
Neural, Parallel, and Scientific Computations 21 (2013) 411-418

DISCRETE DYNAMIC CONTROL OF AN

IMPULSIVE SIR MODEL

N. G. MEDHIN AND M. SAMBANDHAM

Department of Mathematics, North Carolina State University

Raleigh, NC 27695-8205

Department of Mathematics, Morehouse College Atlanta, GA 30314

ABSTRACT. We consider discrete dynamic control of SIR epidemic model where susceptible and

infected people are controlled by vaccination and medical intake at particular instants of time within

the time horizon under consideration.

1. Introduction

Formulation of strategies to control or avoid the spread of epidemics are key

components of the design of public health policy. Some of the strategies to control or

block the spread of epidemics consist of health education campaigns, contact tracing

and screening, and strategically timed mass vaccination, medical treatment and/or

quarantine for those that are already infected. All these strategies have cost associated

with them. Appropriate and timely strategies control cost ([1], [4], [9], [11], [18]).

In this paper we formulate a discrete dynamic impulsive control system where the

objective is to reduce the number of infected people and cost by scheduled vaccinations

and/or quarantine. The level of the application of resources depends on the size of

the population and the state of the epidemic([2], [4], [9], [11]).

In general a model depends on population homogeneity and migration. The

model could consider multiple groups, and the level of interaction between groups.

The level of resources also depends on the size of population. The epidemic model

also significantly differs depending on the particular epidemic under consideration.

Influenza model is quite different from HIV model ([2], [4], [5], [8], [12], [13]).

Thus, control models should possibly consider multiple groups, the particular

epidemic, time horizon, and control objectives, population size, state of the epidemic

and available resources ([2], [4], [5], [8], [11], [18]). In this paper we consider a simple

model following ([9], [10], [11]) where the controls are applied at distinct times in the

planning/epidemic horizon. We start with a general mathematical model where the

SIR models ([9], [10], [11]) are particular cases. We apply the results to the concrete

model where numerical results are presented.
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2. General Discrete Dynamic Problem

We consider a general problem given by the dynamics

dxi

dt
= fi(xi(t)), ti−1 < t < ti, i = 2, . . . , n(1)

xi(ti−1) = hi(xi−1(ti−1)) · Ci + xi−1(ti−1)

dx1

dt
= f1(x1(t)), t0 < t < t1,

x1(t0) = x0

The objective functional is given by

J(x0, C1, . . . , Cn) =
n
∑

i=1

Φi(xi(ti)).

Assumptions

(1) The functions Φi are continuously differentiable and bounded below.

(2) The functions fi, i = 1, . . . , n are continuously differentiable.

(3) The matrix functions hi, i = 1, . . . , n are continuously differentiable

3. Sufficiency Theorem

Suppose, given that (x0, C1, . . . , Cn), ψi, i = 1, . . . , n are such that

d

dt
ψ1(t) = −ψ1(t)

∂

∂x
f1(x1(t)), t0 < t < t1(2)

d

dt
ψi(t) = −ψi(t)

∂

∂x
fi(xi(t)), ti−1 < t < ti

ψi−1(ti−1) = ψi(ti−1)

(

∂

∂x
(hi(xi−1(ti−1))Ci) + I

)

−∂xΦi−1(xi−1(ti−1)), i = 1, . . . , n

ψn(tn) = −∂xΦn(xn(tn))

ψi(ti−1) · hi(xi−1(ti−1)) = 0

ψ1(x1(t0)) = 0

then (x0, C1, . . . , Cn) is a minimizer for J .

Remark 3.1. We remark that Ci is a minimizer for
∑n

k=i Φk(xk(tk)) with all the

other decision variables Ck, k = i + 1, . . . , n fixed. This is in line with dynamic

programming. Note that ψi, i = 1, . . . , n are row vectors.

Proof. Consider

d

dt
xi = fi(xi), ti−1 < t < ti,(3)

xi(ti−1) = hi(xi−1(ti−1))Ci + xi−1(ti−1)
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If we vary Ci by adding δC to it, then the corresponding variation in the trajectory

xi satisfies the equation

d/dt δxi = fi,x(xi(t))δxi, ti−1 < t < ti,(4)

δxi(ti−1) = hi(xi−1(ti−1))δC

In (3), a variation of δxi−1(ti−1) in the xi−1 trajectory at ti−1, leads to the variation

in the state xi given by

d/dt δxi = fi,x(xi(t))δxi, ti−1 < t < ti,(5)

δxi(ti−1) =

{

∂

∂x
(hi(xi−1(ti−1))Ci) + I

}

· δxi−1(ti−1)

∫ ti

ti−1

ψi(s)fi,x(s)δxi(s)ds =

∫ ti

ti−1

ψi(s)
d

ds
δxi(s)ds(6)

= ψi(s)δxi(s)|
ti
ti−1

+

∫ ti

ti−1

ψi(s)fi,x(s)δxi(s)ds

From (6) we get

(7) ψi(ti)δxi(ti) − ψi−1(ti−1)δxi−1(ti−1) = 0

We can repeat (6) for i, i+1, i+2, . . . , n. Adding the resulting equations as in ((7), and

using the conditions stated in (2), a variation in Ci while leaving Ck, k = 1, 2, . . . , n

fixed gives

(8)

n
∑

k=i

∂xΦk(xk(tk)) = 0

We remark that one can verify the above sufficiency conditions are also necessary.

3.1. Numerical Computation. We use the above sufficiency theorem for compu-

tational purpose. The problem of minimizing the objective function following (1)

is a mathematical programming problem. To solve the mathematical programming

problem numerically we start with (x0, C1, . . . , Cn) and solve the system (1). Then,

we solve the adjoint system backwards in time. However, for the gradients we use the

expressions in (11) below

d

dt
ψ1(t) = −ψ1(t)

∂

∂x
f1(x1(t)), t0 < t < t1(9)

d

dt
ψi(t) = −ψi(t)

∂

∂x
fi(xi(t)), ti−1 < t < ti

ψn(tn) = −∂xΦn(xn(tn))

ψ1(x1(t0)) = 0
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This system comes from (2). We solve this adjoint system backwards in time. From

(2) we have

ψi−1(ti−1) = ψi(ti−1)

(

∂

∂x
(hi(xi−1(ti−1))Ci) + I

)

(10)

−∂xΦi−1(xi−1(ti−1)), i = 1, . . . , n

ψ1(x1(t0)) = 0

Thus,

∂xΦi−1(xi−1(ti−1)) = ψi(ti−1)

(

∂

∂x
(hi(xi−1(ti−1))Ci) + I

)

− ψi−1(ti−1),(11)

i = 1, . . . , n

ψn(tn) = −∂xΦn(xn(tn)).

Now we use (11) to calculate direction of descent for Cn, Cn−1, . . . , C1.

4. SIR Model

Let x represent the susceptible population, y the infected, and z the recovered.

Following([11]) we consider the dynamics given by

d

dt
x = −β

xy

x + y
, β > 0(12)

d

dt
y = β

xy

x + y
− γy, γ > 0

d

dt
z = γy

x(0) = x0

y(0) = y0

We remark that we could treat the model in [10] in the same way.

The impulsive version we consider is as follows. Consider 0 ≤ t0 < t1 < t2 <

· · · < tn−1 < tn = tf . In the interval [t0, t1] we consider the dynamics

d

dt
x = −β

xy

x + y
,(13)

d

dt
y = β

xy

x+ y
− γy, γ > 0

d

dt
z = γy

x(0) = c01

y(0) = c02
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In the interval [ti−1, ti], i = 2, 3, . . . , n we consider

d

dt
xi = −β

xiyi

xi + yi

(14)

d

dt
yi = β

xiyi

xi + yi

− γyi, γ > 0

d

dt
zi = γyi

(

xi(ti)

yi(ti)

)

= hi(xi−1(ti−1), yi−1(ti−1)) + Ci,

Ci =

(

ci1

ci2

)

We remark that treatment strategies modeled here consider vaccination, and quaran-

tine executed at scheduled times in the time horizon appropriate for the epidemic.

The i-th cost is given by

Ji = Φi(xi(ti), yi(ti)), i = 1, 2, . . . , n.

We would like to minimize
n
∑

i=1

Ji

5. Numerical Simulation of the SIR Model

In this section we take the case t0 = 0, t1 = 1, t2 = 2, t3 = 3 = tf and

numerically solve the mathematical problem defined by the dynamics (14) with the

corresponding cost
∑

3

i=1
Ji where Φi(xi(ti), yi(ti)) = 1

2
y2

i . The decision variables are

C0, C1, . . . , Cn−1,

Ci =

(

ci1

ci2

)

, i = 0, 1, . . . , n− 1

We remark that C0 = x0 in (1). We note that we have a constrained mathematical

programming problem. We start with x0 and initialize C1, C2, C3 and use direction of

descent using (11) to minimize the objective function. Note that the system for the

states (14) has to be solved forward in time, followed by the adjoint system solved

backwards in time in each time interval using (11)). A change in C3 is supposed to

affect the objective function Φ4(x4(t4), y4(t4)), while a change in C2 is supposed to

affect Φ4(x4(t4), y4(t4)) + Φ3(x3(t3), y3(t3)) (see Remark 3.1).

6. Conclusion

We have presented a discrete dynamic impulsive control problem to deal with

an epidemic model. The approach we have presented can be used to deal with more

general models than the SIR model presented here. We note that the formulation here
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Figure 1. Susceptible & Infected Population in Time Interval 1.
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Figure 2. Susceptible & Infected Population in Time Interval 2.
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Figure 3. Susceptible & Infected Population in Time Interval 3.

considers application of treatments at distinct times with the prospect of reducing

the susceptible and infected population and cost. The model is appropriate for a

scheduled combination of vaccination and quarantine treatments. The numerical

computation shows decreases in the number of susceptible and infected population

steadily in each time interval. Since the cost depend on the final population count of

the infected population we see the cost decreases from each time interval to the next.
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Figure 4. Susceptible Cost & Infected Cost in Time Interval 4.
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