to zero, leaving only the second set of parentheses to consider. If we can

show the remaining term is nonnegative for finite ϑ, the proof will be complete:

(C.5)
µe−µϑ

(λ− µ)i+1

(

1− e−(λ−µ)ϑ
i
∑

r=0

[(λ− µ)ϑ]r

r!

)

Case 1 λ > µ: In this case, µe−µϑ

(λ−µ)i+1 > 0. We also have

1 ≤
i
∑

r=0

[(λ− µ)ϑ]r

r!
< e(λ−µ)ϑ

as above since λ− µ > 0, and so

0 < e−(λ−µ)ϑ ≤ e−(λ−µ)ϑ
i
∑

r=0

[(λ− µ)ϑ]r

r!
< 1

1− e−(λ−µ)ϑ
i
∑

r=0

[(λ− µ)ϑ]r

r!
> 0

Thus, the whole term is nonnegative.

Case 2 λ < µ: By Taylor’s theorem,

e(λ−µ)ϑ =

i
∑

r=0

[(λ− µ)ϑ]r

r!
+

(−1)i+1 [(µ− λ) ϑ]i+1 e(λ−µ)ω

(i + 1)!

for some 0 < ω < ϑ.
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Case 2.1 i is even: The error term is negative in this case, so the partial sum is more

than e(λ−µ)ϑ, implying

e−(λ−µ)ϑ

i
∑

r=0

[(λ− µ)ϑ]r

r!
> 1

1− e−(λ−µ)ϑ
i
∑

r=0

[(λ− µ)ϑ]r

r!
< 0

and µe−µϑ

(λ−µ)i+1 < 0, thus implying the whole term positive.

Case 2.2 i is odd: The error term is positive in this case, so the partial sum is less

than e(λ−µ)ϑ, which implies

0 < e−(λ−µ)ϑ
i
∑

r=0

[(λ− µ) ϑ]r

r!
< 1

1− e−(λ−µ)ϑ
i
∑

r=0

[(λ− µ)ϑ]r

r!
> 0

and µe−µϑ

(λ−µ)i+1 > 0, thus implying the whole term is positive.

Altogether, we have verified Fτρ
(ϑ) is a probability distribution function.


