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Abstract: In this paper, we propose a new method of order four, based on spline in
compression approximation for the numerical solution of non-linear two point boundary
value problems on a uniform mesh. The derivation and the convergence of the proposed
method are discussed in detail. The method is extended to non-uniform mesh. Numerical
results are given to illustrate the usefulness of the proposed method.

Keywords: Spline in compression; Non polynomial spline; Convergence analysis; Root
mean square errors; Variable mesh; Burgers’ equation.

AMS (MOS) Subject Classification: 65L10; 65L12

1. INTRODUCTION
Consider the non-linear two point boundary value problem
—u"+ f(x,u,u’) =0, O<x<1 (1)
subject to the boundary conditions
u0=A u@®=B (2)
where A and B are real constants. We assume that for 0 < x <1,—-co<u,u’ <.

(i) f (x,u,u’) is continuous,
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(i) i and o
ou ou’

exist and continuous,

of
(i) —>0 and ‘i <b for some positive constant b.
ou ou

These conditions assure us that the above boundary value problem has a
unique solution (Keller, 1992).

The possibilities of wusing spline functions for obtaining smooth
approximations of the solution of boundary value problems were first briefly
discussed by (Ahlberg et al, 1967). Following this, (Albasiny et al, 1969), (Fyfe,
1969) and (Al-said, 1999; 2001), (Chawla and Subramanian, 1987; 1988),
(Kadalbajoo et al, 1993), (Khan, 2004), (Kumar, 2007) have used cubic splines for
solving two-point boundary value problems. (Jain et al, 1981; 1983), (Kadalbajoo et al,
2001; 2002), have used lower order spline in compression approximation to obtain the
numerical solution of singularly perturbed two point boundary value problems on
uniform and non-uniform mesh.

In this paper we follow the approach given by (Jain et al, 1981; 1983; 1984) and
use the non-polynomial spline in compression approximation to develop a fourth order
method for the solution of nonlinear two point boundary value problems. The method
involves three evaluations of the function f. The resulting spline difference scheme is
fourth order accurate. We use the continuity of the first derivative of the spline function
and on applying the numerical method we obtain a tri-diagonal system of equations
which we solve using the CRAGE method (Evans, 1985; Mohanty et al, 2012). The
convergence analysis of the method is discussed in details. We have extended the method
to non-uniform mesh. In section 2 we discuss the spline in compression approximation.
In section 3, we discuss a new method based on spline in compression approximation on
uniform mesh. In section 4, we discuss the derivation of the proposed method. In section
5, we discuss the convergence analysis of the proposed method. In section 6, we have
extended our method to non-uniform mesh. In section 7, we discuss the numerical
illustrations and compare the numerical results obtained from the proposed methods with
the corresponding existing methods. Concluding remarks are given in section 8.

2. SPLINE IN COMPRESSION APPROXIMATION

Consider the uniform mesh on [0, 1] such that 0=x, <X, <...< Xy < Xy, =1.

Let h =x—x,>0, I=1())N+1be the mesh size in the x direction so that
h =1/(N+1). Therefore the grid points in the x-direction are given by
X =% +Ih, 1=11)N+1. Let u, and U, be the discrete approximation and the exact
value of the solution u(x) at the grid point x,, respectively.
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Let S(x) be the non-polynomial spline function which interpolates u(x) at
%, 1 =0)N +1, such that S(x) e C*[0,1] given by

S(X)=a +h(x—x)+c sinw(x—x)+d cosw(x—x), I=0QN+1 (3)
where a,,b;,c, and d, are constants and w is an arbitrary parameter.
Differentiating (3) we get:
S'(x) =k +cwecosw(x—x)—dwsinw(x—x), I=0QN+1 (4)
S"(x) = —cw’sinw(x—x ) —dw?cosw(x—x), 1=0Q)N+1 (5)
Substituting  S(x)=Uu,, S(X4) =U,.;, S"(X)=M,, S"(X.;) =M,,; in (3), we get

:U|+1_U|+M|+1_M| e _ (M, coswh—-M,,) d _—M

h wh wisinwh ' w2

M
a :U|+ng’b|

Using the continuity condition of the first derivative, that is, S'(x,—) =S'(x+), we obtain

Upg =20, +Upy M|_M|-1_|_M|_M|+1+(M|+1_M|COSWh)+(M|-1COSWh_M|)+M|—1

2 - 21,2 212 ; ; sinwh
h wh wh whsinwh whsinwh wh
=aM,,+2M,+aM, ,,1=12,..N (6)
where
a —L{W—h—l} f=—=_[1-whcotwh]
w?h?| sinwh |’ w?h? '
Further, we have
' ’ u|+1 —U|
S'(x)=u, :T_h(aMm"'ﬂMO’ X SX<Xy, (7)
’ ' uI _ul—l
Also, S'(x) =y, :T+h(aM|_l+ﬂM|), X SX<X 8)

Combining (7) and (8), we get

—U_,

’ y Uy ah
S'(x)=u/ = 12h _7(M|+1_M|—1) 9)

Also, from (4) we have:
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S'(X,1) =, = UI+1h +haM, + M, 1), X <X<X, (10)

S'(Xy)=U = %—h(al\m +AM L), X SX<X (11)

Note that, (6)-(11) are important properties of spline in compression S(x).

3.  THE METHOD BASED ON SPLINE IN COMPRESSION APPROXIMATION

For the method based on spline in compression approximation, we follow the
technique used by (Jain et al 1981; 1983).

We consider the following approximations:

m =iy < (a =Ua). (12.1)
2h
( u|+1+4U|+U|+1)’ (12.2)
2h
fi=f(x,u,m), (12.3)
flg = F (X Uy, M), (12.4)
Wi = ”'*lh L h(pf,+af), (12.5)
Tl_lz%—h(ﬂf‘,lmﬁ), (12.6)
= (u,-uU h - =
uq:% 0‘2 (f.- T, (12.7)
f_|+1 f(X|+11u|+1:U|+l) (12.8)
fI = f(x,,ul,u’|), (12.9)

Then the non-polynomial spline method with order of accuracy four for the
differential equation (1) may be written as:

2

h = = =
(U =20 +u) =] B T, 020% | 1=10)N (13)

The local truncation error associated with (13) is given by

2r= = = =
U -2U0,+U,) =;‘—2[F|+1 +Fia +1OF|}+T,, | =1()N (14)
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where T, =0O(h®)and

__ (U.,-U

U’ :%, (15.1)

(43U, F4U, tU,.
U 'Iil — ( 1+1 + | I+l) ’ (152)

2h

Fi=f(x,U,U"), (15.3)
Frao = f (X0,Upp,U '), (15.4)
lT'|+1 = % + h(ﬂEm +aF) ), (15.5)
U's :%—h(ﬂﬁll +0£E|), (15.6)

= (U,.-U _
U’ =%—%h(|:m— Fi1), (15.7)
Fraa = f (X4,Upq,Ua), (15.8)
Fi=f(x,U,U"). (15.9)

Note that the boundary conditions are given by u,=Aand u,., =B. Applying the

method (13) to non-linear differential equations and using the boundary conditions, we
obtain tri-diagonal system of non-linear difference equations. The resulting tri-diagonal
system of non-linear difference equations can be solved using CRAGE iterative method
(See Mohanty and Evans (2005); Evans (1999); Mohanty and Talwar (2012)).

4. DERIVATION OF THE METHOD AND LOCAL TRUNCATION ERROR

For the derivation of the finite difference method based on spline in compression
approximation for the numerical solution of the differential equation (1), we follow the
ideas of (Jain et al, 1981; 1983).

At the grid point x,, we denote:  U/'= f(x,,U,,U/)=F (say)

By Taylor series expansion, we obtain:

h2
U,-2U,+U,,) =E[F'+l+ F.+10R]+O(h%),  1=1)N (16)
From equations (15.1)-(15.2) we obtain:
— (U,-U.) h?
U =— Y _y/+—U/+0(h 17
! 2N 1T ! (h*) (7)

— U, —4U, +U 2
U r|+1 — ( 141 2h [ I—l) =U|,+1 _%Ulm_l_ O(hS) (18)
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— 3U +4U -U " ' h? m
U |71=( = on I 1) =U, 1_§U ~0()
o of
At the grid point x,, let us denote:  y, = 307
|

Using the approximation (17), from (15.3), we obtain

2

= 11/ h un
Fi=f(x,UU)=FK+— : Uy, +0(h%)
Similarly,
_ _ h? 2
Fra=f(4,,UU) =R, - 3 — U, +0(h)
Now, using Taylor Series expansion
Via=v +hy +0(h?)
Using (22), from (21), we obtain

_ h?
Fra=F, - 3 Ul'y, +0(h%)
Similarly,
_ h2 2
Fla=F,- 3 Uy, —O(h")
Using the approximations (20), (23) from (15.5), we obtain

Ul =U] l+h(a+ﬂ——ju” hz(ﬂ—%)ul”'+0(h3)
Similarly,

Ua=U/, h£a+ ﬂ—%)UH h? (ﬁ—%)ur’— o)

—U; +(1—ajh2u,"'+ o(h*)
6

Cl

From (15.8), using the approximation (25), we obtain

E|+1 =f (XI+1’UI+1’LT’I+1)

= |+1+h(a+,6’—%jU|"\|/| +h2(ﬂ ;jU{”\V' +h2(a+ﬂ—%jul"\|1;

Similarly,

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)
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Fla=F - h(a+ ﬁ—%]u,"w, 1 (ﬁ—%ju,"'\u, 1 (a+ ﬂ—%)ul"\u; —o(h), (29)

Fi=F+ (% _aj h’Uy, +O(h?). (30)
Now, using the approximations (28)-(30)from (14), we obtain

2

h 1 m 1 n ! =
U, -2, +U,,) :E{FM‘F ., +10F +2h2(3_50‘+§)u| 4 +2h2(0‘+B_E)U| ‘VI}'Tl (31)

By the help of (16), from (31), we get

—h*
6
In order for the proposed method to be of O(h*), the coefficient of h* in (32) must be

=50+ U, + Bl | +O(H) @)

zero and we obtain a = % : [3:%, and the local truncation error reduces to 'I?, =0(h%).
5. CONVERGENCE ANALYSIS

We now discuss the convergence of the method (13).

Let U =[U,,U,,...,U,] be the exact solution vector and u=[u,,U,,...,u,] be the
approximate solutionto U . Let m, (Ul1,U|,U|+1):£[E|+1+E|_1 +10E|] I=1)N.
Then (14) can be written in the matrix form as:

DU +M(U)+T(h)=0 (33)
where D =[-1,2,-1]is a NxN tri-diagonal matrix, M(U) =[m, —-U,,m,,....m, -U,.T,
and T(h) =[ T1(h), T2(h),... Tn (W]

At each X, it is required to solve the method (13), which in matrix form can be written
as:

Du+M(u)=0 (34)

Let & =u, —U, ,k=1)N , be the discretization error (in the absence of round
offerror)and e=[g, & ... & ] =u—U be the error vector.

Therefore, we have
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I Gt
! _U| — ( 1+1 | 1) ,
2h
_ +3¢., Fde t ¢

0, -0, = (36, F46 T 6i)

T 2h
Let & =i, b = ai.

oy, oy

Therefore,
f_lil 1+1 — f (XI+1’ u|+1’ ul_l) f (XI+1’UI_1’UI+1)

=quén T (UI'ﬂ _Ulrﬂ)blﬂ
(3, Fhe T &4) b
on +1

0-0;=(0-01)- 5 () -(7-F)

= Qb Tt , I=1ON

4

L:||’+1_lj|’+1:(gI+1 ‘) ﬂh( i |+1)+ah(f - )

_ (6.—4) + fh [31 ot Be,—46 +44) b 1}+ah‘:a|<9| + (ea—&1) bl}

2h 2h 2h
Similarly,
—, =, &g —&_ E— & =3¢, +4e —¢,
U, —-Ui, :(I—hll)_ah[alﬁ +%bl}_ﬂh[a|1g|1+( = on ) bl1:|
Hence

f:.—f.=ae.+n(ﬁ.'—ﬁ.'>,

141~ I+1 a.|+18| +1 + bI+1 (ul+l I'+1) '

fu-Fa=a.6,+0,@,-U/,),
for suitable a, and b, .

—h

Now M(u)—M(U)zg[(f: F. ) (?1—E,_l)+1o(f:I E)} I = 1(D)N
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2

A6+ (8|+1h— ) b, +/3h[al+1£|+1 +Mbl+1:|bl+l + ah{a|5| +%bl }bm

0 2h
§ -6 §q—¢ -3¢, +4¢ -4,
a|-15|-1+%b|-1_0‘h{a|5| "’% } |1 ﬂhliall &4 %bl—l}bl—l
(6.-¢ 10ah 36, —4e +¢,.
+10a,¢ +10k, = on 1) -b 7 [a|+15|+1‘a|-15|-1]‘100‘b| Mbﬂl
+1OQMM} | =N
(35)
Now, b, =b, + hb/ +O(h?*)and &, =a +O(h)
Therefore, M(u)-M(U)=PE
(35)
where P is a tri-diagonal matrix with elements
2
R, :2—(10a, +200ky’ - 20 + 2ah’aly -4 07 )+O(h*),  1=1)N
Pia= b, +—(a, +bf —10ab, +2/85° ) +O(h°), 1=2()N
h? ,
= =—§q +E(a1 +b —10ahy +2867 ) +O(h°), 1=L)N -1
Subtracting (34) from (33), we obtain the error equation
(D+P)E =T(h) (36)
Let G.= minq, and G = maxq
0<x<1 ou 0<x<1 oU
then 0<G.<a, <G", i=0,*+1
Let |b|ii| <h, i=0,£1 and |b|<c for some positive constants b and c.
h h?
Therefore, ‘P, Ll < b+—(G +c+10ab+2ﬂb2)+0(h3) (37.1)
Also,  |R,|< h b+h—2(G +C+10ab+2b° ) +O(h*) (37.2)

Now, it is easy to see that for sufficiently small h,
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Rya<1 1=1N-1
IR,ul<L 1=2(ON

Therefore —-1+R,,, <0,—-1+R,, <O.

Hence, D+P is irreducible with non-positive off diagonal entries.
Let S, be the sum of the elements in the n™ row of D+P, then

For, 1=1

2 2
s, =1+;‘—2(10a1 + 200k —2b,'—4ﬁb,2)+;]—2(a, +%b, b/ ~10ah, +2,Bb,2)+0(h3), (38.1)

For, =N

2

2
S, =1+ r—z(lOa, +20ahy — 20 — 4807 ) + ;]—z(a, —%b, +b/ —10ab, + 285/ j +0(h?®), (38.2)

Forl =2@)N —1, S, =h?*a, +0O(h?), (38.3)
For sufficiently small h,

11h? 11h?

S > G. >0, S >
2 12

G.>0and S, >h*G. >0, I=21)N -1.

Thus, for sufficiently small h, D+P is monotone. Therefore (D+P) ™ exists and
J= (Ji,j)NXN = (D+P )_12 0.

To establish convergence, we proceed as follows to obtain the necessary bounds for (D+P)™.

N N
Since, > 3,8, =Li=1DN , hence J,,, <> J;,S, =L i=1ON
1=1

= 1=1

1 12 . 1 12 .
ie. Ji, £—<——— 1=1N . Similarly, J;, £—= J0=11)N .
w55 St Vo di =5 = g, 1
AlSO i N-1 N-1 1 1 i
: nggmls,;‘]i,, Sl:;\li’, < 3 < hZG*J:l(l)N :

2<I<N-1
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Since (D+P )™exists, therefore we can write the error equation as
E=(D+P) T(h)

:>||E||£H(D+ P)"

re=[3r o] (39)

J||:maxi3. < B
ish =M T 110%G,

Now,

35
11h°G.

Therefore,  |E[ < [T (h)|=0(h*) (40)

This proves the fourth order convergence of the proposed method.

6. EXTENSION TO NON-UNIFORM MESH

In this section we extend the finite difference method based on spline in
compression approximation to non-uniform mesh.

To obtain the non-polynomial spline solution of the boundary value problem (1)-(2)
on non-uniform mesh, we discretize the solution interval [0,1] with a variable mesh size

h=x-%_,, =10N+1. Let o, =h,,/h >0, =1()N be the mesh ratio. Grid points
are given by X =X, +Z:(:1hk, i =1()N +1. Let U, =u(x)be the exact solution of u at
the grid point X, and is approximated by u, .

Let S,(x) be the non-polynomial spline function which interpolates u(x) at
%, =0@1)N +1, defined on the interval [x,x,,],1=0)N such that S(x)eC?[0,1]
given by

S,(X)=a +b (x—x)+c sinw(x—x)+d, cosw(x—x), I=0QN+1 (41)
where a,,b,c, and d, are constants and w is an arbitrary parameter.
At each internal mesh point x;, we denote
M, =u"(x) = T(x,u(x),u’(x)), I=0QN +1.

Using S;(%)=u, $;(X.1) =U.1, (X)) =M, §(%,1) =M, 1=0,L...,N+1in (41), we
get

M u.,—-u M_,—M -M
a|:u|+_|,b|: 1+1 | 1+1 I1 | = 2|1d|

W h.. w?hy, W w?sinwh,

_ (M, coswh,, =M, ;)
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Using the continuity condition of the first derivative, that is S/(x,—) = S/(x +) , we obtain:

U, —d+o)u +ou,
1~ ( hl) L O 1:a|hIMH+(ﬂ|h| +ﬂ|+1h|+1)M| +o N M, 1=12,.N (42)
1+1

where

1 wh, 1
= -1{, =——|1-wh cotwh
A W Lin wh, } A W2h|2[  cotwh|

Further, we have

, , U, -—u
S/ (X,1) =y =——+h (M + .M ,;), X SX<X, (43.1)

1+1

u —u .
S/(X_y) =, =——

—h(eM,+ M, ), X4 <XZX (43.2)

At each grid point x,, we denote
R=c'+0-1 Q=(g +1)(0'|2 +30, +1), R =0 (1+O'| —o]z), S =0,(1+0). (44)

We consider the following approximations:

Let,

My =u't = (U, — (- 07)u —o1u,) I(hS), (45.1)

My, = U = (1+206)u, —(1+06))°y +o7u 4 (45.2)
hS,

—_— — 2 —

M, =Uis= U, +(@A+0) hu|S 0,(2+0)u, (45.3)

_ 9

fi=10x,u,m), (45.4)

_Iil =f (XIﬂ’ U mlil)’ (45,5)

o oA h.. - - -

m=u=m+ (1_:;) (o f|—1"'(B| _B|+1) fi— oy, i), (45.6)

. U, —U - -

Uy, =—2—L+ o0 (o, f + BT (45.7)

oh
~y u —u — —
U, =——2-h(af + 41, (45.8)
|
Alﬂ = f(xlﬂiulﬂ’ljl'ﬂ ) (45.9)

f = f(x,u,0), (45.10)
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Then the non-polynomial spline in compression method with order of accuracy three
for the differential equation (1) may be written as

2

h2r .
U, —(@+0))u +ou :ﬁ[PI fla+Qfi+R fu], I=1()N (46)

where o, = % i :% with u,=U,=Aand uy,, =U,,, =B. The local truncation error

associated with (46) is given by T, =O(h°), o, #1. For o, =1, the scheme (46) reduces to
(13).

7. NUMERICAL ILLUSTRATIONS

We have solved the following three problems using the method described by the
equation (13) and (46). The exact solutions are provided in each case. The boundary
conditions and homogeneous functions may be obtained from the exact solutions as a test
procedure. On the variable mesh with N internal nodes, with each grid length given by
h=x-%, I=1)N+1 and the mesh ratio parameter is given by
o, =h.,/h, I=1)N. For simplicity we take o, =o(constant). The value of the first
mesh spacing on the left is given by

o)
hl_(l—GNﬂ)’ #1. (47)

Therefore, given the value of N and o, we can calculate h from the above relation and
the remaining mesh points are determined by h,, =oh,1=1(2)N .The initial vector

u® =0is used for nonlinear problems and the iterations were stopped when the absolute
error tolerance ‘u‘“l) —u®| <10 was achieved.

We have compared the results with the variable mesh method of O(h’) accuracy based
on the finite difference discretization discussed by (Mohanty, 2005).

Example 7.1: u”"=du’, 0<x<1. (Convection-diffusion problem) (48)

The exact solution is u(x)=(1-e ) / (1-e7). The root mean square errors are
tabulated in Table 1 for various values of N.

1
Example 7.2: vu" = (u —Eju', 0<x<1. (Burgers’ equation). (49)
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The exact solution is given by u(x) =%{1—tanh(4iﬂ, where v=R™. The root mean
v
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square errors are tabulated in Table 2 for various values of R and o .

Example 7.3: u" =iuu’+ f (),

The exact solution is given byu(x)=sin(nx). The root mean square errors are

O0<x<1l.

tabulated in Table 3 for various values of 4 and o .

Table 1: Example 7.1: The root mean square errors

N+1 Proposed Method | Method by( Mohanty, 2005)
c=1.0,d=10
40 0.8707(-06) 0.1134(-04)
80 0.5393(-07) 0.7882(-06)
160 0.3357(-08) 0.5012(-07)
320 0.2091(-09) 0.3116(-08)
640 0.1176(-10) 0.1914(-09)
6 =1.0,d=10°
40 0.2548(-02) 0.5393(-01)
80 0.1770(-03) 0.3375(-02)
160 0.1082(-04) 0.2108(-03)
320 0.6669(-06) 0.1296(-04)
640 0.4148(-07) 0.7784(-06)
1280 0.2587(-08) 0.4823(-07)
6 =1.0,d=10"
160 0.1213(-01) 0.7267(-01)
320 0.1719(-02) 0.4488(-02)
640 0.1349(-03) 0.2936(-03)
1280 0.8396(-05) 0.1844(-04)
2560 0.5156(-06) 0.1123(-05)
5 =1.0,d=10"
1280 0.6239(-02) 0.8866(-02)
2560 0.1097(-02) 0.3655(-02)
5120 0.1011(-03) 0.2981(-03)
10240 0.6526(-05) 0.1832(-04)
20480 0.3996(-06) 0.1124(-05)




Table 2: Example 7.2: The root mean square errors

SPLINE IN COMPRESSION METHOD

N+1 | Proposed Method | Method by (Mohanty, 2005)
c=1.0,R=10"

80 0.1164(-07) 0.6212(-06)
160 0.7304(-09) 0.3898(-07)
320 0.4586(-10) 0.2516(-08)
640 0.2903(-11) 0.1512(-09)
1280 0.1830(-12) 0.8946(-11)
c=1.0,R=10°

80 0.3927(-04) 0.8412(-03)
160 0.2393(-05) 0.5436(-04)
320 0.1488(-06) 0.3388(-05)
640 0.9297(-08) 0.2102(-06)
1280 0.5815(-09) 0.1322(-07)
c=1.0,R=10°

320 0.5531(-03) 0.1127(-01)
640 0.3117(-04) 0.7923(-03)
1280 0.1862(-05) 0.5221(-04)
2560 0.1152(-06) 0.2912(-05)
5120 0.7184(-08) 0.1818(-06)
c=1.0,R=10"

2560 0.3924(-03) 0.7428(-02)
5120 0.2498(-04) 0.4666(-03)
10240 0.1450(-05) 0.3015(-04)
20480 0.8914(-07) 0.1802(-05)
c=1.0,R=10"

20480 0.2369(-03) 0.6642(-02)
40960 0.2022(-04) 0.5113(-03)
81920 0.1134(-05) 0.3212(-04)
163840 0.6903(-07) 0.1967(-05)
c=1.4,R =50

40 0.8769(-03) 0.6214(-02)
80 0.6239(-03) 0.4865(-02)
160 0.4425(-03) 0.3218(-02)
320 0.3134(-03) 0.2115(-02)
640 0.2217(-03) 0.1443(-02)
6 =0.9, R =20

40 0.1460(-03) 0.1212(-02)
80 0.9774(-04) 0.8943(-03)
160 0.6926(-04) 0.7234(-03)
320 0.4905(-04) 0.5254(-03)
640 0.3417(-04) 0.3678(-03)
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Table 3: Example 7.3: The root mean square errors

N+1 | Proposed Method | Method by (Mohanty, 2005)
c=1.0,A=10

80 0.1248(-07) 0.2446(-06)
160 0.7856(-09) 0.1768(-07)
320 0.4931(-10) 0.1077(-08)
640 0.3601(-11) 0.6864(-10)
1280 0.2073(-12) 0.4543(-11)
c=1.0, =100

80 0.1831(-06) 0.2002(-05)
160 0.1152(-07) 0.1244(-06)
320 0.7219(-09) 0.7806(-08)
640 0.4516(-10) 0.4888(-09)
1280 0.2858(-11) 0.2852(-10)
c=1.1,A=10

80 0.1841(-04) 0.2629(-03)
160 0.1305(-04) 0.1971(-03)
320 0.9246(-05) 0.1254(-03)
640 0.6543(-05) 0.9033(-04)
1280 0.4628(-05) 0.6868(-04)
6 =0.9, A =50

80 0.1941(-03) 0.3216(-02)
160 0.1377(-03) 0.2006(-02)
320 0.9753(-04) 0.1413(-02)
640 0.6902(-04) 0.9641(-03)
1280 0.4882(-04) 0.7233(-03)

8. CONCLUDING REMARKS

In this paper we have derived a new method of order four, based on spline in
compression approximation for the numerical solution of two-point non-linear boundary
value problems on uniform mesh. The derivation and the convergence of the proposed
method are discussed in detail. The method is further extended to solve two-point
nonlinear boundary value problem on non-uniform mesh. To test the efficiency of the
proposed method, we have applied it to the Burgers’ equation and have received
convergent results for high Reynolds number. From Table 2, we can see that for high
Reynolds number the method shows fourth order convergence for sufficiently small value
of uniform mesh length h.
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