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ABSTRACT. The focus of this paper is the formulation of a new logistic growth model. The model
has possible applications in epidemiology, psychology, and many other scientific areas. The model is
first derived. Then, the model is described analytically, with special attention paid to computations
relevant to mechanical application. Lastly, the model is applied to a set of epidemiological data in
a real-world example using nonlinear least squares parameter estimation methods in R.
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1. INTRODUCTION

A number of epidemiological models exist that were derived with the intended

goal of describing disease spread, evolution, and control (Waltman, 1974; A. G. Ladde

and G. S. Ladde, 2012, 2013). The current model is of the SI-type, where individuals

are classified as either being susceptible to infection or currently infected. It is assumed

that the population is well-mixed and is confined to a limited territory – as to not

have to account for differences in geography.

More generally, models of the current kind are know as logistic growth mod-

els (Bates and Watts, 1988). Logistic growth models are non-decreasing sigmoidal

functions that can be used to model the growth of an object or entity over time or

some other variable of interest. Functions of this kind have been used in a number

of scientific settings to model a plethora of different phenomena (A. G. Ladde and

G. S. Ladde, 2012, 2013). An early example of the use of a logistic growth model

comes from the field of ecology, where Pierre Verhulst (1838) used the curve to model

population growth.
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2. MODEL CHARACTERISTICS

2.1. Model Formulation. Let us consider the following scalar hereditary nonlinear

differential equation under probabilistic and stochastic process varying coefficients:

(2.1.1) dI = π(ξ(t))(S∗ − I)(a+ bI + c

∫ 0

−τ
I(t+ s)dη(s))dt, It0 = φ0, for t ≥ t0

where S∗ and I respresent the sizes of ultimate susceptible and infective agent/node

/species of a dynamic process with past history, respectively; φ0 ∈ C[[−τ, 0], R];

It(s) = I(t+ s), s ∈ [−τ, 0]. obviously, the integral in (2.1.1) is the Riemann-Stieltjes

integral with respect to η, a delay distribution (incubation process) with a finite

incubation period, τ > 0; ξ(t) is a right-continuous stochastic process; N(t) is a non-

homogeneous Poisson process; ξ(t) and N(t) are defined on the complete probability

space (Ω,F , P ); π(t) is an intensity rate for the non-homogeneous Poisson process

N(t); aπ(ξ(t), k(t))∆t, bπ(ξ(t), k(t))∆t, and cπ(ξ(t), k(t))∆t are probabilistic rates

exerted by external, internal, and hereditary influences, respectively, to a change of

infective state size (dI) over a time interval of length ∆t ≈ dt. Moreover, it is well-

known that the probability distribution of a non-homogeneous Poisson process also

characterizes the response/adaptation time delay (Baker, Scarf, and Wang, 1997);

ξ(t) characterizes a single node level dynamic structural perterbation; a, b, and c are

positive constants exhibiting the existence of external, internal, and hereditary dy-

namic influences of a single node process, respectively. This model can be modified to

accomodate other natural time delay processes (communication, contact, preparation,

transportation, etc.).

By setting x = I
S∗

and xt0 =
It0
S∗

, the original dynamic model (2.1.1) is equivalent

the following state-normalized form of the differential equation:

(2.1.2) dx = π(ξ(t))(1− x)(a+ bS∗ + cS∗
∫ 0

−τ
x(t+ s)dη(s))dt, xt0 = ϕ0

It is a well-known fact that the complete set of closed-form solutions to the

scalar linear delay differential equation: dy = by(t − τ), for τ > 0, is not feasible.

Obviously, its characteristic equation: µ = be−τµ has infinitely many roots (real and

complex). This forces one to utilize either analytic or numerical approaches to obtain

information about solutions. We also note that (2.1.2) has a unique non-negative

solution (Ladde, 1981), whenever φ0(s) ≥ 0, on [−τ, 0]. Moreover, from the nature of

the rate functional in (2.1.2), we conclude that the solution of (2.1.2) is non-decreasing

and hence, we obtain the following inequality:

(2.1.3)


0 ≤ π(ξ(t))(1− x)(a+ bS∗x+ cS∗

∫ 0

−τ x(t+ s)dη(s))

≤ π(ξ(t))(1− x)(a+ (b+ τc)S∗x)

|xt0(s)|0 = max(x(t0 + s)) ≤ x(t0), a.s.
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Using (2.1.3), theory of differential inequalities, and the well-known comparison

therem in the context of Lyapunov-like functions (V (x) = x) with a minimal class

of functions for functional differential equations (Ladde, 1976; Lakshmikantham and

Leela, 1969), we obtain an estimate on the solution of (2.1.1) by using the following

scalar nonlinear ordinary comparison differential equation with stochastic process

varying coefficients:

(2.1.4) du = π(ξ(t))(1− u)(a+ (b+ τc)S∗u)dt, u(t0) = x(t0) = r0

The closed-form maximal solution process r(t, t0, u0) (due to uniqueness; Laksh-

mikantham and Leela, 1969) of ordinary comparison differential equation with sto-

chastic process varying coefficients (2.1.4) is given by:

(2.1.5) r(t) ≡ r(t, t0, r0) =
γ0 exp[

∫ t
t0
β(s)ds]− α

1 + γ0 exp[
∫ t
t0
β(s)ds]

, for t ≥ t0

where α = a
(b+τc)S∗

, β(t) = [a+(b+τc)S∗]π(ξ(t)), r0 = I0
S∗

, γ0 = r0+α
1−r0 , and 0 ≤ r0 < 1.

Thus, the maximal solution of comparison differential equation (2.1.4) is an upper

estimate for the solution process of (2.1.2); that is:

(2.1.6) x(t, t0, x0) ≤ r(t, t0, r0), for t ≥ t0 a.s.

which implies that:

(2.1.7) I(t, t0, x0) ≤ S∗r(t, t0, r0), for t ≥ t0 a.s.

where:

(2.1.8) S∗r(t, t0, r0) = S∗
γ0 exp[

∫ t
t0
β(s)ds]− α

1 + γ0 exp[
∫ t
t0
β(s)ds]

, for t ≥ t0

Remark 2.1.1: If a = c = 0, b = β
S∗

, π(ξ(t)) = γλ(λt)γ−1, then α = 0, γ0 = r0
1−r0 ,

and (2.1.5) reduces to:

(2.1.9) r(t) ≡ r(t, t0, r0) =
r0

1−r0 exp[β[(λt)γ − (λt0)
γ]]

1 + r0
1−r0 exp[β[(λt)γ − (λt0)γ]]

, for t ≥ t0

which is equal to:

(2.1.10) r(t) ≡ r(t, t0, r0) =
1

1 + 1−r0
r0

exp[−β[(λt)γ − (λt0)γ]]
, for t ≥ t0

In this case, (2.1.7) and (2.1.8) combine to become:

(2.1.11) I(t, t0, x0) ≤ S∗r(t, t0, r0) =
S∗

1 + 1−r0
r0

exp[−β[(λt)γ − (λt0)γ]]
, for t ≥ t0

Remark 2.1.2: As noted before, the closed-form solution process of (2.1.2) is not

feasible. However, we do have its analytic estimate (2.1.7). Therefore, our approach
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of shedding light on the dynamic model (2.1.1) depends on the corresponding com-

parison dynamic model described in (2.1.4). This idea is used in the qualitative

study of nonlinear differential equations (Ladde and Lakshmikantham, 1980; Ladde

and Sambandham, 2004; Lakshmikantham and Leela, 1969). In addition, except

the incubation-period parameter, τ > 0, almost all parameters of the comparison

model (2.1.4) are the parameters of (2.1.1). We further note that the solution pro-

cess r(t, t0, r0) of (2.1.4) can be considered as a stochastic process varying dynamic

growth model. In the following, we demonstrate that r(t, t0, r0) includes the existing

dynamic growth models (Abraham and Ledolter, 2006; Myers, 1989) in a systematic

and unified way. In the following, we present a few more special cases of (2.1.4).

Moreover, in the absense of Internal Influence (b = c = 0), and if a = 1, r0 = 0,

t0 = 0, and π(t) = γλ(λt)γ−1, then the solution process of (2.1.4) is the well-known

Weibull distribution: (1 − exp[−(λt)γ]), and in the case where γ = 1, the Weibull

distribution becomes the exponential distribution: (1 − exp[−λt]) (Abraham and

Ledolter, 2006; Parzen, 1962; Ross, 1972).

The underlying state r(t) is application dependent and interpretation ranging

from cumulative amount of information to resource allocation of distribution over an

interval of time [0, t]. These special cases also provide tools to investigate the dynamic

(Ladde and Siljak, 1983) and statistical reliability (Ascher and Feingold, 1984).

2.2. The Model. In this paper, we initiate our long-range plan for focusing the

study of (2.1.11), by utilizing the model below:

(2.2.1) Ĩ(t, t0, R0) ≡ S∗r(t, t0, R0) =
S∗

1 +R0 exp[−β[(λt)γ − (λt0)γ]]

where t represents time (or some other response variable); t0 is the initial time; r0

is the initial proportion of infected individuals (R0 = 1−r0
r0

); and β, γ, λ, and S∗ are

parameters. S∗ is known as the saturation point — the horizontal asymptote in the

range of Ĩ(t). The parameter vector is given by θ = (β, γ, λ, s∗)′ ∈ Θ = {θ ∈ <4 :

θ > 0}. Lastly, t is in the set of positive real numbers, such that t ≥ t0.

2.3. Model Limits. A number of limits are given below for the model (2.2.1). In

each section below, we assume that everything but the respective variable is fixed and

finite. Using the comparison theorem (Lakshmikantham and Leela, 1969), the limits

of the infective size of the population, Ĩ, are obtained as a function of time and the

parameters.

For t ∈ [0,∞):

(2.3.1) lim
t→0

Ĩ(t) = 0 and lim
t→∞

Ĩ(t) = S∗
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iFor β ∈ (0,∞):

(2.3.2) lim
β→0

Ĩ(t) =
S∗

1 +R0

= S∗r0 and lim
β→∞

Ĩ(t) = S∗

For γ ∈ (0,∞):

lim
γ→0

Ĩ(t) = S∗r0(2.3.3)

lim
γ→∞

Ĩ(t|λt, λt0 ∈ (0, 1]) = S∗r0(2.3.4)

lim
γ→∞

Ĩ(t|λt ∈ (1,∞), λt0 ∈ (0, 1]) = S∗(2.3.5)

lim
γ→∞

Ĩ(t|λt0 ∈ (1,∞)) = Does Not Exist(2.3.6)

For λ ∈ (0,∞):

(2.3.7) lim
λ→0

Ĩ(t) =
S∗

1 +R0

= S∗r0 and lim
λ→∞

Ĩ(t) = S∗

2.4. Model Derivatives. Letting u = β[(λt)γ − (λt0)
γ] and φ = R0 exp[−u]

(1+R0 exp[−u])2 , the

first partial derivatives of the model (2.2.1), with respect to the parameters, are given

by:

∂Ĩ

∂S∗
=

1− exp[−u]

(1 +R0 exp[−u])2
(2.4.1)

∂Ĩ

∂β
= S∗

1

β
uφ(2.4.2)

∂Ĩ

∂γ
= S∗β[ln(λt)(λt)γ − ln(λt0)(λt0)

γ]φ(2.4.3)

∂Ĩ

∂λ
= S∗

γ

λ
uφ(2.4.4)

We note that the partial derivatives above are all non-negative for t ≥ t0, which is

reflected in the graph of the model (2.2.1) in Figure 1 below.

2.5. Point of Inflection/Maximum Growth. While there is no closed-form ex-

pression for the point of inflection/maximum growth for the model (2.2.1), certain

inequalities can be derived. By setting ∂2Ĩ
∂t2

= 0, we have:

∂2Ĩ

∂t2
= S∗φ

[(
∂2u

∂t2

)
+

(
∂u

∂t

)2(
R0 exp[−u]− 1

R0 exp[−u] + 1

)]
= 0(2.5.1)

which implies that:

(2.5.2) S∗φβγλγtγ−2

[
(γ − 1) + βγλγtγ

(
R0 exp[−u]− 1

R0 exp[−u] + 1

)]
= 0
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which further implies that:

(2.5.3) (1− γ) = βγλγtγ
(
R0 exp[−u]− 1

R0 exp[−u] + 1

)
Therefore, if γ = 1, the point of inflection becomes:

(2.5.4) tI =

(
ln(R0)

βλ
+ t0

)
=

(
ln(R0)

βλγ
+ tγ0

)1/γ

= Ĩ−1

(
S∗

2

)
and given that βγλγtγ and (R0 exp[−u] + 1) are always positive, we have:

(2.5.5)

tI <
(
ln(R0)
βλγ

+ tγ0

)1/γ

= Ĩ−1
(
S∗

2

)
, for γ < 1

tI >
(
ln(R0)
βλγ

+ tγ0

)1/γ

= Ĩ−1
(
S∗

2

)
, for γ > 1

The model (2.2.1) is graphed below for various parameter values.
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Figure 1. Model Plot for Various Parameter Values

In the figure above, t0 = 1, r0 = 0.10, and S∗ = 100. One will note from Figure 1

that increases in β, γ, or λ correspond to an increase in the speed with which growth

reaches the saturation point S∗.



AN EPIDEMIOLOGICAL GROWTH MODEL 549

3. MODEL APPLICATION

The model (2.2.1) was fit to data on HIV prevalence (available at

http://data.worldbank.org/indicator/SH.DYN.AIDS.ZS). The “Small State” (SST; a

collection of countries with a population below 1.5 million each) location classification

was used, mainly for its standard sigmoidal curve appearance when plotted (see Figure

2). First, starting estimates for the parameters were obtained. Next, the model (2.2.1)

was fitted using the nls (“Nonlinear Least Squares”; R Core Team, 2013) function in

R. The response variable was HIV prevalence (as a % of the population ages 15-49),

and the explanatory variable was time (ranging from 1990 to 2011).

3.1. The Data.

Table 1. Percentage of Infected Individuals for the Small States
(1990-2011)

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Infected (%) 1.23 1.65 2.19 2.87 3.72 4.63 5.53 6.32 6.92 7.37 7.69

Year 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Infected (%) 7.86 7.93 7.92 7.87 7.79 7.70 7.62 7.60 7.56 7.56 7.56
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Figure 2. Percentage of Infected Individuals for the Small States by Year
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3.2. Starting Parameter Estimates. Good starting parameter estimates often fa-

cilitate convergence to the least-squares minimum when using iterative techniques for

nonlinear parameter estimation (G. A. F Seber and C. J. Wild, 1989). As S∗ is the

carrying capacity, a natural starting value for this parameter is the maximum infected

percentage, which is 7.93% found in 2002. As β and λ are not uniquely identifiable,

due to the structural nature of the model (2.2.1), the parameters are reparameterized

as η = βλγ. A starting value of 1 for is chosen for γ, as at γ = 1, the compari-

son model reduces to a standard logistic model with rate parameter η; this is done

mainly for computational ease. After starting estimates have been chosen for S∗ and

γ, we can transform the data to get a starting estimate for η using the linear least

squares method. Let yi = ln(R0/Ri), where Ri = (s∗0 − Ĩi)/Ĩi and R0 is defined as

above (r0 set to the minimum infected percentage value). Also, let xi = ti− t0 (since

γ0 = 1). When using s∗0 = max(Ĩi), one must omit the infinity created when Ri = 0

(Ĩi = max(Ĩi)). Using the transformations above, we can run a linear regression of

the form yi = 0+ηxi (i = {1, 2, . . . , n}), to obtain a starting estimate for η. Using the

data in Table 1, we get η0 = 0.3388106. The time variable is constructed by mapping

Year to the set of natural numbers. In other words, t = {1, 2, . . . , n}. Lastly, t0 is set

to t1 from the data.

3.3. The Gauss-Newton Algorithm. Once starting values are obtained for the

parameter vector, we can start the process of obtaining the nonlinear least squares

estimates. This can be done in R using the nls function, with the default algorithm

option – the Gauss-Newton.

The results of the Gauss-Newton Algorithm are provided below in Table 2. The

procedure converged in nine iterations, with a residual standard error of 0.1414 on 19

degrees of freedom. A plot containing the fitted model is provided in Figure 3.

Table 2. Parameter Estimation Results

Parameter Initial Values Estimates Standard Error t value Correlations

S∗ 7.928 7.74853 0.04429 174.969 1.00

η 0.339 0.17629 0.02848 6.189 0.32 1.00

γ 1.000 1.42423 0.07992 17.820 -0.37 -0.99 1.00

3.4. Parameter Identifiability. As stated above, the model (2.2.1) must be repa-

rameterized, as β and λ are not uniquely identifiable. Therefore, in the analysis above,

the parameter η = βλγ was utilized. Using the estimates obtained in the analysis

above, the relationship between β and λ is plotted below in Figure 4.
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Figure 3. Plot of the Model Fit
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4. CONCLUSION

In the absense of a closed-form solution to the presented mathematical model,

we utilized the comparison method and the idea of a minimal class of functions to

obtain an analytic estimate for the solution process of (2.1.1). The parameter esti-

mation problem of the original mathematical model was recasted into the parameter
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estimation problem of the comparison dynamic model. In the future, we propose to

explore the development of parameter estimation techniques for a more general class

of problems; the results of which will be published elsewhere.
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