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ABSTRACT. This paper presents a method for the computation of dynamic minimum spanning
circle (MSC) from a given set of points using negative selection method of artificial immune comput-
ing paradigm. This proposed algorithm is formulated for a two-dimensional data set but this can be
extended to n-dimension. The analysis of this algorithm and an application in digital mammogram
are also presented in this paper.
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1. INTRODUCTION

This paper suggests a method for computing the minimum spanning circle (MSC) or

the smallest enclosing circle for a given set of points. The problem is to compute the

radius and the center of the circle having minimum area that encloses n given points

in a plane or space.

In computational geometry, (Berg et al., 1997; Edelsbrunner, 1987; Preparata &

Shamos, 1985; Shamos, 1977) the MSC problem was first raised by Sylvester (1857).

In subsequent years many solutions of solving MSC (Elzinga & Hearn, 1972; Fran-

cis & White, 1974; Hearn & Vijay, 1982; Megiddo, 1983; Melville, 1985; Nair &

Chandrasekaran, 1971; Preparata & Shamos, 1985; Shamos & Hoey, 1975; Shamos,

1977; Skyum, 1991; Smallwood, 1965; Toussaint & Bhattacharya, 1981) have been

suggested. For n number of input points, the (worst-case) time complexities for the

above solutions ranges from O(n3) to O(n log n). Megiddo (1983) formulated this

problem as a linear programming problem which could be solved in O(n) time. A

randomized algorithm is available for computing the MSC that takes expected O(n)

time (Welzl, 1991). Algorithm for the computation of MSC from a given set of points

using neurocomputing paradigm is solved by Datta (Datta, 1996; Datta & Parui,

2002). Other than this, some of the algorithms suffer from implementation complexi-

ties, i.e., they are not simple from the point of view of programming implementation.
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The MSC finds its use in pattern recognition, image analysis, statistical esti-

mation, etc. It has applications in transmission and transportation problems. For

example, in radio/TV broadcasting the serving transmitter needs to be located cen-

trally with respect to the receivers to minimize transmission power for a given quality

of services. In other words, we need to find where the facility should be located so

as to minimize the maximum distance from the facility to any user. In case of trans-

portation, the optimal location for a distributer will be minimum of the maximum

distances that a customer would have to travel from his place to the distributer to

make the transaction more time and cost efficient. In the above examples the set of

individuals, to be served, is considered as a set of points and the center of the MSC

is the optimal position of service center.

Another important application of MSC is to mark the region of interest (ROI)

for the detection of breast cancer in the digital mammogram. Also this MSC can be

used for the detection of outlayers as discrete false positive point in the mammogram.

So an optimal region of interest can be marked by MSC.

In this paper we have adopted the theory of artificial immunecomputing to find

an optimized solution for a set of planer points. In recent years interests are increas-

ing in solving problems using artificial immunecomputing techniques. The article is

organized as follows: Section 2 briefly describes the method of negative selection as

a novel computational technique of artificial immune systems (AIS). Section 3 con-

tains the model used to compute minimum spanning circle (MSC) or the smallest

enclosing circle. Analysis of this algorithm is discussed in Section 4. Results with an

application of MSC in digital mammogram is discussed in Section 5. A conclusion

has been incorporated in Section 6.

2. NEGATIVE SELECTION METHOD

With the advances in biology; molecular computing, genetics, neurocomputing, evo-

lutionary computing, etc. are growing rapidly. On the other hand, there is a rapid

increase of comprehension of the behaves of immune system (IS). The knowledge

about the IS functioning has disclosed several of its main operative mechanism, neg-

ative selection is one of them (Castro & Timmis, 2002).

The main task of the immune system is to perform the living being in the search

for malfunctioning cells from their own bodies (e.g., cancer and tumor cells), and

foreign disease causing elements (e.g., viruses and bacteria). Every element that

can be recognized by the immune system is called an antigen (Ag). The cells that

originally belong to our body and are harmless to its functioning are termed self

(or self antigens), while the disease causing elements are named nonself (or nonself

antigens). The immune system, thus, has to be capable of distinguishing between
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what is self from what is nonself, a process called self/nonself discrimination, and

performed basically through pattern recognition events.

Figure 1. Schematic diagram for the functioning of negative selection

algorithm: (a) Production of detectors, and (b) Monitoring for the

presence of undesired (nonself) pattern.

In perspective of artificial immune systems we first determine the set of pattern to

be protected and name it the self-set (P). Based upon the negative selection algorithm,

generate a set of detector (M) that will be responsible to identify all the elements that

do not belong to the self-set, i.e., the nonself elements. This negative nature, that,

we allowed to mature only those detectors that can identify elements not belonging

to self-set justifies the name negative selection. Now the negative selection method is

described in Algorithm 1 as shown in Figure 1(a).

Algorithm 1: Negative selection method

Step 1. [Generation] Generate random candidate elements (C) which are

sorted afterwards to form detectors.

Step 2. [Matching] Compare (match) the elements in C with the elements

in P. If an element of P is recognized by an element of C (match

occurred), then discard this element of C; else store this element of C

in the detector set M.

Step 3. [Termination] Stop.

The newly formed detector set (M) in used in monitoring the system for the presence

of nonself patterns (Figure 1(b)). This set to be monitored (P+) might be composed

of the set (P) plus other new patterns (P+ ⊆ P), or it can be completely novel set

(P+ = P).

3. THE MODEL

3.1. Philosophy of the Model. As discussed earlier the concept of minimum span-

ning circle over a set of planer points is nothing but to choose a point location (i.e.,

center of the circle) on the plane such that the maximum distance of the points from

the center is minimized.
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The idea of computing MSC using immune system results from the interesting

fact that, when a part of our body is affected by foreign diseases immune system tries

to fight against it and assured that least area is damaged due to the infection, which

in 2D case may be viewed as a smallest enclosing circle. This explains the reason

that boils on our skin generally takes a regular circular shape.

3.2. Formulation. Minimum spanning circle for a set of points is the smallest en-

closing circle which contains all the points.

Let P = {X1, X2, . . . , Xn} be a set of n given points where coordinate of Xi =

(xi, yi) for i = 1, 2, . . . , n in the plane. The problem is to find the center and radius

of the smallest circle such that no point of P falls outside the circle.

According to the theory of artificial immune system (AIS), the input set P is

called self-set which is to be protected. Based upon the Negative Selection algorithm,

generate a random candidate circle element C, where C = (Xc, rc), Xc = (xc, yc) the

center, and rc = radius of the circle.

Now depending on the logic for matching we segregate the elements of self-set

into two sets namely Accepted set (A) and Rejected set (R). The set A comprises of

those points which are identified by the candidate element C, i.e, lies inside the circle

C and set R consists of those points which are un-identified by the candidate element

C, i.e, lies outside the circle C, as described in Eqn. (3.1).

(3.1) Xi ∈

{
A, if rc ≤ ‖Xi −Xc‖
R, otherwise

for i = 1, 2, . . . , n.

After determining sets A and R, we extract information from them which will

be used in the maturation of the candidate C. Let dA
m and dR

m be the maximum

Euclidean distances between the center of C from A and R respectively as given in

Eqns. (3.2) and (3.3).

dA
m = max {0, ‖Xm −Xc‖} where ‖Xm −Xc‖ = max

j
‖Xj −Xc‖, Xj ∈ A(3.2)

dR
m = max {0, ‖Xm′ −Xc‖} where ‖Xm′ −Xc‖ = max

k
‖Xk −Xc‖, Xk ∈ R(3.3)

The randomly selected initial value of the candidate circle be C(0). At iteration t

the maturation which takes place in C(t) = (Xc(t), rc(t)) is given in Eqns. (3.4) and

(3.5).

rc(t + 1) = (1− α) rc(t) + α(ξdA
m + ηdR

m)(3.4)

Xc(t + 1) = Xc(t) + β (Xm −Xc)(3.5)
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where 0 ≤ α, β ≤ 1 and

ξ =

{
1, if |A| > 0

0, otherwise
(3.6)

η =

{
1, if |R| > 0

0, otherwise
(3.7)

The idea is as follows: The Minimum Spanning Circle (MSC) will contain all the

points in P , so we have changed the radius with a tuning parameter α with iteration

in Eqn. (3.4). If some points lye outside then dA
m < dR

m, so the radius rc(t) will increase

with iteration until all the points come within the circle (even for a single point lying

outside dA
m < dR

m) then the Rejected set (R) will become empty (dR
m = 0) and as t

goes to infinity rc(t) will then tend to dA
m. Since we are trying to minimize the radius,

we also move the center of circle C towards the point Xm, which is the farthest point

of set A from Xc. After each iteration the farthest point of the set A from Xc is

recalculated. It is clear that during this process, some new point Xm′ (m′ 6= m)

becomes the farthest point from the center Xc and, as soon as it happens, Xc starts

moving toward Xm′ instead of moving toward Xm (using Eqn. (3.4) and (3.5)).

Algorithm 2: Dynamic MSC

Step 1. [Initialization] Initialize iteration number t = 0.

Generate a random candidate circle C(t) = (Xc(t), rc(t)).

Step 2. [Grouping] Split the input set (self-set) P into two sets A and R using

match logic according to Eqn. (3.1).

Step 3. [Computation] Calculate dA
m and dR

m using Eqns. (3.2) and (3.3)

Step 4. [Modification] Modify the candidate circle C defined in Eqns. (3.4)

and (3.5).

Step 5. If necessary add a new input point into P or delete an existing input

point from P .

Step 6. [Looping] Set t = t + 1 and repeat from Step 2 to Step 5 until the

parameters of candidate circle C does not change.

Step 7. [Termination] Stop.

4. ANALYSIS

In this section we prove the convergence of the algorithm. Rearranging Eqn. (3.5)

we get

(4.1) Xc(t + 1) = (1− β)Xc(t) + β Xm

Substituting V (t) as a center of the random detector circle instead of Xc(t), X(t) as

a member of self-set in place of Xm (where X(t) ∈ P ) and making β dynamic, i.e.,
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replace β by β(t) we get

(4.2) V (t + 1) = (1− β(t))V (t) + β(t) X(t)

Using Eqn. (4.2) we get by putting t = 0, 1, . . . , t as:

V (1) = (1− β(0))V (0) + β(0)X(0)

V (2) = (1− β(1))V (1) + β(1)X(1)

= (1− β(1))(1− β(0))V (0) + β(0)(1− β(1))X(0) + β(1)X(1)

=
1∏

i=0

(1− β(i))V (0) +
1−1∑
k=0

β(k)

(
1∏

i=k+1

(1− β(i))

)
X(k) + β(1)X(1)

...

Similarly we can write,

V (t + 1) = (1− β(t))(1− β(t− 1)) · · · (1− β(0))V (0)

+ β(0)(1− β(1))(1− β(2)) · · · (1− β(t))X(0)

+ β(1)(1− β(2))(1− β(3)) · · · (1− β(t))X(1)

+ · · ·+ β(t− 1)(1− β(t))X(t− 1) + β(t)X(t)

(4.3) V (t+1) =
t∏

i=0

(1−β(i))V (0)+
t−1∑
k=0

(
β(k)

(
t∏

i=k+1

(1− β(k))

)
X(k)

)
+β(t)X(t)

Before analyzing Eqn. (4.3), we shall study the properties of the maturity factor β(t)

of detector circle.

Property 1: If β(t) is the maturity factor of detector circle at time t then
∏∞

t=0(1−
β(t)) = 0.

Proof. Since 0 < β(t) < 1 for all t,
∑∞

t=0 β(t) → ∞ if and only if
∏∞

t=0(1 − β(t)) =

0.

Result 1: If G(t) =
∑t

k=0 β(k)
(∏t

i=k+1(1− β(k))
)

+ β(t) then G(t) = 1 as t −→∞
for 0 < β(k) < 1, 0 ≤ k ≤ t.

Proof. We can write

t∏
i=0

(1− β(i)) = (1− β(0))
t∏

i=1

(1− β(i))

i.e.,
t∏

i=0

(1− β(i)) =
t∏

i=1

(1− β(i))− β(0)
t∏

i=1

(1− β(i))
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Therefore

β(0)
t∏

i=1

(1− β(i)) =
t∏

i=1

(1− β(i))−
t∏

i=0

(1− β(i))

Hence we can write the following equations

β(0)
t∏

i=1

(1− β(i)) =
t∏

i=1

(1− β(i))−
t∏

i=0

(1− β(i))

β(1)
t∏

i=2

(1− β(i)) =
t∏

i=2

(1− β(i))−
t∏

i=1

(1− β(i))

β(2)
t∏

i=3

(1− β(i)) =
t∏

i=3

(1− β(i))−
t∏

i=2

(1− β(i))

... =
...

β(t− 1)
t∏

i=t

(1− β(i)) =
t∏

i=t

(1− β(i))−
t∏

i=t−1

(1− β(i))

β(t) = 1− (1− β(t))

Adding both the sides of the above equations we get

(4.4)
t−1∑
k=0

β(k)

(
t∏

i=k+1

(1− β(k))

)
+ β(t) = 1−

t∏
i=0

(1− β(i))

Now by Property 1
∏t

i=0(1− β(i)) = 0 as t −→∞. Hence G(t) = 1 as t −→∞.

Equation (4.3) can be rewritten as

V (t + 1) =
t∏

i=0

(1− β(i))(V (0)−Xq)

+
t−1∑
k=0

(
β(k)

(
t∏

i=k+1

(1− β(k))

)
(X(k)−Xq)

)
+ β(t)(X(t)−Xq)

+

(
t∏

i=0

(1− β(i)) +
t−1∑
k=0

(
β(k)

(
t∏

i=k+1

(1− β(k))

))
+ β(t)

)
Xq

or,

V (t + 1)−Xq =
t∏

i=0

(1− β(i))(V (0)−Xq)

+
t−1∑
k=0

(
β(k)

(
t∏

i=k+1

(1− β(k))

)
(X(k)−Xq)

)
+ β(t)(X(t)−Xq) [using Result 1]
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‖V (t + 1)−Xq‖ ≤
t∏

i=0

(1− β(i))‖V (0)−Xq‖(4.5)

+
t−1∑
k=0

(
β(k)

(
t∏

i=k+1

(1− β(k))

)
‖X(k)−Xq‖

)
+ β(t)‖X(t)−Xq‖

The radius updation formula defined in Eqn. (3.4) defines the following three

types of system.

Type 1: (ξ = 0 and η = 1). In this type the center of the circle does not move but

the radius increases with the distance of the furthest point in A from the center of

the current circle. The formula in Eqn. (3.4) can be written as

(4.6) rc(t + 1) = (1− α)t rc(0) + α
t−1∑
i=0

(1− α)idR
m(i)

Type 2: (ξ = 1 and η = 1). In this type the center of the circle is moving towards

the furthest point of set A and also the radius is changing according to the previous

values of rc(t), dA
m(t), and dR

m(t). The formula in Eqn. (3.4) can be written as

(4.7) rc(t + 1) = (1− α)t rc(0) + α
t−1∑
i=0

(1− α)i(ξdA
m(i) + ηdR

m(i))

Type 3: (ξ = 1 and η = 0). In this type both the center and the radius of the circle

changes with the set A. Here the center of the circle is moving towards the furthest

point of A and it is changing (reducing) the radius of the circle. The formula in

Eqn. (3.4) can be written as

(4.8) rc(t + 1) = (1− α)t rc(0) + α
t−1∑
i=0

(1− α)iξdA
m(i)

Lemma 1: If the point set is P = {X1} then the center of the MSC is X1 and radius

is 0.

Proof. By using Eqn. (4.5) we get

‖V (t + 1)−X1‖ ≤
t∏

i=0

(1− β(i))‖V (0)−X1‖(4.9)

+
t−1∑
k=0

(
β(k)

(
t∏

i=k+1

(1− β(k))

)
‖X(k)−X1‖

)
+ β(t)‖X(t)−X1‖

In this case the term ‖V (0) − X1‖ in
∏t

i=0(1 − β(i))‖V (0) − X1‖ is independent of

i. Hence by Property 1,
∏t

i=0(1 − β(i))‖V (0) − X1‖ = 0 as t → ∞. Again both
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‖X(k)−X1‖ and ‖X(t)−X1‖ are 0. Since X(k) → X1 and X(t) → X1. Therefore

‖V (t + 1)−X1‖ ≤ 0 for large t. Hence V (t + 1) → X1 as t → ∞, i.e., the center of

the MSC converges to X1.

By using Eqn. (4.6) of Type 1 we observe

(4.10) rc(t + 1) = (1− α)t rc(0) + α

t−1∑
i=0

(1− α)idR
m(i)

In this case, there exists a t = T0 such that rc(T0) ≥ dR
m(T0) where dR

m(T0) = ‖Xc(0)−
X1‖. Also rc(t) < rc(t + 1) for all t < T0.

If t > T0 then it follows Eqn. (4.8) of Type 3. Here rc(0) = rc(T0) and dA
m(T0) =

‖Xc(T0)−X1‖ but Xc(T0) = Xc(0). So we can write

(4.11) rc(t + 1) = (1− α)t rc(T0) + α

t−1∑
i=T0

(1− α)idA
m(i)

Also we have seen Xc(t) → X1 as t →∞, i.e., dA
m(t) = ‖Xc(t)−X1‖ → 0 as t →∞

when t > T0. This also says rc(t) → 0 as t →∞.

Lemma 2: If the point set, P = {X1, X2} then the center of the MSC is (i) laying

on the line joining X1 and X2, and (ii) Xc → X1+X2

2
as t →∞.

Proof. By using Eqn. (4.5) we get

‖V (t + 1)−X1‖+ ‖V (t + 1)−X2‖(4.12)

≤
t∏

i=0

(1− β(i))(‖V (0)−X1‖+ ‖V (0)−X2‖)

+
t−1∑
k=0

(
β(k)

(
t∏

i=k+1

(1− β(k))

)
(‖X(k)−X1‖+ ‖X(k)−X2‖)

)
+ β(t)(‖X(t)−X1‖+ ‖X(t)−X2‖)

Here X(k) and X(t) is either X1 or X2.

‖V (t + 1)−X1‖+ ‖V (t + 1)−X2‖(4.13)

≤
t∏

i=0

(1− β(i))(‖V (0)−X1‖+ ‖V (0)−X2‖)

+
t−1∑
k=0

β(k)

(
t∏

i=k+1

(1− β(k)) + β(t)

)
(‖X1 −X2‖)

=
t∏

i=0

(1− β(i))(‖V (0)−X1‖+ ‖V (0)−X2‖)

+

(
1−

t∏
i=0

(1− β(i)

)
(‖X1 −X2‖)
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As t →∞ then

‖V (t + 1)−X1‖+ ‖V (t + 1)−X2‖(4.14)

≤ ‖X1 −X2‖+
t∏

i=0

(1− β(i))(‖V (0)−X1‖+ ‖V (0)−X2‖ − ‖X1 −X2‖)

‖V (t + 1)−X1‖+ ‖V (t + 1)−X2‖

= ‖X1 −X2‖

as t →∞ [by Property 1]

This is only possible when the point V (t + 1) lies on the line joining X1 and X2.

If we introduce the term G(t) then we can write

‖V (t + 1)−X2‖+ ‖V (t + 1)−X1‖

≤
t∏

i=0

(1− β(i)){‖V (0)−X2‖+ ‖V (0)−X1‖}

+

(
t−1∑
k=0

β(k)
t∏

i=k+1

(1− β(k)) + β(t)

)
{‖X1 −X2‖}.

or, ‖V (t + 1)−X2‖+ ‖V (t + 1)−X1‖ = (1−G(t)) (‖V (0)−X1‖+ ‖V (0)−X2‖) +

G(t) ‖X1 −X2‖.

This indicates as t −→∞, V (t + 1) will be on the line joining X1 and X2 (using

Result 1, i.e., G(t) = 1 as t −→∞).

Now we prove that V (t+1) tends to the midpoint of X1 and X2, i.e., V (t+1) →
X1+X2

2
as t →∞.

Using Eqn. (4.2) we get ‖V (t+1)−V (t)‖ = β(t)‖X(t)−V (t)‖. Again β(t) −→ 0

as t −→∞. So for any positive number δ there exists some t0 for which ‖V (t0 + 1)−
V (t0)‖ < δ.

Let H1 and H2 be two half plains divided by the perpendicular bisector L12 of

the line joining X1 and X2, where X1 ∈ H1 and X2 ∈ H2. Without loss of generality

we assume V (t0) belongs to H1, it will move towards X2 till it reaches H2 at some

time t1 > t0 and evidently the perpendicular distance from V (t1) to L12 will be less

than ‖V (t1) − V (t1 − 1)‖. Once V (t1) reaches H2, V (t) starts moving towards X1

and for some t2 > t1, V (t2) will fall on H1.

Hence, V (t) will approach to (X1 + X2)/2 as t −→∞.

Lemma 3: If the point set is P = {X1, X2, X3} then the center of the MSC is lying

on the intersection of three farthest point Voronoi polygons.

Proof. The farthest point Voronoi diagram (FPVD) of X1, X2, and X3 will results

two distinct casees. In case of obtuse angled triangle (Figure 2(a)) the vertex of
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the FPVD of X1, X2 and X3 will lie outside the triangle and in case of acute angled

triangle (Figure 2(b)) the vertex will be inside the triangle. In Figure 2 Q1, Q2 and Q3

represents the farthest point Voronoi polygons for X1, X2, and X3 respectively.

Figure 2. The position of the center of minimum spanning circle in

case of three points. (a) Center lies on the middle of X1 and X2 and

(b) Center lies on the intersection of three farthest point Voronoi poly-

gons.

Case 1. In case of obtuse angled triangle (Figure 2(a)) we will always find a t0, for

which V (t) will lie outside Q3 for all t > t0. From Lemma 2, it is then clear that V (t)

will tend to (X1 + X2)/2 as t −→∞.

Case 2. In case of acute angled triangle (Figure 2(b)), the three perpendicular

bisectors Lij of the line joining Xi and Xj (1 ≤ i, j ≤ 3, i 6= j) determines the vertex

of the FPVD of X1, X2 and X3. Arguments in the proof of Lemma 2 justifies the fact

that V (t) will be arbitrarily close to each of the three Lij’s. Thus V (t) converges to

the intersection point of the three bisectors. Here, the FPV vertex is the center of

minimum spanning circle.

4.1. Generalization. Initially the system is one of the three state as in Types 1 to

3. Suppose the system is in Type 1 state then after certain number of iterations the

system changes more likely to Type 2 or may be Type 3 state. If the system is in

Type 2 state then again after few iterations it changes to Type 3 state. The state

transition are shown in Figure 3. This property can be proven by Lemma 4.

Lemma 4: The system with n points, P = {X1, X2, . . . , Xn}, |P | > 1 is in Type 1

state, then there exists a t = T0 such that the system transformed to Type 2 or 3

state.
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Figure 3. The state transition diagram of a system – Type 1 system:

ξ = 0, η = 1, Type 2 system: ξ = 1, η = 1 and Type 3 system: ξ = 1,

η = 0.

Proof. Using Eqn. (4.6) we can write

rc(T0 + 1) = (1− α)T0 rc(0) + αη

T0−1∑
i=0

(1− α)idR
m(i)

= (1− α)T0 rc(0) + αη
1− (1− α)T0

1− (1− α)
dR

m

= (1− α)T0 rc(0) + (1− (1− α)T0)dR
m

= (1− α)T0(rc(0)− dR
m) + dR

m

= dR
m [For large T0 and using Lemma 1]

For t < T0, dR
m(i) is fixed say dR

m because the system does not change the center and

points in P are outside the circle but in every iteration the radius of the circle is

changing by using Eqn. (4.6). When the radius ≥ dR
m few points of P either inside

the circle or on the circumference. In this situation the |A| > 0 therefore ξ = 1 and

η = 1 or 0. So the system moves to state as defined in Type 2 or Type 3. In this

situation the center of the circle starts changing by using Eqn. (4.3).

Lemma 5: The system with n points, P = {X1, X2, . . . , Xn}, |P | > 1 is in Type 2

state, then there exists a t = T1 such that the system transformed to Type 3 state.

Proof. Using Eqn. (4.7) we can write

(4.15) rc(t + 1) = (1− α)t−T0 rc(T0) + α

t−1∑
i=T0

(1− α)i(ξdA
m(i) + ηdR

m(i)) for t > T0

In this situation the center of the circle is moving towards the furthest point of A, so

its radius changes either in increasing or decreasing order. The target is to |R| → 0

and |A| → |P | as t increases to T1, that is, set A will contain all the points in P. At

that situation η = 0 and ξ remains 1. Hence the system becomes in a state defined

by Type 3.
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Lemma 6: The system with n points, P = {X1, X2, . . . , Xn}, |P | > 1 is in Type 3

state, then there exists a t = T2 such that the system remains in Type 3 state but

the center and radius of the circle remains unchange.

Proof. Using Eqn. (4.7) we can write

(4.16) rc(t + 1) = (1− α)t−T1 rc(T1) + α

t−1∑
i=T1

(1− α)iξdA
m(i) for t > T1

Also the center is updated by the formula in Eqn. (3.4)

(4.17) Xc(t + 1) = Xc(t) + β (Xm −Xc).

Here ξ = 1 for t > T2 where T2 large integer. ‖Xc(t + 1) − Xc(t)‖ < ε and ‖rc(t +

1)− rc(t)‖ < δ where ε and δ are a small quantities and

rc(t + 1) = (1− α)t−T1 rc(T1) + α
t−1∑
i=T1

(1− α)iξdA
m(i) for t > T2 > T1.

As t → ∞ (1 − α)t−T1 → 0, dA
m(i) is fixed to dA

m (say) then rc → dA
m since

ξα
∑∞

i=0(1 − α)idA
m = α dA

m

1−(1−α)
= dA

m. Hence the center and the radius of the circle

remains unchanged.

Theorem 1: The center and radius of the MSC, i.e., (Xc(t), rc(t)) obtain from P =

{X1, X2, . . . , Xn}, n = |P | > 0 using Algorithm dynamic MSC remains unchanged as

t →∞.

Proof. Easily follows from Lemma 1 to Lemma 6.

5. RESULT

The proposed model is tested on several 2D point set. Figure 4 shows the test

result where the MSC passes through 3 points. This figure has 4 panels: panel (a)

of Figure 4 shows the case when all the points lyes outside the randomly generated

circle, i.e., set A is empty where as R set contains all the points (using Eqn. (3.1))

and dA
m = 0, dR

m 6= 0 (using Eqn. (3.2)). Panel (b) of Figure 4 shows the case where

none of the sets A and R are empty and dA
m < dR

m (using Eqn. (3.2)), while panel (c)

of Figure 4 indicates the circle contains all the points, i.e., set R is empty and dA
m 6= 0,

dR
m = 0. Final result is shown in Panel (d) of Figure 4obtained after 490 iteration.

One application of MSC is shown in breast cancer detection using digital mam-

mogram. A digital mammogram (see Figure 5(a)) is an low-dose x-ray image of soft

breast tissues. It is used to detect breast cancer by any computational techniques

like computational intelligence tools and techniques (Pal et al., 2008). The objective

of the detection technique is to identify the location of the presence of microcalci-

fication (if any) from the given digital mammogram (Figure 5(a)) and then further
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Figure 4. The intermediate and final results on a point set (α = β =

0.01), where center of the circle is represented by a rectangle: (a) Initial

position of randomly generater circle with respect 12 point data (small

circle), (b) Position of circle after 44th iteration, (c) Circle enclosing all

points after 126th iteration, and (d) Final position of circle after 490th

iteration.

Figure 5. Digital mammogram and its region of interest (ROI)

marked by minimum spanning circle: (a) original mammogram, and

(b) marked output mammogram
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investigate that the microcalcification is benign or malignant. The location of micro-

calcification is known as region of interest (ROI). Figure 5(a) is an original image of

digital mammogram. A breast cancer detection technique detects positive calcified

pixels and marked by a circle as shown in Figure 5(b). This circle is obtained by

MSC algorithm. This algorithm marks the affected region of the breast on the dig-

ital mammogram by the minimum spanning circle. This circle indicates a region of

interest (ROI) and also gives an estimate about the area affected by the cancer. The

exact affected area will be estimated by the expert after further study. This marking

technique using MSC is also applicable for 3-D breast image. In this case it will be

the minimum spanning sphere.

6. CONCLUSION

The performance of the algorithm in terms of time complexity and approximation

depends on the value of α and β (0 < α, β < 1). By using Eqn. (3.4) α and β control

the value of allowable mutation (change in the candidate circle) and maturity of the

circle towards the MSC. Higher accuracy can be obtained by decreasing α and β

slowly when the equilibrium condition is reached, but in the beginning α and β must

be appreciably large for fast convergence of algorithm.

The result of the algorithm does not depend on the initial choice of circle and the

algorithm is completely dynamic in nature, i.e., data set can be modified in any time

as required. This algorithm can easily be extended in 3 or more dimensions. This

method of MSC construction works on the dynamic data set.
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