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ABSTRACT We consider a class of control systems characterized by nonlinear differential equation

of the form

dx

dt
= A(t)x + B(t)u + F (t, x), 0 ≤ t0 ≤ t ≤ t1 < ∞.

x(t0) = x0

where u denotes the control lying in a suitable Banach space and x denotes the state in another

separable reflexive Banach space.We are interested in finding a control, u which minimizes a certain

cost functional J(u) = φ(x, u). We provide conditions on A(t), B(t), F (t, x) and φ(t, u) which gu-

rantee the existence of an optimal control. We first reduce the system governed by the differential

equation into an equivalent Hammerstein operator equation of the form

x = KNx + Hu

in suitable space. Subsequently we give sets of sufficient conditions on operators K, N and H which

guarantee the existence of an optimal control. We use the theory of monotone operators and op-

erators of type (M) in our analysis. Our results apply to both Lipschitzian and non-Lipschitzian

(monotone) nonlinearities. The systems described by standard finite and infinite dimensional non-

linear differential equations are special cases of the general operator equation formulation. From

the general results obtained for the operator equation we deduce results for the system described

by differential equations as special cases. Also, we relate ‘optimality system’ to Hamiltonion system

in the Minimum Principle of Pontriagin and Riccati Equations for systems governed by differential

equations.

AMS (MOS) Subject Classification. 39A10.

1. INTRODUCTION

Let Y1 be a Hilbert space and Y a dense linear subspace of Y1 carrying the

structure of a separable reflexive Banach space with continuous injection into Y1 and
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U be a separable reflexive Banach space. In this paper we consider a class of control

systems governed by the nonlinear differential equation

dx

dt
= A(t)x + B(t)u + F (t, x), 0 ≤ t0 ≤ t ≤ t1 < ∞.

x(t0) = x0(1.1)

where x0, x(t) ∈ Y and u(t) ∈ U . For each t ∈ [t0, t1], let A(t) : Y → Y ∗ be a closed

linear, not necessarily bounded, operator and {A(t)}, t ∈ [t0, t1] generates an almost

strong evolution operator Φ : △ → BL(Y1) where △ = {(s, t) ∈ [t0, t1] × [t0, t1] : 0 ≤

t0 ≤ s ≤ t ≤ t1}, BL(Y1) =: space of all bounded linear operators Φ(t, s) from Y1

into itself, with ‖Φ(t, s)‖ ≤ M .

In the optimal control problem we are looking for a control u which minimizes

a certain cost functional.Let the associated cost functional to be minimized be given

by

J(u) = φ(u, x) =

∫ t1

t0

g(t, u(t), x(t)) dt

where g is a mapping from [t0, t1]×U ×Y into R̄+ satisfying Caratheodory conditions

with respect to t, u and x.

Further we make the following assumption:

Assumption (a0) : The linear homogeneous evolution equation

dx

dt
= A(t)x + g

x(t0) = x0

has a unique strong solution for all g ∈ L2([t0, t1], Y ). See Tanabe [17] for sufficient

condition for Assumption (a0). Also, the nonlinear operator F : [t0, t1] × Y → Y ∗ is

such that for every x ∈ Y , t → F (t, x) is measurable and x → F (t, x) is continuous

for almost all t in [t0, t1] (Caratheodory conditions). Assume that for all t ∈ [t0, t1],

B(t) is a bounded linear operator maps U into Y and let A(t) be such that for all

t ∈ [t0, t1] domain of A(t) =: D and x0 ∈ D.

For a given u ∈ L2([t0, t1], U), by a solution of (1.1) we mean a mild solution

x ∈ L2([t0, t1], Y ) satisfying

(1.2) x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ +

∫ t

t0

Φ(t, τ)F (τ, x(τ))dτ

We now define the following spaces and operators defined on it:

Let X = L2([t0, t1], Y ), X1 = L2([t0, t1], Y1) and Z = L2([t0, t1], U).

Define the operators K : X∗ → X , N : X → X∗ and H : Z → X as under

(Kx)(t) =

∫ t

t0

Φ(t, τ)x(τ)dτ
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(Nx)(t) = F (t, x(t))(1.3)

(Hu)(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)B(τ)u(τ)dτ

By using the above definitions it is easy to see that the equation (1.2) can be reduced

in to the abstract operator equation of Hammerstein type

(1.4) x = KNx + Hu

in X for a fixed u ∈ Z. In the following section we formulate the problem in the ab-

stract setup. In Section 3, we give preliminary definitions and results and in Section 4,

we prove existence results for optimal pair both for constrained and unconstrained

problems. The optimality system is derived for the abstract system in Section 5. As

an application of our abstract we provide conditions for the existence of optimal pair

for control systems described by partial differential equations. The paper ends with

an Example to illustrate our abstract results.

2. OPTIMALITY PROBLEM FOR ABSTRACT SYSTEM

In this section we formulate two control problems for the abstract system char-

acterized by the Hammerstein operator equation.

Let X be a real Banach space with dual X∗. Let Z be another real Banach space.

Let K : X∗ → X, N : X → X∗ and H : Z → X be operators, not necessarily linear.

We consider a control system characterized by the nonlinear operator equation of the

Hammerstein type

(2.1) x = KNx + Hu

where u ∈ U ⊂ Z, called the set of all admissible controls. We shall assume through-

out that for each u ∈ U , (2.1) has a unique solution x ∈ X. This x is referred as

the response or trajectory of (2.1) corresponding to the control u. For a quick review

of the existence and uniqueness of solutions of operator equations of the form (2.1),

refer Browder [7].

We shall be interested in finding a control u ∈ U which minimizes a cost functional

J . In most of the practical situations the cost functional J happens to be a function

of both the variables u and x and so we take the cost functional J of the form.

J(u) = φ(u, x)

If U is just a subset of Z then the minimization problem is referred as a constrained

problem, otherwise it is called unconstrained problem. Let x∗ be the response corre-

sponding to a control u∗ which minimizes J , then the pair (u∗, x∗) is called an optimal
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pair of (2.1). A pair of coupled equations satisfied by the optimal pair (u∗, x∗) is re-

ferred as an ‘optimality system’ for (2.1) (with respect to the cost functional J), see

Seidman and Zhou [16].

In our study, we investigate the following problems.

Problem 2.1. Find a set of sufficient conditions on K, N and H which will guarantee

the existence of an optimal pair (u∗, x∗) ∈ U × X for the system (2.1).

Problem 2.2. Derive an ‘optimality system’ for the control system (2.1).

The problem of the type raised above have been investigated by many authors

for the systems described by nonlinear differential equations, refer Balachandran and

Somasundaram [2], Barbu and Prato [3], Papageorgiou [15] and Seidman and Zhou

[16].

Our system (2.1) is in the most general setting and contains the systems con-

sidered by the above authors as special cases. We, also derive the result in Datko

[9] for linear system as a corollary of our main result in Section 5. For the systems

governed by differential equations, we deduce the Hamiltonian system in the Mini-

mum Principle of Pontriagin as a special case of our ‘optimality system’. For such

systems we relate the ‘optimality system’ to Riccati Eautions. We use the theory of

monotone operators and operators of type (M) for our analysis and our result apply

to monotone type nonlinearities rather than Lipschitz type. We note that there is

very little discussion in the literature regarding control problems containing monotone

nonlinearities.

3. PRELIMINARIES

In this section we give necessary defintions and basic results for for the existence

of maximum and minimum for a functional defined on some set. Let X be a real

Banach space and X∗ be the dual of X. The strong convergence of a sequence {xn}

to x0 in X is denoted by xn → x0 and weak convergence by xn ⇀ x0.

An operator T : X → X∗ is said to be monotone if 〈Tx1 − Tx2, x1 − x2〉 ≥ 0 for

all x1, x2 ∈ X. T is of type (M) if xn ⇀ x0, Txn ⇀ y and limn〈Txn, xn − x0〉 ≤ 0

implies that y = Tx0. T is said to be weakly continuous (completely continuous) if

xn ⇀ x0 in X implies Txn ⇀ Tx0(Txn → Tx0) in X∗. T is said to be a bounded

operator if it maps bounded subsets of X into a bounded subsets of X∗. T is said to

be coercive if 〈Tx, x〉/‖x‖ → ∞ as ‖x‖ → ∞.

Let M be the set of all operators T : X → X∗ such that 〈Tx1 − Tx2, x1 − x2〉 ≥

α‖x1 − x2‖
2 for all x1, x2 ∈ X and for some constant α.
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For T ∈ M , we define µ(T ) as

µ(T ) = inf
x1,x2∈X
x1 6=x2

〈Tx1 − Tx2, x1 − x2〉

‖x1 − x2‖2

Let Lip be the set of all operators T : X → X∗ satisfying the Lipschitz condition.

That is, there exists α > 0 such that ‖Tx1 − Tx2‖ ≤ α‖x1 − x2‖ for all x1, x2 ∈ X.

For T ∈ Lip, we define

‖T‖∗ = sup
x1,x2∈X
x1 6=x2

‖Tx1 − Tx2‖

‖x1 − x2‖

A functional f : X → R is said to be lower semi continuous (weakly lower

semicontinous) if lim
n

f(xn) ≥ f(x0) whenever xn → x0(xn ⇀ x0) and is said to be

coercive if f(x) → ∞ as ‖x‖ → ∞. Let I denote the interval [t0, t1], then f : I×X →

R is said to be approximately lower semi continuous if for all ε > 0 there exists

Iε ⊂ I such that mes(I \ Iε) < ε and F |Iε×X is lower semicontinuous. We will use the

following known result in our analysis.

Theorem 3.1. Let K ⊂ X be a (weakly) compact set and f : K → R be (weakly)

lower semi continuous then there exists x0 ∈ K such that f(x0) ≤ infx∈K f(x).

4. EXISTENCE OF OPTIMAL PAIR FOR THE ABSTRACT SYSTEM

In this section we give the main results concerning Problem 2.1. We first do

the analysis for the constrained problem and then extend the analysis to the uncon-

strained problem.

Let T : U → X denote the system operator (also known as solution operator)

which assigns to each control u ∈ U a unique solution x ∈ X satisfying (2.1). To

tackle Problem 2.1 we begin by giving different sets of sufficient conditions on K, N

and H which will guarantee the weak and complete continuity of T . We assume

throughout this section that X is a reflexive Banach space.

Assumptions [A]

A1 : K : X∗ → X is linear and compact and there exists a constant d > 0 such that

〈Kx, x〉 ≥ d‖Kx‖2 for all x ∈ X∗.

A2 : N : X → X∗ is continuous, bounded and negative monotone.

A3 : H : U → X is completely continuous.

Assumptions [B]

[B1] : K is linear and belongs to M .

[B2] : N ∈ Lip and µ(−N) > 0 with (µ(K) + µ(−N)‖N‖∗−2) > 0

[B3] : H is completely continuous.
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Assumptions [C]

[C1] : K and N satisfy either [A1] and [A2] or [B1] and [B2].

[C2] : H and N are weakly continuous.

Assumptions [D]

D1 : K is bounded linear operator and there exists a constant d > 0 such that

〈Kx, x〉 ≥ d‖Kx‖2 for all x ∈ X∗.

D2 : N is a continuous bounded operator of type (M)

D3 : H is completely continuous.

Lemma 4.1. Suppose that the operator K, N and H satisfy either Assumptions [A]

or Assumptions [B] then the system operator T is well defined and is completely

continuous.

Proof. Let Assumptions [A] hold. Then by Theorem 1 of Hess [11] it follows that [I−

KN ]−1 is well defined and so is T = [I −KN ]−1H . The boundedness and continuity

of [I − KN ]−1 follow from a similar argument given in the proof of Lemma 2.1 of

George [14]. This together with complete continuity of H imply that T is completely

continuous.

If Assumptions [B] holds, we get the continuity and boundedness of [I−KN ]−1 by

Theorem 2.1 of Dolezal [10] and hence the complete continuity of [I −KN ]−1H .

Similarly we have the following result regarding the weak continuity of T .

Lemma 4.2. Under any one of the set of Assumptions [C] or Assumptions [D] the

system operator T is weakly continuous.

Remark 4.1. If the system operator is guaranteed to be well - defined, a priori, then

the linearity assumption on K and the monotonicity assumption on N can be relaxed

in the above lemmas (refer Theorem 5 of Brezis and Browder [5] and Theorem 2 of

Hess [11]).

Remark 4.2. We note that if K is a bounded linear non-compact operator and N ∈

Lip with ‖K‖‖N‖∗ < 1 then by using infinite dimensional version of Theorem 3.1

of Joshi and George [13] it follows that the system operator T is well defined and is

weakly continuous provided N and H are weakly continuous.We now give our main

results on existence of optimal control.

Assumptions [I]

(a) : The operators K, N and H satisfy any one of the sets of Assumptions [A] or

Assumptions [B].

(b) : For a fixed x, u → φ(u, x) is convex and continuous and x → φ(u, x) is contin-

uous and it is uniform for all u ∈ U .
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(c) : The control set U is weakly compact.

Theorem 4.1. Under Assumptions [I] the system (2.1) has an optimal pair (u∗, x∗).

Proof. We first show that J is weakly lower semicontinuous. That is, J(u∗) ≤

limn J(un) whenever un ⇀ u∗ in U .

Let g(u, v) be real valued function on U × X defined by

g(u, v) = φ(u, Tv)

In view of Assumption [I(b)], u → g(u, Tv) is continuous and convex for a fixed v ∈ X.

Also Assumption [I(a)] implies (by Lemma 4.1) that T is completely continuous. This

together with Assumption [I(b)] give that v → g(u, v) is weakly continuous uniformly

for all u ∈ U . As all assumptions of Theorem 1 of Browder [6] are satisfied, it follows

that

J(u) = φ(u, Tu) = g(u, v)

is weakly lower semicontinuous.

As U is weakly compact and J is weakly lower semicontinuous it follows from

Theorem 4.1 that there exists u∗ ∈ U such that

φ(u∗, x∗) = J(u∗) ≤ inf
u∈U

J(u) = inf
u∈U

φ(u, x)

where x = Tu and x∗ = Tu∗.

This proves that (u∗, x∗) is an optimal pair for the abstract system (2.1).

When the system operator T is weakly continuous we have the following theorem

which follows along the same line as Theorem 4.1 . Here we use Lemma 4.2 instead

of Lemma 4.1

Assumptions [II]

(a) : The operators K, N and H satisfy either Assumptions [C] or Assumptions [D].

(b) : For a fixed x, u → φ(u, x) is convex and continuous and x → φ(u, x) is weakly

continuous and is uniform for all u ∈ U .

(c) : The control set U is weakly compact.

Theorem 4.2. Under Assumptions [II] the system (2.1) has an optimal pair (u∗, x∗).

In most of the optimal control problems, the functional φ(u, x) is of quadratic

type with respect to both u and x and in such cases weaker forms of continuity,

viz, lower semicontinuity or weak lower semi continuity of φ is easier to check. So,

in the following theorems we prove the existence of optimal pair (u∗, x∗) with lower

semi continuity (weak lower semicontinuity) assumptions on φ instead of continuity

(weak continuity) assumptions. For such functionals we investigate directly the un-

constrained problem, where U is the whole space Z which is assumed to be a reflexive
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Banach space.

Assumptions [III]

(a) : The operators K, N and H satisfy either Assumptions [A] or Assumptions [B].

(b) : φ : Z × T (Z) → R+ is a lower semicontinuous function with respect to

the weak topology in Z and norm topology in T (Z) and ‖u‖ → ∞ implies

φ(u, Tu) → ∞, u ∈ U .

Theorem 4.3. Under Assumptions [III], the system (2.1) has an optimal pair (u∗, x∗).

Proof. Let {un} be a minimizing sequence of controls in Z. That is

lim
n

φ(un, Tun) = inf
u∈Z

φ(u, Tu) = m(say).

From Assumption [III(b)], {un} is bounded. Since Z is reflexive, by extracting

a subsequence, we can assume that un ⇀ u∗ in Z. In view of Assumption [III(a)],

Lemma 4.1 implies that the system operator is completely continuous and hence

Tun → Tu∗ strongly in X. Assumption [III(b)] gives

φ(u∗, Tu∗) ≤ lim
n→∞

φ(un, Tun) whenever un → u∗.

This inturn implies that

m = inf φ(u, Tu) ≥ φ(u∗, Tu∗)

That is, m = φ(u∗, Tu∗) and (u∗, x∗) is the desired optimal pair, where x∗ = Tu∗.

When the system operator T is weakly continuous we have the following result,

the proof of which follows by using Lemma 4.2.

Assumptions [IV]

(a) : The operators K, N and H satisfy either Assumptions [C] or Assumptions [D].

(b) : φ : Z×T (Z) → R+ is lower semicontinuous with respect to the weak topologies

in Z and T (Z) and further ‖u‖ → ∞ implies φ(u, Tu) → +∞, u ∈ Z.

Theorem 4.4. Under Assumptions [IV] the nonlinear system (2.1) has an optimal

pair (u∗, x∗).

Let the explicit representation for the cost functional be given by

φ(u, x) = 〈u, Ru〉 + 〈x, Wx〉(4.1)

where R : Z → Z∗ is a bounded linear symmetric, strictly monotone and coercive

operator and W : X → X∗ is a bounded linear symmetric monotone operator.

As a corollary of the above Theorem 4.4 we have the following result.

Corollary 4.1. If the system operator is weakly continuous then the system (2.1)

with respect to the cost functional (4.1) has a unique optimal pair (u∗, x∗).
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Proof. Set φ1(u) = 〈u, Ru〉 and φ2(x) = 〈x, Wx〉. So φ(u, x) can be written as

φ(u, x) = φ1(u) + φ2(x)

We first observe that φ1 and φ2 are differentiable functionals with gradients 2R and

2W , respectively. Also, R and W are monotone operators by assumption and hence

by Theorem 6.1 and Theorem 8.4 of Vainberg [18] it follows that φ1 and φ2 are

weakly lower semicontinuous convex functionals. Moreover, the strict monotonicity

of R implies that φ1 is strictly convex and so is φ.

Further, since R is coercive, that is 〈u,Ru〉
‖u‖

→ ∞ as ‖u| → ∞, we have that

Φ(u, Tu) → ∞ as ‖u‖ → ∞.

Thus Φ : Z×T (Z) → R+ is lower semicontinuous in the weak topologies of Z and

T (Z) and is coercive. Now applying Theorem 4.4 it follows immediately that there

exists an optimal pair (u∗, x∗) for the system (1.1) with respect to the cost functional

(4.1). The uniqueness of (u∗, x∗) follows from the fact that the cost functional is

strictly convex in Z.

5. OPTIMALITY SYSTEM FOR THE ABSTRACT PROBLEM

In this section we investigate Problem 2.2. We assume that the state space X

and the control space Z are real Hilbert spaces. Also throughout this section the cost

functional under consideration is of the form (4.1). That is, J(u) = Φ(u, x) is of the

form

(5.1) J(u) = 〈u, Ru〉 + 〈x, Wx〉

where, R and W satify the earlier assumptions of Section 4. Note that in view of

monotonicity and coercivity assumptions on R, R is invertible as a bounded linear

operator ( refer Joshi and Bose [12] ). This fact will be used in the subsequent

analysis.

Recall that the system operator T is of the form

Tu = [I − KN ]−1Hu, u ∈ Z(5.2)

The following lemma gives the existence of the derivative of the system operator T

under certain conditions on K, N and H .

Assumptions [V]

(a) : K, N and H are Frechet differentiable with K ′(x) = K, N ′(x) = G(x) for all

x ∈ X and H ′(u) = H for all u ∈ Z.

(b) : [I − KG(x)]−1 exists as a bounded linear operator for all x = Tu, u ∈ Z.
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Lemma 5.1. Under Assumptions [V], the system operator T is Frechet differentiable

with derivative given by

T ′(u) = [I − KG(x)]−1H, u ∈ Z and x = Tu

Lemma 5.2. Suppose that the system operator T is Frechet differentiable then the

cost functional J given by (5.1) is Frechet differentiable with derivative J ′(u) given by

1

2
J ′(u) = 〈T ′(u)h, WTu〉 + 〈h, Ru〉, u ∈ Z

Proof. We have J(u) = 〈u, Ru〉 + 〈x, Wx〉

As R and W are bounded symmetric linear operators we get

J(u + h) − J(u) − 2〈T ′(u)h, WTu〉 − 2〈h, Ru〉

= 〈T (u + h), WT (u + h)〉 − 〈Tu, WTu〉 + 〈u + h, R(u + h)〉

− 2〈h, Ru〉 − 〈u, Ru〉 − 2〈T ′(u)h, WTu〉

= 2〈T (u + h) − Tu − T ′(u)h, WTu〉

+ 〈T (u + h) − Tu, W (T (u + h) − T (u))〉 + 〈h, Rh〉

This implies that

‖J(u + h) − J(u) − 2〈T ′(u)h, WTu〉 − 2〈h, Ru〉‖

‖h‖

≤
2‖WTu‖‖T (u + h) − T (u + h) − T (u) − T ′(u)h‖

‖h‖

+
‖w‖‖T (u + h) − T (u)‖2

‖h‖
+ ‖R‖‖h‖(5.3)

In view of Frechet differentiability of T , the first term on the RHS of (5.3) goes to

zero as ‖h‖ → 0. Also Frechet differentiability of T implies that T is locally Lipschitz

(refer Joshi and Bose [12]) and hence the second term also goes to zero as ‖h‖ → 0.

This proves that RHS of (5.3) goes to zero and hence LHS goes to zero as ‖h‖ → 0.

This gives
1

2
J ′(u)h = 〈T (u)h, WTu〉 + 〈h, Ru〉, u ∈ Z.

The following theorem gives optimality system for (2.1). Here the superscript ‘*’

corresponding to a given operator denotes its adjoint.

Theorem 5.1. Under Assumptions [V] the ‘optimality system’ for (2.1) is given by

x∗ = KNx∗ + Hu∗

u∗ = −R−1H∗[I − KG(x∗)]∗−1Wx∗
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Proof. Existence and uniqueness of the optimal pair (u∗, x∗) is proved in Corollary 5.1.

If u∗ is an optimal control then it is necessary that J ′(u∗) = 0. Using Lemma 5.2, we

get

〈h, Ru∗〉 + 〈T ′(u∗)h, Wx∗〉 = 0 for all h ∈ Z where x∗ = Tu∗.

Taking adjoint of the derivative of the system operator, denoted by [T ′(u∗)]∗, we get

〈h, Ru∗〉 + 〈h, [T ′(u∗)]∗Wx∗〉 = 0 for all h ∈ Z.

This implies that

Ru∗ = [T ′(u∗)]∗Wx∗

which gives

u∗ = −R−1([I − KG(x∗)]−1H)∗Wx∗

That is,

u∗ = −R−1H∗[I − KG(x∗)]∗−1Wx∗

where x∗ satisfies

x∗ = KNx∗ + Hu∗

Thus the optimal pair (u∗, x∗) satisfies the coupled operator equations

x∗ = KNx∗ + Hu∗

u∗ = −R−1H∗[I − KG(x∗)]∗−1Wx∗

As special cases of this result we shall derive optimality system for parabolic equations

involving linear and nonlinear operators in Section 6.

Corollary 5.1. Suppose that X = Z is a real Hilbert space. Assume that R = I = W

and H = K in the above Theorem 5.1. Then the unique optimal pair (u∗, x∗) satisfies

the following optimality system

x∗ = KNx∗ + Ku∗

u∗ = K∗G∗(x∗)u∗ − K∗x∗

Proof. By Theorem 5.1, the optimal pair (u∗, x∗) satisfies the following optimality

system

x∗ = KNx∗ + Ku∗

u∗ = −K∗[I − KG(x∗)]∗−1x∗

That is, u∗ = −K∗[I − G∗(x∗)K∗]−1x∗. Therefore,

[I − K∗G∗(x∗)]u∗ = −[I − K∗G∗(x∗)]K∗[I − G∗(x∗)K∗]−1x∗

= −K∗[I − G∗(x∗)K∗][I − G∗(x∗)K∗]−1x∗

This implies

−K∗x∗ = u∗ − K∗G∗(x∗)u∗
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u∗ = K∗G∗(x∗)u∗ − K∗x∗

and hence the proof.

Corollary 5.2. For the linear system, that is, when N = 0, the optimality system is

given by

x∗ = Hu∗

u∗ = −R−1H∗Wx∗

6. OPTIMALITY RESULTS FOR SYSTEMS GOVERNED BY

DIFFERENTIAL EQUATIONS

We now derive sufficient conditions for the existence of optimal control for the

class of nonlinear differential equation (1.1) defined in Section I. For that we make

the following assumptions on the system components.

Assumptions [VI]

(a) : There exists a positive constant µ such that

〈−A(t)x, x〉 ≥ µ‖x‖2 for all x ∈ D, t ∈ [t0, t1]

(b) : The nonlinear function F : [t0, t1] × Y → Y satisfies a growth condition of the

form

‖F (t, x)‖ ≤ a(t) + b‖x‖ ∀t ∈ [t0, t1], ∀x ∈ Y

where a ∈ L2[t0, t1], b > 0. Further F is negative monotone, that is, 〈F (t, x) −

F (t, y), x− y〉 ≤ 0 for all x, y ∈ Y , t ∈ [t0, t1]

(c) : For all t > s, Φ(t, s) is a compact evolution operator and B(t) is a bounded

linear operator for all t ∈ [t0, t1].

Lemma 6.1. Under Assumptions [VI], the system operator T corresponding to the

system (1.1) is completely continuous.

Proof. Using the definition of the operators K, N and H (see (1.3) ) it follows from

infinite version of Joshi and George [13] that K is a bounded linear compact operator.

Further, for x ∈ X1, defining f(t) =
∫ t

t0
Φ(t, τ)x(τ)dτ we can write

〈Kx, x〉X1
=

∫ t1

t0

〈f(t), x(t)〉Y dt

Clearly

f ′(t) =

∫ t

t0

A(t)Φ(t, τ)x(τ)dτ + x(t)

By virtue of Assumption (a0) it follows that f(t) ∈ D and hence

f ′(t) = A(t)

∫ t

t0

Φ(t, τ)x(τ)dτ + x(t) (refer Curtain [7]).
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Therefore

〈Kx, x〉X1
=

∫ t1

t0

〈f(t), f ′(t) − A(t)f(t)〉dt

=

∫ t1

t0

〈f(t),−A(t)f(t)〉dt +

∫ t1

t0

〈f(t), f ′(t)〉dt

Since the second term on RHS is 1
2

∫ t1

t0

d
dt
‖f(t)‖2dt, we have

〈Kx, x〉 ≥

∫ t1

t0

〈f(t),−A(t)f(t)〉dt

Now Assumption [VI(a)] implies that

〈Kx, x〉 ≥ µ

∫ t1

t0

‖f(t)‖2dt = µ

∫ t1

t0

‖(Kx)(t)‖2dt

≥ µ‖Kx‖2 for all x ∈ X∗

Also, H is a completely continuous operator and -N is monotone. By Lemma 4.1 it

follows that the system operator T is completely continuous.

Remark 6.1. Suppose that the Assumption [VI(c)] in the above theorem is replaced

by

(c’) : B(t) is a compact bounded linear operator from U to Y for all t ∈ [t0, t1]. Then

it can be shown by using Lemma 4.2 that the system operator T is weakly continuous.

Remark 6.2. By virtue of Lemma 4.1 and 4.2 we can give different sets of verifiable

assumptions on A(t), B(t) and F (t, x(t)) which will guarantee the complete and weak

continuity of T . For example, if A(t) is a closed linear operator and generator of an

almost strong evolution operator, B(t) is a bounded linear operator and F (t, x(t)) is

Lipschitz then the weak continuity of T can be verified by using Remark 4.2.

We first consider the constrained case. Assume that Uad is a weakly compact

subset of U .

Assumption [VII]

(a) : g : [t0, t1] × Uad × Y → R̄+ is approximately lower semi continuous.

(b) : For every t ∈ [t0, t1], (u, x) → g(t, u, x) is lower semi continuous with respect

to the weak topology in Uad and strong topology in Y .

(c) : For all (t, x) ∈ [t0, t1] × Y , u → g(t, u, x) is convex.

An easy application of Lemma 6.1 and Theorem 3.1 gives us the following result

regarding the existence of an optimal pair for the system (1.11).

Theorem 6.1. Under Assumptions [VI] and [VII] there exists an optimal pair (u∗, x∗) ∈

Uad × X for the nonlinear evolution equation (1.1).
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Proof. Define S = {w ∈ L2([t0, t1], U) : w(t) ∈ Uad a.e.} Since Uad is weakly compact

we have that S is also weakly compact in L2([t0, t1], U).

Let {un} be a sequence with weak limit u∗ in S then by Lemma 6.1 the corre-

sponding response {xn} converges strongly to x∗ where x∗ is the response of u∗ . That

is, xn(t) → x∗(t) in Y whenever un(t) ⇀ u∗(t) in Uad. Following Papageorgiou [14],

the Assumptions [VII] implies that

lim
n→∞

∫ t1

t0

g(t, un(t), xn(t))dt ≥

∫ t1

t0

g(t, u∗(t), x∗(t))dt

whenever un ⇀ u∗. That is, limn→∞ J(un) ≥ J(u∗) proving the weak lower semi

continuity of J on the weakly compact set S. Now by Theorem 3.1, there exists an

optimal pair (u∗, x∗) for the system (1.1).

For unconstrained problem, we take g(t, u, x) to be of special form

g(t, u, x) = 〈u(t), R0u(t)〉 + 〈x(t), W0x(t)

Then the cost functional J(u) assumes the form

(6.1) J(u) = Φ(u, x) =

∫ t1

t0

〈u(s), R0(s)〉 + 〈x(s), W0 x(s)〉ds

where W0 : Y → Y , R0 : U → U are bounded linear operators and Y, U are real

Hilbert spaces.

Assumptions [VIII]

(a) : The operators A, B and F satisfy Assumptions [VI].

(b) : W0 is a bounded linear symmetric monotone operator and R0 is a bounded

linear symmetric strongly monotone operator, that is, there exists a constant

a > 0 such that

〈u, R0u〉 ≥ a‖u‖2 for all u ∈ U.

Theorem 6.2. Under Assumptions [VIII] the system (1.1) has a unique optimal pair

(u∗, x∗) with respect to the cost functional (6.1).

Proof. Define W : L2([t0, t1], Y ) → L2([t0, t1], Y ) and R : L2([t0, t1], U) → L2([t0, t1], U)

by (Wx)(t) = W0x(t) and (Ru)(t) = R0u(t). It follows easily that R and W are both

bounded linear operators (refer Joshi and Bose [12]). Further,

〈x, Wx〉 =

∫ t1

t0

〈x(s), W0x(s)〉ds

〈u, Ru〉 =

∫ t1

t0

〈u(s), R0u(s)〉ds

Thus (6.1) can be written as

J(u) = 〈u, Ru〉Z + 〈x, Wx〉X
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It is easy to verify that R is a strongly monotone symmetric operator and W is

linear, monotone and symmetric. Now the theorem follows by using Theorem 4.4 and

Corollary 4.1.

Remark 6.3. If we assume that the nonlinear function F (t, x) is continuously Frechet

differentiable with respect to x for almost all t ∈ [t0, t1] with G(t, x) = ∂
∂x

F (t, x) then

it follows that the operator N , as defined by (6.4)(iii) in the space X = L2([t0, t1], Y ),

is continuously Frechet differentiable (refer [12]) with [N(x)]u = Gu where G : X →

X is defined by (Gu)(t) = [G(t, x(t))].

As a particular case to this we have the following theorem regarding the optimality

system for (1.1). We note that the system (1.1) is of the same type as considered

by Seidman and Zhou [16]. However, we impose monotonicity assumptions on F in

contrast to Lipschitz assumptions imposed by Seidman and Zhou [16]. Also we observe

that we do not require Lipschitz continuity on the Frechet derivative of F ,whereas

Seidman and Zhou require so. Moreover our system (1.1) is non-autonomous.

Theorem 6.3. Suppose that Y = U is a Hilbert space and B = R0 = W0 = I and the

operators A and F satisfy Assumptions [VIII(a)]. Further, assume that the nonlinear

function F (t, x) is continuously Frechet differentiable with respect to x for almost all

t ∈ [t0, t1] with G(t, x) = ∂
∂x

F (t, x).

Suppose that
∫ t1

t0
‖G(t, x(t))‖2dt < ∞ for all x ∈ Y . Then the optimality system

for (1.1) with cost functional (6.1) is given by

ẋ∗ = A(t)x∗(t) + F (t, x∗(t)) + u∗(t)

u̇∗ = A∗(t)u∗(t) + G∗(t, x∗(t))u∗(t) − x∗(t)

x∗(t0) = x0, u∗(t1) = 0

Proof. The existence of an optimal pair (u∗(t), x∗(t)) follows from Theorem 6.2. Using

the definitions of the operators K, N and H and Remark 6.3 it follows that K ′(x) = K,

N ′(x) = G(x) and H ′(u) = K for all x, u ∈ X. For v ∈ X, consider the operator

equation

u = KG(x)u + v

for a fixed x ∈ X. Now using the definition of operators we can write it as

u(t) =

∫ t

t0

Φ(t, s)G(s, x(s))u(s)ds + v(t)(6.2)

Since ‖Φ(t, s)‖ ≤ M and
∫ t1

t0
‖G(s, x(s))‖2ds < ∞, we have

∫ t1

t0

∫ t1

t0

‖Φ(t, s)G(s, x(s))‖2ds dt < ∞.
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Hence, for each fixed x and v, (6.2) is a linear Voltera integral equation with L2 kernel.

Thus for each v ∈ X, (6.2) has a unique solution in X. That is [I −KG(x)]−1 exists

and is linear. Moreover this inverse is bounded. Hence by Theorem 5.1 it follows that

the optimal pair (u∗(t), x∗(t)) satisfies the equations:

x∗(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, τ)F (τ, x∗(τ))dτ +

∫ t

t0

Φ(t, τ)u∗(τ)dτ

u∗(t) =

∫ t1

t

Φ(τ, t)G∗(τ, x∗(τ))u∗(τ)dτ −

∫ t1

t

Φ∗(τ, t)x∗(τ)dτ

where Φ(t, τ) and Φ∗(τ, t) are the evolution operators generated by A(t) and A∗(t),

respectively. Differentiating with respect to t we get

ẋ∗(t) = A(t)x∗(t) + F (t, x∗(t)) + u∗(t)

u̇∗(t) = A∗(t)u∗(t) + G∗(t, x∗(t))u∗(t) − x∗(t)

x∗(t0) = x0, u∗(t1) = 0

If F = 0, using Remark 6.1 we get the following result due to Datko [Theorem 1., 8]

for the autonomous linear system

ẋ(t) = Ax(t) + Bu(t), x(t0) = x0.(6.3)

Corollary 6.1. Suppose that A is a closed linear operator which generates a strongly

continuous semigroup Φ(t) and B is a bounded linear operator. Suppose that W0 and

R0 satisfy Assumptions [VIII(b)]. Then the optimality system for (6.3) is given by

x∗(t) = Φ(t − t0)x0 +

∫ t

t0

Φ(t − τ)Bu∗(τ)dτ

u∗(t) = −R−1B∗

∫ t1

t0

Φ∗(τ − t)Wx∗(τ)dτ

We now consider a particular case of the system (1.1) and show that the canonical

(Hamiltonian) system in the Minimum Principle of Pontriagin (refer Athans and Falb

[1]) can be deduced from the optimality system derived in Theorem 5.1.

Let Y and U be Hilbert spaces and A, B and F given in (1.1) be time indepedent.

Let the cost functional be as in (6.1). Assume that F (x(t)) is continuously Frechet

differentiable with
∂

∂x
F (x(t)) = G(x(t)) and Φ(t, s) = eA(t−s) is the semi-group gen-

erated by A. Using the definitions (1.3), we have H = BK. Let p(t) denotes the

costate of the system. Now the Hamiltonian H(x, p, u) of the system is given by (refer

Athans and Falb [1])

H(x, p, u) =
1

2
〈x, W0x〉 +

1

2
〈u, R0u〉 + 〈Ax + F (x), p〉 + 〈Bu, p〉
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Suppose that the Assumptions [VIII] are satisfied. Using Theorem 5.1 , the optimality

system for the given system can be written as

x∗ = KNx∗ + KBu∗

u∗ = −R−1B∗p∗(6.4)

where

p∗ = K∗[I − KG(x∗)]∗−1Wx∗

where (Wx)(t) = W0x(t) and (Ru)(t) = R0u(t). From (6.4) we see that the costate

p∗(t) satisfies

p∗(t) = K∗G∗(x∗)p + K∗Wx∗

Thus the optimal pair (u∗(t), x∗(t)) satisfy

x∗(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−s)F (x∗(s))ds +

∫ t

t0

eA(t−s)Bu∗(s)ds

u∗(t) = −R−1B∗p∗

p∗(t) =

∫ t1

t

eA∗(s−t)G∗(x∗(s))p∗(s)ds +

∫ t1

t

eA∗(s−t)W0x
∗(s)ds

Differentiating w.r.t. t, the state and costate satisfy

(6.5) ẋ∗(t) = Ax∗(t) + Bu∗(t) + F (x∗(t)) ≡ −
∂

∂p
H(x∗(t), p∗(t), u∗(t))

ṗ∗(t) = −A∗p∗(t) − G∗(x∗(t))p∗(t) − W0x
∗(t) ≡ −

∂

∂x
H(x∗(t), p∗(t), u∗(t))

x∗(t0) = x0, p∗(t1) = 0

The pair of equations (6.5) is the canonical system (satisfied by the optimal pair) in

the Minimum Principle of Pontriagin. It is also possible derive the optimality system

if the canonical system satisfied by the optimal pair is known.

In the following we show how the optimality system is related to the Riccati

equations.

Let the state x∗(t) and the costate p∗(t) be related by

(6.6) p∗(t) = R(t)x∗(t)

where {R(t), t ∈ [t0, t1]} is a family of nonlinear operators on Y . Now from (6.4), the

optimal control has a feed-back representation

u∗(t) = −R−1B∗R(t)x∗(t) for all t ∈ [t0, t1](6.7)

Differentiating (6.6) w.r.t t and equating with p∗(t) in (6.5), we obtain the following

Riccati type nonlinear equation.

Rt(t)x
∗(t) + Rx ∗ (t, x∗)(Ax∗(t) + F (x∗(t)) − BR−1B∗R(t)x∗(t))

+A∗R(t)x∗(t) + G∗(x∗(t))R(t)x∗(t) + W0x
∗(t) = 0, R(t1)x∗ = 0(6.8)
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where Rt and Rx are the partial derivatives of R w.r.t. t and x, respectively. Using the

classical variational principle, Barbu and Prato obtained equation of the form (6.8)

in [3]. They have given some conditions for the existence and uniqueness of solutions

of such equations. We observe that R(t)x(t) = K∗[I − KG(x(t))]∗−1W0x(t) satisfies

the above equation. If the solution of (6.8) is known then the optimal control can be

calculated from (6.7),that is the optimal control is same as in the optimality system

(6.4).

If F ≡ 0 (i.e., when the system is linear), the above equation (6.8) reduces to the

classical Riccati equation

R(t) + R(t)A + A∗R(t) − R(t)BR−1B∗R(t) + W0 = 0,

R(t1) = 0, where R(t) is a linear operator on Y .

To illustrate the applicability of our results for the existence of optimal pair,

we consider an example of a control system described by a nonlinear distributed

parameter system, where the operator A has a specific representation.

Example 6.1. Let I = [0 b] and W be a bounded open set in R
n with smooth

boundary ∂W = Γ.

Consider the following distributed parameter system

∂

∂t
x(t, z) =

n
∑

k=1

∂

∂zk

(

p(t, z)
∂

∂zk

x(t, z)

)

+ Bu(t, z) + f(t, z, x(t, z))

x(t, z) = 0 on I × Γ, x(0, z) = x0(z) for z ∈ W(6.9)

where p : I × W → R+ is such that it 1s Lipschitz w.r.t. the t variable, C1-in the z

variable and t → ‖p(t, ·)‖∞ ∈ L∞
+ . B belongs to  L(L2

m(I × W ), H−1(W )). Assume

that f : I×W̄ ×R → R is a nonlinear function such that it is measurable in (t, z) and

continuous in x and |f(t, z, x)| ≤ α0(t, z) + b(z)|x| a.e. where α0(·, ·) ∈ L2(I, W ) and

b ∈ L∞(W ). Let f(t, z, x) be monotone decreasing with respect to x for all z ∈ W

and t ∈ I.

The cost functional to be minimized is given by

J(u) =

∫ b

0

∫

W

|x(t, z)|2dz dt +

∫ b

0

∫

W

〈R(t, z)u(t, z), u(t, z)〉dz dt

Assume that R : I × W → R
m×m belongs in L∞

m×m and R(t, z) is strongly monotone

with respect to z.

Let the set of all admissible controls be a closed and bounded subset Uad of

L2
m(I ×W ). Clearly Uad is a weakly compact set. Let Y = H1

0 (W ), Y ∗ = H−1(W ) =

(H1
0 (W ))∗. Note that the embeddings H1

0 (W ) ⊂ L2(W ) ⊂ H−1(W ) are all continuous
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and dense. For each t ∈ I, define A(t) from Y to Y ∗ by 〈A(t)x, v〉 = a(t, x, v) for all

x, v ∈ Y , where a(t, x, v) is given by

a(t, x, v) =
n

∑

k=1

∈W p(t, z)
∂x

∂zk

∂v

∂zk

dz

The assumptions on p(·, ·) imply that ‖A(t)x−A(s)x‖ ≤ k|t−s| ‖x‖ for some constant

k > 0. By Poincare’s inequality we have

〈A(t)x, x〉 =

∫

W

n
∑

k=1

p(t, z)|
∂x

∂zk

2

dz ≥ µ‖x‖2 for all x ∈ Y, µ > 0

For x ∈ Y , ‖A(t)x‖ = sup{〈A(t)x, v〉 : ‖v‖ ≤ 1} ≤ ‖p(t)‖ ‖x‖ (by Cauchy and

Poincare’s inequalities). Define F : I ×L2(W ) → L2(W ) by F (t, x)(z) = f(t, z, x(z))

and R(t) ∈ L(L2
m(W )) by (R(t)u)(·) = R(t, ·)u(·). Now denoting x(t) = x(t, ·) ∈

H1
0 (W ) ⊆ L2(W ) and u(t) = u(t, ·) ∈ L2

m(W ), our system (6.9) and cost functional

J take the form

ẋ(t) = A(t)x(t) + Bu(t) + F (t, x(t)); x(0) = x0, u(t) ∈ Uada.e

J(u) =

∫ b

0

‖x(t)‖2
L2(W )dt +

∫ b

0

〈R(t)u(t), u(t)〉L2(W )dt

Clearly, this is in the form of (6.3). Using Proposition 6.5.1 of Tanabe [17],

it follows that the linear system satisfies assumption (a0). Further the family of

linear operators {A(t) : t ∈ I} generates a compact evolution operator Φ(t, s) for

t > s. Thus the operators A(t) and F (t, x) satisfy Assumptions [VI] and conditions

of Theorem 6.2, and hence there exists a unique optimal pair (u∗, x∗) for the given

distributed parameter system (6.9).
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