
Neural, Parallel, and Scientific Computations 21 (2013) 361-374

GPU METRICS FOR A LINEAR SOLVER

M. PANCHATCHARAM1, S. SUNDAR2, AND A. KLAR3

1Fraunhofer ITWM, Kaiserslautern, Germany
2 Department of Mathematics, IIT Madras, Chennai

3Fachbereich Mathematik, TU Kaiserslautern, Germany

ABSTRACT. GPU metrics is a set of measurements used to distinguish an efficient GPU and GPU

algorithms. In this paper, we present a mathematical definition of three important GPU metrics

such as occupancy, average bandwidth utilization and volume in order to prove certain preliminary

results. We discuss another most important and frequently used GPU metric called acceleration

ratio. Finally, we discuss the importance and application of GPU metrics on BICGStab algorithm.

AMS (MOS) Subject Classification. 65F10, 65F30, 65F99

1. Introduction

Graphics Processing Units (GPUs) [1] developed to manipulate computer graph-

ics in more efficient and effective way, nowadays become widely useful in parallel

computing, as they process large blocks of data in parallel. Advanced embedding

chipsets with GPU in modern mobiles and smartphones are capable of multitasking

due to their efficient programming. As GPUs are essential part of those chipsets,

the GPU performance is becoming most important. Due to the rapid and enormous

growth in graphics applications such as computer games and simulations using GPU,

expensive and time consuming super computing such as peak performance near ter-

aflop are available for hundreds of dollars to a few thousand dollars. As the cost

per gigaflop is very low in GPU, it has motivated the researchers to utilize it in an

efficient non-graphics applications such as solving large linear systems, weather pre-

diction, data mining and so on. Most of the leading software companies claims that

GPU is the best tool for the future. But, one has to look after programming of the

application code in order to achieve performance near the peak.

GPU programming is little complicated as it has different memories such as

device memory, shared memory, global memory, constant cache, texture cache and

registers, each with different latency. Each streaming processor in a GPU consists of

a partitioned scalar processors or cores. Each GPU has different capability which can

be measured using their metrics. Although, a well written algorithm for a software in

GPU should work independent of the choice of GPU, one has to study in detail GPU

Received July 15, 2013 1061-5369 $15.00 c©Dynamic Publishers, Inc.

362 M. PANCHATCHARAM, S. SUNDAR, AND A. KLAR

metrics to obtain the peak performance. In this paper, we mathematically define

GPU metrics in order to mathematically claim certain important results.

In the following sections, mathematical definitions of GPU metrics are introduced.

Following these definitions, matrix-matrix and matrix-vector multiplication algorithm

on GPU is discussed. In the final section, we present the results which include GPU

metrics for linear solvers such as BICGStab.

2. GPU metrics

Although, the most important keywords related to GPU can be found in [2], we

state them for the matter of convenience.

The smallest unit of parallelism in CUDA is the thread, a small piece of concur-

rent code with associated state that will be executed physically in parallel with other

threads on the device. However, when compared to threads on CPU (host), GPU (de-

vice) threads have much lower resource usage and lower creation and switching cost

(GigaThread Architecture). GPUs are only effective when running a high number

of such threads. A (thread) block is a group of threads that can communicate with

each other and synchronise their execution. Each thread in a block can be identified

by its thread index. For convenience, CUDA allows the specification of the thread

id as a scalar, two dimensional or three dimensional value. The maximum number

of threads per block is limited by the hardware. A group of blocks that have same

dimensionality and execute the same CUDA program logically in parallel is called a

grid. Each block in a grid is identified by its unique block index, again specifiable as

block id in scalar, 2D or 3D fashion.

Each block is being split in SIMD groups called warps. This splitting is guaran-

teed to be in a linear, consecutive fashion, with the thread with thread index 0 being

in the first warp. However, the order of execution of warps is not specified. The

number of threads per warp is called the warp size, a hardware dependant constant.

A half warp is defined to be either the first or the second half of a warp. In other

words: a warp is a group of threads executed physically in parallel.

Every multiprocessor contains a set of 32 or 64 bit registers per processor,

fast on-chip memory that is shared by all processors on that multiprocessor called

shared memory, accessible as fast as the register file if certain conditions are met, a

constant cache, optimised for 1D locality, and a texture cache, optimised for 2D

spatial locality. Constant memory and texture memory are implemented as special

regions in device memory, accessible via its respective cache.

2.1. Occupancy. One should try to use as much of the existing hardware as possible

to achieve optimal performance. For instance, as all multiprocessors execute a whole

warp in a given time frame, the number of threads per block should be a multiple

GPU METRICS FOR A LINEAR SOLVER 363

of the warpsize to avoid wasting computational resources in under-populated warps.

An useful metric in this context is called occupancy, defined as follows:

Definition 2.1 (Occupancy). The number of warps running concurrently on a single

multiprocessor (MP) divided by the number of warps that could be run concurrently

is called (multiprocessor) occupancy.

That is,

(2.1) occupancy =
Number of warps co− scheduled per SM

Maximum Number of warps per SM

The number of warps co-scheduled on a multiprocessor is determined by several fac-

tors. For example, the occupancy of a multiprocessor varies from one kernel to the

next. Suppose, the GPU and kernel are fixed, the occupancy varies with the block

size (i.e., number of threads per block) with which the kernel is invoked. Moreover,

the same kernel and block size may result in different occupancy values on different

GPUs.

Let us find the occupancy equation using the GPU factors. Here, γ, ζ, µ, η, α and

ξ denote warp, block, thread, register, shared memory and memory respectively.

To find the occupancy (λ) of a kernel, we have to find γSM (number of warps

that will be co-scheduled on a streaming multiprocessor), which is given by

(2.2) γSM = ζSM × γPB,

where ζSM denotes the number of blocks co-scheduled on an SM and γPB denotes

warps per block.

Let us define few more terms to compute occupancy.

γPB = ⌈
µreqB

φ
⌉(2.3)

γG = ⌊
γPB

γAU
⌋ × γAU(2.4)

ηPB =

{

⌈
γreqT ×φ

ηU
⌉ × ηU × γG for GPU1

⌈
γG×γreqT ×φ

ηU
⌉ × ηU for GPU2

ξPB = ⌈
αPB

αU
⌉ × αU(2.5)

ζlim|γ = min{ζmax, ⌊
γmax

γPB
⌋}(2.6)

ζlim|η =

0 if γreqT > ηT max

⌊ η
ηPB
⌋ if 0 < γreqT ≤ ηT max

ζmax else

ζlim|α =

{

⌊ α
ξPB
⌋ if αPB > 0

ζmax else

364 M. PANCHATCHARAM, S. SUNDAR, AND A. KLAR

ψ = min{ζlim|α, ζlim|η, ζlim|γ}(2.7)

λ =
γPB × ψ

γmax
(2.8)

Fore more details about notations, please refer the glossary and occupancy calculator

[3].

From (2.8), it is clear that λ is a function of ξmax, γmax, µreqB, φ, η, γreqT , ηU , γAU ,

α, αPB, αU . For any fixed GPU, all parameters other than µreqB, γreqT , αPB are fixed.

Hence λ is a function of µreqB, γreqT and αPB for a fixed GPU.

Proposition 2.2. 0 ≤ λ ≤ 1 for any GPU.

Proof. Obviously λ cannot be negative. Suppose, λ > 1, then

γmax

γPB
< ψ ≤ ζlim|γ ≤ ⌊

γmax

γPB
⌋,

which is a contradiction.

2.2. Average Bandwidth Utilization and Volume. Let us define two more met-

rics namely average bandwidth utilization and V olume which are important to study

GPU performance.

Average bandwidth utilization (β) is an important metric with respect to device-

memory transactions.

Definition 2.3 (Average bandwidth utilization (β)). Suppose a1, a2, · · · , am are

m data required to compute a. Then, average bandwidth utilization is defined as

(2.9) β =
1

m

m
∑

i=1

δi

where δi denotes the ratio between number of bytes used for ai and transaction size

of ai.

Now, let us look at the definition of another important metric called volume.

Definition 2.4 (Volume). The volume of data transfer between the SMs and device

memory is the sum of the number of transactions of each multiplied by the transaction

size, i.e.,

(2.10) V =

m
∑

i=1

Ni ∗ Ti

where Ni and Ti denote the number of transactions and transaction size for ai respec-

tively.

GPU METRICS FOR A LINEAR SOLVER 365

Data volume divided by the bandwidth between device memory and the SMs is

a lower bound on the time spent transferring data between device memory and the

SMs. This is also a lower bound on the time for the entire computation. So, it often

plays to reduce the volume of data transfer. More details of β and V can be found

in next section.

To test the acceleration performance, an acceleration ratio (GPU-speed up) A is

defined as

(2.11) A =
tCPU

tGPU

where the total processing time on CPU, tCPU , comprises only the time of main pro-

gram executed while the total processing time on GPU, tGPU , includes the additional

time of transferring data between CPU and GPU.

Finally, we conclude this section, with a proposition. For devices with compute

capability 1.3, device memory accesses are scheduled on a per half-warp basis, where

as full warp basis is available for compute capability 2.0. A half-warp is a group of 16

consecutive threads. Half-warp threads are generally executed together. Half-warps

are aligned. For instance, threads 0–15 will be in the same half-warp, 16–31 will be in

the same half-warp, etc. Similarly, in case of warp, threads 0–31 will be in the same

warp, 32–63 will be in the same warp, etc. The partitioning of a block of thread into

half-warps and full warps is done by mapping a thread index to a number. When the

block dimensions are (Dx, Dy), the thread (x, y) is mapped to the number x+ yDx.

Proposition 2.5. Suppose that threads l1 and l2 map to the numbers n1 and n2,

respectively. Then l1 and l2 are in the same half-warp if, and only if ⌊n1

16
⌋ = ⌊n2

16
⌋.

Also, l1 and l2 are in the same warp if, and only if ⌊n1

32
⌋ = ⌊n2

32
⌋.

Proof. Let l1 = (x1, y1) and l2 = (x2, y2). Then, n1 = x1 + y1Dx and n2 = x2 + y2Dx.

Suppose l1 and l2 are in the same half-warp say kth half-warp. Then, 16(k − 1) ≤

n1, n2 < 16k. ⇒ ⌊n1

16
⌋ = ⌊n2

16
⌋ = k − 1. Conversely, suppose, ⌊n1

16
⌋ = ⌊n2

16
⌋ = k′. Then,

16k′ ≤ n1, n2 < 16(k′ + 1)⇒ l1 and l2 are in the same half-warp. Similar arguments

work for full warp.

3. GPU metrics for Matrix-Matrix Multiplication

In this section, we describe the GPU metrics for matrix-matrix multiplication.

We explain the importance of three important GPU metrics which we defined already,

namely, average bandwidth utilization, volume of data transfer and acceleration ratio.

A study on GPU metrics gives a complete analysis on better GPU configurations

among given GPUs. Suppose, we are provided with a collection of GPUs, using GPU

metrics, we can choose the best GPUs using certain standard algorithms. Also, we

366 M. PANCHATCHARAM, S. SUNDAR, AND A. KLAR

can suggest the block partitioning for a given algorithm in order to obtain much

better efficiency.

3.1. Matrix-Matrix Multiplication. In this section, let us explain matrix-matrix

multiplication in GPU.

void cpumultipy (float *u, float *w, float *x, int m)

{ for (int i = 0;i < m; i++)

for (int j = 0;j < m; j++)

{ float temp =0;

for(int k = 0; k < m; k++)

temp += u[i*m+k]*w[k*m+j];

x[i*m+j]=temp;

}

}

Figure 1. Matrix multiplication in CPU

Figure 1 represents a classical multiplication of two m × m matrices U and W

stored in row-major order in one-dimensional arrays u and w. The result matrix

X = U ∗W is returned by a one-dimensional array x in row-major order.

Remark 3.1. Matrix multiplication makes O(m3) accesses to u and w and O(m2)

accesses to x.

Let us tile an m × m matrix using n × p tiles. Assume that n | m and p | m.

Tile index is given as (a, b), where 0 ≤ a < m/n, 0 ≤ b < m/p. A GPU code uses a

block of threads to compute a tile (more accurately, the sub-matrix corresponding to

a tile) of the result matrix X. To compute the entire matrix X, we use an m/n×m/p

grid of thread blocks with thread block (a, b) to compute (a, b) tile of X. In CUDA,

a thread may determine the coordinates of the block (a, b), that is part of using the

variables blockIdx.x and blockIdy.y. Hence, (a, b) = (blockIdx.x, blockIdx.y).

There are many different possibilities to implement a same GPU code. These

possibilities are due to the usage of registers, shared memory and number of X ele-

ments computed per thread, and so on. Different implementations result in different

performance. Depends on the size of sub-matrix of X, our performance changes.

3.2. p× p sub-matrix of X using shared memory. To improve the performance

of matrix multiplication in GPU, we resort to a block matrix multiplication algorithm

GPU METRICS FOR A LINEAR SOLVER 367

in which each of U,W, and X is partitioned into m2/p2 p× p sub-matrices Uij ,Wij ,

and Xij . We assume that p|m. The algorithm computes X using the equation:

(3.1) Xij =
∑

0≤k<m/p

UikWkj

In the strategy of this subsection, a block of threads computes one p×p sub-matrix of

X and each thread computes one element of this sub-matrix. So, we use p× p thread

blocks with thread (dimX, dimY) computing element (dimY, dimX) of the sub-matrix

(observe the difference in the convention to name threads and matrix elements). The

thread block that is to compute Xij executes the following algorithm.

Algorithm 1 Matrix multiplication using shared memory

for k = 0→ m/p do

u1← u[threadIdx.y][k], v1← w[k][threadIdx.x]

temp← u1∗w1 This update step accesses shared memory but not device memory

tx← 16 ∗ blockIdx.y + threadIdx.y ∗ n

ty ← 16 ∗ blockIdx.x+ threadIdx.x

x(tx+ ty)← temp

end for

Figure 2 gives the kernel code for the case p. We verified experimentally that

p = 16 gives best performance for half-warp, whereas p = 32 for full warp. We now

obtain the device-memory access statistics for p = 16. Since each thread computes a

single value of x, the number of half warps is m2/16. In each iteration of the for loop,

a half warp reads 64 bytes of u values from a single 128-byte segment using a 64-byte

transaction and 64 bytes of w values using another 64-byte transaction. Since the for

loop is iterated m/16 times, a half warp makes m/8 64-byte transactions of u and

w together. A half warp also makes a 64-byte write transaction on x. So, the total

number of device-memory transactions made by this code is m3/128 +m2/16. Each

of these is a 64-byte transaction with 100% utilization. The volume is m3/2 + 4m2

and β is 100%. This algorithm uses 11 registers per thread and 2092 bytes of shared

memory; it achieves an occupancy of 1.0.

4. GPU metrics for Matrix-Vector Multiplication

In this section, we describe the GPU metrics for matrix-vector multiplication.

Figure 3 represents a classical matrix-vector multiplication of an m×m matrix

A with a vector x stored in row-major order in one-dimensional arrays A and x. The

resultant vector y = A ∗ x is returned by a one-dimensional array y in row-major

order.

368 M. PANCHATCHARAM, S. SUNDAR, AND A. KLAR

__global__ void gpumultipy1by4sub(float *u, float *w,

float *x, int m)

{

__shared__ float u1[p][p], v1[p][p];

int m1 = m/16; int m2 = m*16;

int i1 = i2= (16* blockIdx .y+threadIdx .y)*m+threadIdx .x;

int j1 = 16* blockIdx .x+threadIdx .y*m+threadIdx .x;

float temp = 0;

for (int s = 0; s < m1; s++)

{

u1[threadIdx .y][threadIdx .x] = u[i1];

w1[threadIdx .y][threadIdx .x] = w[j1];

__syncthreads();

for (int k = 0; k < p; k++)

temp += u1[threadIdx .y][k]*w1[k][threadIdx .x];

__syncthreads();

i1 += 16;

j1 += m2;

}

x[i2+ 16* blockIdx .x] = temp;

} }

Figure 2. p × p submatrix with shared memory

void cpumultipy (float *A, float *x, float *y, int m)

{ for (int i = 0;i < m; i++)

for (int j = 0;j < m; j++)

y[j]+= A[i*m+j]*x[j];

}

Figure 3. Matrix-vector multiplication in CPU

Matrix-vector multiplication is a particular case of matrix-matrix multiplication

as a vector is nothing but an n × 1 matrix. But, to improve the performance of the

matrix-vector multiplication, we increase the computational load per thread to better

mask-device memory with arithmetic operations. We employ each thread to compute

a p × 1 sub-matrix of y using shared memory. That is, each thread will compute p

values of y. Again, by experimental verification, we found that p = 16 gives best

GPU METRICS FOR A LINEAR SOLVER 369

performance. Since a thread will compute its assigned p values of y incrementally, we

allocate a thread p registers y[0 : p] to store the incremental values computed so far.

When computations are done, the thread will write its p computed values to device

memory. Figure 4 gives a complete code to multiply m ×m matrix with an m × 1

vector using shared memory.

__global__ void matrivectormul(float *A, float *x,

float *y, int m, int p)

{

__shared__ float xs[p];

float temp = 0;

for (unsigned int j = 0; j < (m-1)/p+1; ++j)

{

if(j*p + threadIdx .x < m)

xs[threadIdx .x] = x[j*p + threaIdx .x];

else

xs[threadIdx .x] = 0;

__syncthreads();

for (unsigned int k = 0; k < p; k++)

if(blockIdx .x*p+threadIdx .x < m && j*p+k<m)

temp += A[j*p+(blockIdx .x*p+threadIdx .x)*m+k] * xs[k];

__syncthreads();

}

if(blockIdx .x*p+threaIdx .x < m)

y[blockIdx .x*p+threadIdx .x] = temp;

__syncthreads();

}

Figure 4. p × 1 submatrix with shared memory

As per the device-memory statistics, each thread computes p entries of y. So, a

half-warp computes 16∗p entries of y. Hence, the number of half warps is m2/(16∗p).

In each iteration, the threads of a half-warp use 2 128-byte transactions to read the

required A values. The total number of transactions on A ism2/(16∗p)∗2∗m/(2∗p) =

m3/(16 ∗ p2). Also, average bandwidth utilization is 100%.

370 M. PANCHATCHARAM, S. SUNDAR, AND A. KLAR

In general, an m× n matrix A and n× 1 vector multiplication has total number

of transactions as m2n/(16 ∗ p2). Since, in each iteration, a half warp makes 2 ∗ p

64 byte transactions on x, the total number of transactions for x is n/p. Each of

these transactions has 100% utilization. Also the number of device memory write

transactions for y is n/p and each has 100% utilization, where each half warp makes

p 64-byte device memory transactions to write out the n entries of y. Combining

transactions of A, x and y, we get a total of m2n
16p2 + 2n

p
device transactions. The volume

is given by m2n
16p2 ∗ 128 + n

p
∗ 64 ∗ 2.

In the similar fashion, one can compute the vector addition of two vectors of size

n, which requires 3 ∗n/p memory transactions with 100% utilization and 3 ∗n/p ∗ 64

volume.

5. Results

In this section, we discuss the GPU metrics for various p,m and n values. Also,

we deal with GPU metrics computation of BICGstab algorithm.

Table 1 gives GPU metrics for matrix-matrix multiplication of two m ×m ma-

trices, whereas Table 2 provides GPU metrics for matrix-vector multiplication for an

m×m matrix with a vector of size m.

Table 1. GPU metrics for different p and m dimensions in matrix-

matrix multiplication

(p,m) Transactions V β Run time(s) in GPU Gflops A

(p,m) 2m3

p2 + m2

p
128m3

p2 + 64m2

p
100% - - -

(16,m) m3

128
+ m2

16
m3

2
+ 4m2 100% - - -

(16,2048) ∼ 6.7× 107 ∼ 4.3× 109 100% 0.06 373 546

(16,4096) ∼ 5.4× 108 ∼ 3.4× 1010 100% 0.45 377 772

(16,16384) ∼ 3.4× 1010 ∼ 2.2× 1012 100% 25.25 378 965

Table 2. GPU metrics for different p and m dimensions in matrix-

vector multiplication

(p,m) Transactions V β Run time(s) in GPU Gflops A

(p,m) m3

16p2 + 2m
p

8m3

16p2 + 128m
p

100% - - -

(16,2048) ∼ 2.0× 106 ∼ 1.6× 107 100% 0.01 373 246

(16,4096) ∼ 1.7× 107 ∼ 1.3× 108 100% 0.15 377 352

(16,16384) ∼ 1.1× 109 ∼ 8.6× 109 100% 12.25 378 465

The BiCGStab algorithm depicted in Algorithm 2 contains several different oper-

ations involving matrix-vector multiplications and reductions, daxpy-like vector op-

erations and scalar parameter updates. For each dot product, we require n/p trans-

actions for both vectors and hence the number of transactions is 2n/p + 1. Volume

GPU METRICS FOR A LINEAR SOLVER 371

is 128n/p + 4. Similarly, vector addition requires, 3n/p device memory transactions

with V = 192n/p.

BICGstab algorithm has 3 matrix-vector multiplication, 5 dot products and 6

daxpy-like operations. We assume that the algorithm converges after k iterations.

Then, we have 2k+1 matrix-vector multiplication, 5k dot products and 5k+1 daxpy-

like operations. Hence the total number of transaction for an m×m matrix is given

by (m3

16p2 + 2m
p

)×(2k+1)+5k×(2m
p

+1)+(5k+1)× 3m
p

. That is, (2k+1)m3

16p2 + (29k+5)m
p

+5k

and V = (2k+1)∗128m3

16p2 + 64∗(29k+5)m
p

+ 20k. Table 3 gives GPU metrics measured for

BICGStab algorithm.

Algorithm 2 BiCGStab Algorithm

s = AP Matrix vector Multiplication

s = R− s

ŝ = s, u = v = q = 0, α = ω0 = ρ0 = 1

while (
∑

s.s− ǫ > 0) : Scalar Product

ρ =
∑

s.ŝ Scalar Product

β = ρ/ρ0 ∗ α/ω0

u = s + β(u− ω0v)

v = Au Matrix vector Multiplication

α = ρ/
∑

ŝ.v Scalar Product

s = s− αv

q = As Matrix vector Multiplication

ω =

∑

q.s
∑

q.q
Two Scalar Products

P = P + αu+ ωs

s = s− ωq

ρ0 = ρ, ω0 = ω

Table 3. GPU metrics for different p and m dimensions

(p,m) Transactions V β Time Gflops A

(p,m) (2k+1)m3

16p2

(2k+1)∗128m3

16p2 100% - - -

+ (29k+5)m
p

+ 5k +64∗(29k+5)m
p

+ 20k

(16,2048) ∼ (k + 1
2
) ∗ 4.1× 106 ∼ (k + 1

2
) ∗ 5.3× 108 100% 10.06 373 376

(16,16384) ∼ (k + 1
2
) ∗ 2.1× 109 ∼ (k + 1

2
) ∗ 2.8× 1011 100% 45.25 378 689

The entire calculation in this paper has done in NVIDIA Tesla M2050, which has

the following specifications.

372 M. PANCHATCHARAM, S. SUNDAR, AND A. KLAR

Table 4. NVIDIA Tesla M2050 Specifications (Source: NVIDIA [4])

Number of Transistors 3.0 Billion

Number of GPUs 1

CUDA Cores 448

Streaming Multiprocessors 14

Core clock 1.15 GHz

6. Conclusions

Mathematical definition of GPU metrics helps us to find the optimum block

size of a grid. Optimum block size suggests us to design our algorithm to divide

a given matrix into blocks of matrices to gain the efficiency of GPU with 100%

utilization. Further, one can store the matrix in sparse format and compute the

number of transaction and volume for different sparse structures.

7. Glossary

⌈x⌉ - Ceiling function, min{n ∈ Z : n ≥ x}

⌊x⌋ - Floor function, max{n ∈ Z : n ≤ x}

η - number of registers

α - shared memory size

µ - number of threads

ζmax - maximum number of blocks per Streaming Multiprocessor (SM)

φ - maximum number of threads per warp

γmax - maximum number of warps per SM

ηU - register unit

αU - shared memory unit

γAU - warp allocation unit

γSM - number of warps co-scheduled in SM

ζSM - number of blocks co-scheduled in SM

γPB - number of warps per block

µreqB - number of threads required in a block

ηreqT - number of registers per thread

γG - number of registers assigned to block

αreqB - number of bytes allocated to shared memory for a block

ηreqW - number of registers required in a warp

ηA - number of registers allocated to a warp

γreqT - number of register required per thread

ξPB - required memory per block

αPB - required shared memory per block

GPU METRICS FOR A LINEAR SOLVER 373

ηPB - required registers per block

ψ - blocks co-scheduled per SM

µB max - maximum number of threads in a block

ηT max - maximum number of registers per thread

ζlim|γ - limited blocks due to warps

ζlim|η - limited blocks due to registers

ζlim|α - maximum blocks due to shared

REFERENCES

[1] NVIDIA CUDA Programming Guide, Version 4.2, 2012.Website: http://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html

[2] Jason Sanders and Edward Kandort, CUDA by example, An Introduction to General-

Purpose GPU Programming, Addison-Wesley, 2011.

[3] CUDA Occupancy Calculator, NVIDIA Inc, Website: http://developer.download.nvidia.com/compute/cuda/

CUDA Occupancy calculator.xls

[4] NVIDIA, Inc,Tesla M2050 and Telsa M2070 slot computing processor modules, Website:

http://www.nvidia.com/docs/IO/43395/BD-05238-001 v03.pdf

