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ABSTRACT. This paper presents a new 4-points Explicit Group Unsymmetric 

Successive Overrelaxation (USSOR) iterative method to approximate the solution of 

the linear systems derived from the discretisation of self-adjoint elliptic partial 

equations. Several studies have been carried out by many researchers on the USSOR 

iterative method, for example, the analysis of its convergence [1], an upper bound for 

its error [2] and recently a special case of the USSOR, namely the SSOR method has 

been used to approximate the solution of augmented systems [4] and [8]. The 

computational behaviour of this new method and a comparison with its point version 

is presented. 

 
Key Words: USSOR method; elliptic partial differential equation; group iterative methods, five-

point approximation scheme, Laplace’s equation. 

 

AMS (MOS) Subject Classification. 65F10 

 

1. INTRODUCTION AND PRELIMINARIES 

  

        Consider the linear system of equations 

                                         A x = b,                                                                  (1) 

where A nn,C  is a given non-singular matrix with non vanishing diagonal entries, 

b nC  is a known vector and x is an unknown vector. 
 

        Many iterative methods are normally used to obtain an approximation for the 

solution of (1), one of these iterative methods is the Unsymmetric Successive 

Overrelaxation (USSOR) method [5, 6], which will be defined in the following. This 

iterative method can be used if the block diagonal part of the coefficient matrix A of 

the system (1) is non singular. Some authors have enlarged the convergence region of 

the USSOR method [1], others [2], have obtained an upper bound of its error and 

recently a variant of it, i.e., the SSOR iterative method has been used to approximate 

the solution of augmented systems, namely, the solution of Navier–Stokes problem, 

[4, 8]. In this paper we will use the 4-points explicit group USSOR iterative method to 

approximate the solution of the linear self- adjoint elliptic equation, 
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defined in a bounded region , where A(x, y) > 0, B(x, y) > 0 and  F(x, y)  0  and  

is the boundary of . 

        The discretisation of (2) leads to (1), [5, 6]. Therefore, let us consider  

                                                    A = D – E – F                                            (4) 

where D = diag(A), E and F are strictly lower and upper triangular matrices obtained 

from A, respectively. 

  The USSOR iterative method is given by: 

 (D – E)



u
(k

1

2
)

 (1)D F u(k)  b, k  0,1,...           (5) 

and  

  (D – ' F)



u(k1)  (1 ')D 'E u
(k

1

2
)

 ' b, k  0,1,...         (6) 

where  and '  are real non-null parameters. 

 

        If we define L = ED 1  and U = FD 1 then the equations (5) and (6) can be 

written as 

 

,...1,0,)()')(''( 11)(
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)1(   kbLIUIuSu kk                     (7) 

where     

   ',S =  LU '                                                                                   (8)
 

with
 

 L  UILI    )1()( 1 ,

 (9) 

and 

   'U  LIUI ')'1()'( 1   

                                                           (10) 

If  = '  in (7), then the Symmetric Successive Overrelaxation (SSOR) iterative 

method is obtained.  

        In the following, and for simplicity, we will consider Laplace’s equation  
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defined in the unit square, 0  x, y  1, with m
2
 internal mesh points. It can be easily 

seen that equation (11) is a special case of equation (2) if we consider A(x, y) = B(x, y) 

= 1 and F(x, y) = G(x, y) = 0. 
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  The standard technique for solving the sparse linear systems derived from the 

discretisation of self-adjoint elliptic partial differential equations by finite difference 

techniques (block or line iterative methods) can be improved if we use explicit group 

iterative methods [7]. 
 

  Therefore, in this paper, new explicit 4-points group USSOR iterative method is 

presented. A comparison between the point USSOR method [5, 6], and the 4-points 

group USSOR method for the solution of the model problem is made and the 

behaviour of this new method is discussed. 

 

  In the sequel let us consider the linear system (1) with the matrix A having 

Property A
()

 and
 
being -consistently ordered. Therefore, we will present some 

definitions, given in [6]. 

 

Definition 1.1  

 An ordered grouping  of W = {1, 2,…, n} is a subdivision of W into disjoint subsets 

R1,  R2, …,  Rq  such that   R1  + R2 + …+  Rq = W. 
 

Given  a  matrix  A  and  an ordered grouping    we  define  the  sub matrices  Am,n 

for m,  

n = 1, 2,…, q as follows: Am,n is formed from A deleting all rows except those 

corresponding to Rm  and all columns except those corresponding to Rn. 

 

Definition 1.2   

Let  be an ordered grouping with q groups. A matrix A has Property A
()

 if the q q 

matrix Z= ( z r,s ) defined by 

 z r,s= 









01

00

,

,

sr

sr

Aif

Aif
                                                                          (12) 

has Property A. 

 

Definition 1.3  

A matrix A of order  n  is consistently ordered if for some t  there exist disjoint subsets 

S1,  S2, …,  St  of W={1, 2,…, n} such that WS
t

k k  1  and such that if i and j are 

associated, then  j Sk+1  if  j > i and  j Sk-1   if  j < i , where Sk  is the subset 

containing i.  

 

Definition 1.4  

A matrix A is a - consistently ordered matrix if the matrix Z is consistently ordered. 
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2. THE 4-POINTS GROUP  USSOR ITERATIVE METHOD 

 

         In this section we will present an explicit set of equations for the 4-points group 

USSOR iterative method [7], where each group is formed from 4 points of the net 

region, according to Figure 1, where t = (qm+1), step 2, (q+1)m-1, m is an even 

number and  q = 0, step 2, m-2. Each group Gk, k  =  1, 2, …, m
2
/4 contains only four 

elements {t, t+1, t+m, t+m+1} ordered column wise. 

 

                         t+2     t+m+2   

     

 

   t-m+1              t+1      t+m+1  t+2m+1 

                   
               t-m     t   t+m    t+2m        

  

   

 

           t-1       t+m-1 

                                           Figure 1 

        Suppose that the groups are ordered in red-black ordering (see Figure 2) in the 

case where the mesh is the unit square and x = y = h = 1/5. 
 

        If the five-point approximation scheme is used then the finite difference equation 

at the point P (see Figure 3) has the form 

 up + 1 uB,P   + 2 uR,P  + 3 uT,P   + 4 uL,P   = bP,                                              (13) 

 

where B, R, T and L denote Bottom, Right, Top and Left of the point P, respectively.  
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  3( T ) 

   

 

    4 ( L ) P   2 ( R ) 

 

  

  1 ( B ) 
 

         Figure 3 

 

 

 If this scheme is used, for all the mesh points, we have the linear system 
 

 A1u = b1 

with 
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The matrix A1 (in (14)), has Property A
()

 and is - consistently ordered. 
 

        To derive the explicit 4-points group USSOR method, we evaluate the 

transformed matrix A2 and the modified vector b2, where  

 A2 = 1T  A1                                                                            (16) 

and 

 b2 = 1T  b,                                                                             (17) 

 

where  T = diag{R0}. 
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    As  1T  is equal to diag{ 1

0

R } and the matrix 1

0

R  is given by 
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Where 

 

 42315 1   ,  142316   ,  131427   . 

           

 Therefore, 

 

 A2 = 








IB

CI
                                                                        (19) 

where C and B can be evaluated easily. 
 

        The matrices A1 and A2 have the same block structures.  The unique difference is 

that instead of the matrices R0 and Ri, i = 1, …, 4 we have the identity matrices and 
1

0

R Ri, respectively. 

 

       For the model problem and a square grid, we have  

 1 =  2 =  3 =  4 = 
4

1
 . 

 Therefore, from (18) 
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and hence, 
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1

0

R Ri, i = 2, 3, 4 can be obtained in a similar way. Thus, the computational molecule 

at the point P can be set up, as it is shown in Figure 4. 

 

 

 

 



 

EXPLICIT GROUP USSOR METHOD                                285 

 
 

 1/12     1/24 

                            

 1/12     1/24 

      

 7/24     P     1/12 

         

 

  7/24       1/12 

           Figure 4  

 

 

Therefore we can derive the explicit 4- points group USSOR iterative method, by 

using this molecule: 
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where t = (pm + 1), step 2, (p + 1)m - 1  and  p = 0, step 2, m-2, and 
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where t =(p + 1)m – 1, step -2, (pm + 1),  and  p = m-2, step -2, 0. 

 

If  = '  we have the explicit group SSOR iterative method. 

 

3. ANALYSIS OF THE POINT USSOR AND 4-POINTS GROUP USSOR 

METHODS 
 

         The relative efficiency of the point USSOR method and the 4-points group 

USSOR method will be discussed in this section.  

In both methods we assume that there are m
2
 internal mesh points in the solution 

domain. We also assume that the execution times for the addition and multiplication 

operations are roughly the same. The number of iterations and CPU time needed to 

approximate the solution of (1) will be obtained computationally in Section 4, using 

the formulas presented in Sections 3.1 and 3.2 for the point USSOR and the 4-points 

group USSOR methods, respectively.  

 

3.1 The Point USSOR Method  
 

         The finite difference solution of the model problem by the point USSOR 

iterative method is given by  
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         By assuming that 211 ,',   and 2'  are stored beforehand, it can be observed 

that the number of operations required (excluding the convergence test) for the point 

USSOR iterative method is 12 m
2
 operations per iteration. With the equalities (24) we 

can easily obtain computational results for this method. 

 

3.2 The 4-Points Group USSOR Method 
 

         To calculate the number of operations and CPU time, per iteration, using the 4-

points group USSOR method to approximate the solution of the model problem (1), it 

can be seen, from equations (22) and (23), that the required number of operations 

(excluding the convergence test) is 24 m
2
 operations per iteration. However, it can be 

noticed,  from equations  (22) and  (23),  that not all the elements involved in the  

 



 

EXPLICIT GROUP USSOR METHOD                               287 

 

calculations of the four points are different, then the number of operations can be 

reduced to 17 m
2
 operations per iteration as shown bellow. 

 

 In the forward step, i.e. equation (22), if we set  
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Similarly, for the backward step, equation (23), we set 
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only be calculated once. 

 As mentioned before, if '  , then from equations (24) and (25), the 4-

points group SSOR iterative method is obtained. 

 

4. NUMERICAL RESULTS 
 

         In order to compare the point USSOR and 4-points group USSOR iterative 

methods we will present, in this section, some numerical results. 

The numerical experiments have been performed using Matlab 7.9, on Core 2 Duo, 

2.26 GHZ (4GM RAM), laptop (MacBook Pro) with Macintosh system. The methods 

have been compared in terms of number of iterations and CPU time (in seconds). 

Throughout the experiments the convergence test used was the average error test with 

tolerance error  = 10
-7

. 

 

 Problem 1.  Firstly, the two methods were applied to approximate the solution of 

Laplace’s equation 
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with the Dirichlet boundary conditions 
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The numerical solution of the problem (27)-(28), using the 4-points group 

USSOR iterative method, whit h = 1/13, is illustrated in Figure 5. 

 

 

 

 

Figure 5: Numerical solution of the problem (27)-(28) obtained with h = 1/13. 

 

 

 

The experimental optimum values of  and ' were determined to within 

0.01 by solving the problem for a range of values of  and ' then choosing those 

which gives the minimum number of iterations. The obtained results, i.e.,  the 

experimental optimum values of   and ', the minimum number of iterations and the 

CPU time in seconds required to solve problem (27)-(28) are summarized in Table 1 

and Table 2 for the point USSOR and the 4-points group USSOR methods, 

respectively.   
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Table 1: Computational results of the point USSOR method for  the problem (27)-(28) 

 

h
-1

  ' 
No. of 

Iterations 

CPU time 

(seconds) 

13 0.88-0.91 1.65 33 0.08 

25 1.13-1.15 1.80 60 0.34 

37 1.28-1.29 1.86 86 1.26 

49 1.64 1.90 112 4.16 

61 1.83 1.93 143 10.12 
 

 

Table 2: Computational results of the 4-points group USSOR method  

for  the problem (27)-(28) 

 

h
-1

  ' 
No. of 

Iterations 

CPU time 

(seconds) 

13 0.12 1.53 23 0.07 

25 0.28 1.77 42 0.08 

37 0.28 1.86 60 0.29 

49 0.31 1.92 78 0.78 

61 0.39 1.98 100 1.81 
 

  

The plots of the CPU computation time vs the mesh size for the two methods 

are given in Figure 6(a). Also, for the two methods, the logarithm of the number of 

iterations is plotted against log 1h , the graphs are shown in Figure 6(b). As expected, 

the plots for the two methods are straight lines with a slope of unity, thus verifying the 

SOR theory. 

 

  
(a) (b) 

 

Figure 6: Computational results for the point USSOR and the 4-point group USSOR 

methods with the computational optimal parameters presented in Tables 1 and 2. 
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From these results we can conclude that the 4-point group USSOR method 

saves 70% - 80% of the CPU time in comparison with the corresponding version of 

the point USSOR method. We can also notice that the number of iterations increases 

linearly with the problem size while the increase in the CPU time is quadratic. 

 

Problem 2. Numerical experiments were also carried out on solving Laplace’s 

equation (27) using the Dirichlet boundary conditions 
 

 U(0, y) = 100,                                  0  y  1,          

 U(x, 0) = U(x, 1) = U(1, y) = 0,       0  x, y  1.                                            (29) 

 

The numerical solution for the problem (27)-(29), using the 4-points group USSOR 

iterative method with h = 1/13, is illustrated in Figure 7. 

The experimental optimum values of   and ', the minimum number of 

iterations and the CPU time in seconds were obtained in a similar manner to Problem 

1 and the results are summarized in Table 3  and Table 4  for the point USSOR and 

the 4-points group USSOR methods, respectively.   

 

 The plots of the CPU computation time vs the mesh size for the two methods 

are given in Figure 8(a). Again, for the two methods, the logarithm of the number of 

iterations is plotted against log 1h , the graphs are shown in Figure 8(b). The plots for 

the two methods were also straight lines with a slope of unity, thus verifying the SOR 

theory. 

 

 

 

Figure 7: Numerical solution of the problem (27)-(29) 
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Table 3: Computational results of the point USSOR method for   

the problem (27)-(29) 

 

h
-1

  ' 
No. of 

Iterations 

CPU time 

(seconds) 

13 1.63 0.48 32 0.44 

25 1.79 0.85 58 0.34 

37 1.85 0.71-0.73 83 1.18 

49 1.89 1.40 110 4.37 

61 1.91 1.44 135 8.84 

 

Table 4: Computational results of the 4-points group USSOR method  

for the problem (27)-(29). 

 

h
-1

  ' 
No. of 

Iterations 

CPU time 

(seconds) 

13 1.69 0.69 25 0.02 

25 1.86 0.55 45 0.09 

37 1.85 0.25 66 0.29 

49 1.90 0.25 86 0.80 

61 1.90 0.14 110 2.09 

 

 
 

  
(a) (b) 

 

Figure 8: Computational results for the point USSOR and the 4-points group USSOR 

methods with the computational optimal parameters presented in Tables 3 and 4. 

 

 Similar conclusions to those given for problem (27)-(28) can also be obtained 

for this problem. Additionally, we would like to point out that if we alternate the 

values of the optimal parameters  and ’ then we obtain a slightly higher number of 

iterations. 
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5. CONCLUSIONS 
 

         The results, given in Tables 1, 2, 3 and 4, show that the new 4-point group 

USSOR method offer significant economies over the point USSOR method, in 

comparison a saving of 70% - 80% of the CPU time was achieved.  

         Further, the 4-points group USSOR method is an explicit method and is suitable 

for parallel computers as it possesses separate and independent tasks, as the groups of 

4- points can be executed concurrently. 

         Other blocks (groups) can also be considered, i.e., the 2, 9, 16 or 25 points 

group, however this will be matter of further research. 
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