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1. Introduction

In recent years, much attention have been given to solve the initial and bound-

ary value problems, which have applications in various branches of pure and ap-

plied sciences. The concept of differential transform was first introduced by Zhou

[13], to solve linear and nonlinear initial value problems in electric circuit analy-

sis. Abdel-Halim Hassan [1] studied the differential transformation method which

is an analytical-numerical method to solve the higher order initial value problems.

Arikoglu and Ozkol [3] extended the solution of boundary value problems for integro-

differential equations by using differential transform method. Allahviranloo et al.

[2] extended the differential transformation method for solving the fuzzy differential

equations. They have used the concept of generalised H-differentiability. Mikaeil-

vand and Khakrangin [8] provided the two-dimensional differential transform method

to solve fuzzy partial differential equations. Recently, Salahshour and Allahviranloo

[12] studied the solutions of fuzzy Volterra integral equations with separable kernel by

using fuzzy differential transform method. In last few years, considerable effort has

been made in the development of fuzzy boundary value problems. Bede [4] proved that

the fuzzy two-point boundary value problem is not equivalent to the integral equation

expressed by Green’s function under Hukuhara differentiability in the fuzzy differen-

tial equations and using fuzzy Auman-type integral in the integral equation. Also,

Bede and Gal [5] introduced the weakly generalized differential of a fuzzy number

valued function. Khastan et al. [7] presented a generalized concept of higher-order
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differentiability for fuzzy functions. Satio [11] gave a new representation of fuzzy

numbers with bounded supports and proved that fuzzy number means a bounded

continuous curve in the two-dimensional metric space. Under this new structure and

certain conditions, Prakash et al. [9] presented the solution of third order three-point

fuzzy boundary value problem by means of Green’s function. However, it should be

emphasized that most of the works in this direction are mainly concerned with the

fuzzy initial value problems and there has been no attempts made to study the fuzzy

boundary value problems by using the differential transform methods. In this paper,

we use the differential transform method for solving second order two-point and third

order three-point fuzzy boundary value problems and carry out the comparison with

the exact and numerical solutions.

2. Preliminaries

Let us denote by RF the class of fuzzy subsets u : R → [0, 1], satisfying the

following properties:

1. u is normal, that is, there exist x0 ∈ R with u(x0) = 1.

2. u is convex fuzzy set, that is,

u(λx + (1 − λ)y) ≥ min{u(x), u(y)}, ∀x, y ∈ R, ∀λ ∈ [0, 1].

3. u is upper semi-continuous on R.

4. {x ∈ R|u(x) > 0} is compact, where Ā denotes the closure of A.

Then RF is called the space of fuzzy numbers. For 0 < r ≤ 1, set [u]r = {s ∈
R|u(s) ≥ r} and [u]0 = cl{s ∈ R|u(s) > 0}. Then the r- level set [u]r is a non-empty

compact interval for all 0 ≤ r ≤ 1. The following Theorem gives the parametric form

of a fuzzy number.

Theorem 2.1. The necessary and sufficient conditions for (u(r), u(r)) to define the

parametric form of a fuzzy number are as follows:

1. u(r) is a bounded monotonic increasing (non-decreasing) left-continuous function

∀r ∈ (0, 1] and right-continuous for r = 0.

2. u(r) is a bounded monotonic decreasing (non-increasing) left-continuous function

∀r ∈ (0, 1] and right-continuous for r = 0.

3. u(r) ≤ u(r), 0 ≤ r ≤ 1.

We refer to u and u as the lower and upper branches on u, respectively. For u ∈ RF ,

we define the length of u as: len(u) = u− u. A crisp number α is simply represented

by u(r) = u(r) = α (0 ≤ r ≤ 1) is called singleton. For u, v ∈ RF and α ∈ R, the

sum u + v and the scalar multiplication αu are defined by

u + v = ((u + v)(r), (u + v)(r)) = (u(r) + v(r), u(r) + v(r)),
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αu =

{

(αu(r), αu(r)), α ≥ 0,

(αu(r), αu(r)), α < 0.

For u, v ∈ RF , we say u = v if and only if u(r) = v(r) and u(r) = v(r).

The metric structure is given by the Hausdorff distance D : RF ×RF → R+ ∪{0}, by

D(u, v) = sup
r∈[0,1]

max{|u(r) − v(r)|, |u(r) − v(r)|}.

Definition 2.2. Let x, y ∈ RF . If there exists z ∈ RF such that x = y + z then z is

called the H-difference of x, y and it is denoted x ⊖ y.

In this paper the sign “⊖” stands always for H-difference and x ⊖ y 6= x + (−1)y in

general. Usually we denote x+(-1)y by x-y, while x ⊖ y stands for the H-difference.

Definition 2.3. Let F : [a, b] → RF for some a, b ∈ R and fix t0 ∈ (a, b). If

there exists an element F ′(t0) ∈ RF such that for all h > 0 sufficiently near to 0,

F (t0 + h) ⊖ F (t0), F (t0) ⊖ F (t0 − h) exist and the limits (in the metric D)

lim
h→0+

F (t0 + h) ⊖ F (t0)

h
and lim

h→0+

F (t0) ⊖ F (t0 − h)

h

exist and equal to F ′(t0), then F said to be (1)-differentiable at t0 and it is denoted

by D1
1F (t0). If for all h > 0 sufficiently near to 0, F (t0)⊖F (t0 +h), F (t0−h)⊖F (t0)

exist and the limits (in the metric D)

lim
h→0+

F (t0) ⊖ F (t0 + h)

−h
and lim

h→0+

F (t0 − h) ⊖ F (t0)

−h
= F ′(t0)

exist and equal to F ′(t0), then F is said to be (2)-differentiable at t0 and it is denoted

by D1
2F (t0). If t0 is the end points of I, then we consider the corresponding one-sided

derivative.

Theorem 2.4 ([7]). Let F : [a, b] → RF and let F (t) = (f(t, r), g(t, r)) for each

r ∈ [0, 1].

1. If F is (1)-differentiable then f(t, r) and g(t, r) are differentiable functions and

D1
1F (t) = (f ′(t, r), g′(t, r)).

2. If F is (2)-differentiable then f(t, r) and g(t, r) are differentiable functions and

D1
2F (t) = (g′(t, r), f ′(t, r)).

Definition 2.5. Let F : [a, b] → RF and let n, m ∈ {1, 2}. If D1
nF exist on a

neighborhood of t0 as a fuzzy number valued function and it is (m)-differentiable at

t0 as a fuzzy number valued function, then F is said to be (n, m)-differentiable at

t0 ∈ [a, b] and is denoted by D2
n,mF (t0).

Theorem 2.6 ([7]). Let F : [a, b] → RF , D1
1F : [a, b] → RF and D1

2F : [a, b] → RF

and let F (t) = (f(t, r), g(t, r)) for each r ∈ [0, 1].
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1. If D1
1F is (1)-differentiable, then f ′(t, r) and g′(t, r) are differentiable functions

and D2
1,1F (t) = (f ′′(t, r), g′′(t, r)).

2. If D1
1F is (2)-differentiable, then f ′(t, r) and g′(t, r) are differentiable functions

and D2
1,2F (t) = (g′′(t, r), f ′′(t, r)).

3. If D1
2F is (1)-differentiable, then f ′(t, r) and g′(t, r) are differentiable functions

and D2
2,1F (t) = (g′′(t, r), f ′′(t, r)).

4. If D1
2F is (2)-differentiable, then f ′(t, r) and g′(t, r) are differentiable functions

and D2
2,2F (t) = (f ′′(t, r), g′′(t, r)).

Definition 2.7. Let F : [a, b] → RF and let n, m, l ∈ {1, 2}. If D1
nF and D2

n,mF

exist on a neighborhood of t0 as fuzzy number valued functions and D2
n,mF is (l)-

differentiable at t0 as a fuzzy number valued function, then F is said to be (n, m, l)-

differentiable at t0 ∈ [a, b] and it is denoted by D3
n,m,lF (t0).

Theorem 2.8 ([7]). Let F : [a, b] → RF , D1
nF : [a, b] → RF , D2

n,mF : [a, b] → RF

for n, m ∈ {1, 2}and let F (t) = (f(t, r), g(t, r)) for each r ∈ [0, 1].

1. If D2
1,1F is (1)-differentiable, then f ′′(t, r) and g′′(t, r) are differentiable functions

and D3
1,1,1F (t) = (f ′′′(t, r), g′′′(t, r)).

2. If D2
1,1F is (2)-differentiable, then f ′′(t, r) and g′′(t, r) are differentiable functions

and D3
1,1,2F (t) = (g′′′(t, r), f ′′′(t, r)).

3. If D2
1,2F is (1)-differentiable, then f ′′(t, r) and g′′(t, r) are differentiable functions

and D3
1,2,1F (t) = (g′′′(t, r), f ′′′(t, r)).

4. If D2
1,2F is (2)-differentiable, then f ′′(t, r) and g′′(t, r) are differentiable functions

and D3
1,2,2F (t) = (f ′′′(t, r), g′′′(t, r)).

5. If D2
2,1F is (1)-differentiable, then f ′′(t, r) and g′′(t, r) are differentiable functions

and D3
2,1,1F (t) = (g′′′(t, r), f ′′′(t, r)).

6. If D2
2,1F is (2)-differentiable, then f ′′(t, r) and g′′(t, r) are differentiable functions

and D3
2,1,2F (t) = (f ′′′(t, r), g′′′(t, r)).

7. If D2
2,2F is (1)-differentiable, then f ′′(t, r) and g′′(t, r) are differentiable functions

and D3
2,2,1F (t) = (f ′′′(t, r), g′′′(t, r)).

8. If D2
2,2F is (2)-differentiable, then f ′′(t, r) and g′′(t, r) are differentiable functions

and D3
2,2,2F (t) = (g′′′(t, r), f ′′′(t, r)).

Remark 2.9. A fuzzy number valued function F on [a, b] is said to be (1)-differentiable

(or (2)-differentiable) of order k (k ∈ N) on [a, b] if F (s) is (1)-differentiable (or (2)-

differentiable) for all for s = 1, . . . , k. In this paper we only consider this kind

of function. Let y be a solution of a fuzzy differential equation of order s. If

y is (1) differentiable, then y(t) = (y(t, r), y(t, r)). If y is (2) differentiable, then

y(t) = (y(t, r), y(t, r)) if s is even and y(t) = (y(t, r), y(t, r)) if s is odd. In the next

section we calculate y(t, r) and y(t, r) by using differential transform method.
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3. The Differential Transform Method

Definition 3.1. If y : [a, b] → RF is differentiable of order k in the domain [a, b],

then Y (k, r) and Y (k, r) are defined by

Y (k, r) = M(k)
[

dky(t,r)

dtk

]

t=0

Y (k, r) = M(k)
[

dky(t,r)
dtk

]

t=0







k = 0, 1, 2, . . .

when y is (1)-differentiable and

Y (k, r) = M(k)
[

dky(t,r)
dtk

]

t=0

Y (k, r) = M(k)
[

dky(t,r)

dtk

]

t=0







k = 1, 3, 5, . . .

and

Y (k, r) = M(k)
[

dky(t,r)

dtk

]

t=0

Y (k, r) = M(k)
[

dky(t,r)
dtk

]

t=0







k = 0, 2, 4, . . .

when y is (2)-differentiable. Y i(k, r) and Y i(k, r) are called the lower and the upper

spectrum of y(t) at t = ti in the domain [a, b] respectively.

If y is (1)-differentiable, then y(t, r) and y(t, r) can be described as

y(t, r) =

∞
∑

k=0

(t − ti)
k

k!

Y (k, r)

M(k)
,

y(t, r) =

∞
∑

k=0

(t − ti)
k

k!

Y (k, r)

M(k)
.

If y is (2)-differentiable, then y(t, r) and y(t, r) can be described as

y(t, r) =

(

∞
∑

k=1,odd

(t − ti)
k

k!

Y (k, r)

M(k)
+

∞
∑

k=0,even

(t − ti)
k

k!

Y (k, r)

M(k)

)

,

y(t, r) =

(

∞
∑

k=1,odd

(t − ti)
k

k!

Y (k, r)

M(k)
+

∞
∑

k=0,even

(t − ti)
k

k!

Y (k, r)

M(k)

)

,

where M(k) > 0 is called the weighting factor. The above set of equations are

known as the inverse transformations of Y (k, r) and Y (k, r). In this paper, the

transformation with M(k) = 1
k!

is considered. If y is (1)-differentiable, then

Y (k, r) = 1
k!

[

dk

dtk
y(t, r)

]

t=0

Y (k, r) = 1
k!

[

dk

dtk
y(t, r)

]

t=0

k = 0, 1, 2, . . . .(3.1)
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If y is (2)-differentiable, then

Y (k, r) = 1
k!

[

dk

dtk
y(t, r)

]

t=0

Y (k, r) = 1
k!

[

dk

dtk
y(t, r)

]

t=0







k = 1, 3, 5, . . . .

Y (k, r) = 1
k!

[

dk

dtk
y(t, r)

]

t=0

Y (k, r) = 1
k!

[

dk

dtk
y(t, r)

]

t=0







k = 0, 2, 4, . . . .

(3.2)

Using the differential transformation, a differential equation in the domain of interest

can be transformed to an algebraic equation in the domain {0, 1, 2, . . .} and y(t, r)

and y(t, r) can be obtained as the finite-term Taylor series plus a remainder, as

y(t, r) =

n
∑

k=0

(t − t0)
kY (k, r) + Rn+1(t),

y(t, r) =
n
∑

k=0

(t − t0)
kY (k, r) + Rn+1(t),

(3.3)

when y is (1)-differentiable and

y(t, r) =
n
∑

k=1,odd

(t − t0)
kY (k, r) +

n
∑

k=0,even

(t − t0)
kY (k, r) + Rn+1(t),

y(t, r) =

n
∑

k=1,odd

(t − t0)
kY (k, r) +

n
∑

k=0,even

(t − t0)
kY (k, r) + Rn+1(t),

(3.4)

when y is (2)-differentiable. From Definition 3.1, it is easily proven that the transfor-

mation function have basic mathematics operation shown in Table 1.

Table 1. The fundamental operations of one-dimensional differential

transform method

Original function Transformed function

c(t) = u(t) ± v(t) C(k) = U(k) ± V (k)

c(t) = αu(t) C(k) = αU(k), where α is a constant

c(t) = du(t)
dt

C(k) = (k + 1)U(k + 1)

c(t) = dru(t)
dtr

C(k) = (k + 1)(k + 2).....(k + r)U(k + r)

c(t) = u(t)v(t) C(k) =
∑k

r=0 U(r)V (k − r)

c(t) = tm C(k) = δ(k − m)

c(t) = eλt C(k) = λk

k!

c(t) = sin(ωt + α) C(k) = ωk

k!
sin(πk

2!
+ α)

c(t) = cos(ωt + α) C(k) = ωk

k!
cos(πk

2!
+ α)
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4. Two-point fuzzy boundary value problem

In this section, we discuss the second order two-point fuzzy boundary value prob-

lem of the form,

y′′(t) = f(t, y(t), y′(t))

y(a) = A, y(b) = B,
(4.1)

where t ∈ [a, b], A ∈ RF , B ∈ RF and f ∈ C([a, b] × RF × RF , RF ).

Definition 4.1 ([6]). Let y : [a, b] → RF and let n, m ∈ {1, 2}. We say y is a

(n, m) solution for problem (4.1) on [a, b], if D1
ny and D2

n,my exist on [a, b] as fuzzy

number valued functions, D2
n,my(t) = f(t, y(t), D1

ny(t)) for all t ∈ [a, b], y(a) = A and

y(b) = B.

Definition 4.2. Let n, m ∈ {1, 2} and let I1 and be an interval such that I1 ⊂ [a, b].

If y : I1 ∪{a, b} → RF , D1
ny and D2

n,my exist on I1 as fuzzy number valued functions,

D2
n,my(t) = f(t, y(t), D1

ny(t)) for all t ∈ I1, y(a) = A and y(b) = B, then y is said to

be a (n, m) solution for the boundary value problem (4.1) on I1 ∪ {a, b}.

Remark 4.3. I1 may or may not contains {a, b}.

The derivatives of type (1) or (2), we may replace the fuzzy boundary value problem

by the following equivalent system. For r ∈ [0, 1],

y′′(t, r) = f(t, y(t, r), y′(t, r), y(t, r), y′(t, r)),(4.2)

y(a, r) = A, y(b, r) = A.

y′′(t, r) = f(t, y(t, r), y′(t, r), y(t, r), y′(t, r)),

y(a, r) = B, y(b, r) = B.

For any fixed r ∈ [0, 1], the system represents an two-point boundary value problem,

to which any convergent classical numerical procedure can be applied. We proposed

a differential transformation method for solving the problem. Taking the differential

transformation of (4.2), the transformed equation describes the relationship between

the spectrum of y(t), y′(t) and y′′(t) as

(k + 1)(k + 2)Y (k + 2, r) = F (t, Y (k, r), Y ′(k, r), Y (k, r), Y
′

(k, r))

(k + 1)(k + 2)Y (k + 2, r) = F (t, Y (k, r), Y ′(k, r), Y (k, r), Y
′

(k, r)),

and

(k + 1)(k + 2)Y (k + 2, r) = F (t, Y (k, r), Y ′(k, r), Y (k, r), Y
′

(k, r))

(k + 1)(k + 2)Y (k + 2, r) = F (t, Y (k, r), Y ′(k, r), Y (k, r), Y
′

(k, r)),

}

k = 1, 3, 5, . . . .
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(k + 1)(k + 2)Y (k + 2, r) = F (t, Y (k, r), Y ′(k, r), Y (k, r), Y
′

(k, r))

(k + 1)(k + 2)Y (k + 2, r) = F (t, Y (k, r), Y ′(k, r), Y (k, r), Y
′

(k, r)),

}

k = 0, 2, 4, . . . .

when y is (1) and (2)-differentiable respectively, where F (·) and F (·) denote the

transformed function of f(t, y(t, r), y′(t, r), y(t, r), y′(t, r)) and f(t, y(t, r), y′(t, r),

y(t, r), y′(t, r)) respectively.

5. Three-point fuzzy boundary value problem

In this section, we discuss a third order three-point fuzzy boundary value problem

of the form

y′′′(t) = f(t, y(t), y′(t), y′′(t))

y(a) = A, y(c) = C, y(b) = B,
(5.1)

where t ∈ [a, b], a < c < b, A ∈ RF , B ∈ RF , C ∈ RF and f ∈ C([a, b] × RF × RF ×
RF , RF ).

Definition 5.1. Let y : [a, b] → RF and let n, m, l ∈ {1, 2}. We say y is a

(n, m, l) solution for problem (5.1) on [a, b], if D1
ny, D2

n,my and D3
n,m,ly exist on [a, b],

D3
n,m,ly(t) = f(t, y(t), D1

ny(t), D2
n,my(t)) for all t ∈ [a, b], y(a) = A, y(c) = C and

y(b) = B.

Definition 5.2. Let n, m, l ∈ {1, 2} and let I1 and be an interval such that I2 ⊂ [a, b].

If y : I2 ∪ {a, c, b} → RF , D1
ny, D2

n,my and D3
n,m,ly exist on I2 as fuzzy number valued

functions, D3
n,m,ly(t) = f(t, y(t), D1

ny(t), D2
n,my(t)) for all t ∈ I2 ∪ {a, c, b}, y(a) = A,

y(c) = C and y(b) = B, then y is said to be a (n, m, l) solution for the boundary

value problem (5.1) on I2.

Remark 5.3. I2 may or may not contains {a, c, b}.

If the derivatives of type (1), we may replace the fuzzy boundary value problem

by the following equivalent system.

y′′′(t, r) = f(t, y(t, r), y′(t, r), y′′(t, r), y(t, r), y′(t, r), y′′(t, r)),

y(a, r) = A, y(b, r) = B, y(c, r) = C,

y′′′(t, r) = f(t, y(t, r), y′(t, r), y′′(t, r), y(t, r), y′(t, r), y′′(t, r)),

y(a, r) = A, y(b, r) = B, y(c, r) = C
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for r ∈ [0, 1]. If the derivatives of type (2), then we get

y′′′(t, r) = f(t, y(t, r), y′(t, r), y′′(t, r), y(t, r), y′(t, r), y′′(t, r)),

y(a, r) = A, y(b, r) = B, y(c, r) = C,

y′′′(t, r) = f(t, y(t, r), y′(t, r), y′′(t, r), y(t, r), y′(t, r), y′′(t, r)),

y(a, r) = A, y(b, r) = B, y(c, r) = C,

for r ∈ [0, 1]. Taking the differential transformation of above parametric representa-
tion of (5.1), the transformed equation describes the relationship between the spec-

trum of y(t), y′(t), y′′(t) and y′′′(t) as

(k + 1)(k + 2)(k + 3)Y (k + 3, r) = F (t, Y (k, r), Y ′(k, r), Y ′′(k, r), Y (k, r), Y
′

(k, r), Y
′′

(k, r))

(k + 1)(k + 2)(k + 3)Y (k + 3, r) = F (t, Y (k, r), Y ′(k, r), Y ′′(k, r), Y (k, r), Y
′

(k, r), Y
′′

(k, r)),

for k = 0, 1, 2, 3, . . . when y is (1) differentiable and when y is (2) differentiable, we
get

(k + 1)(k + 2)(k + 3)Y (k + 3, r) = F (t, Y (k, r), Y ′(k, r), Y ′′(k, r), Y (k, r), Y
′

(k, r), Y
′′

(k, r))

(k + 1)(k + 2)(k + 3)Y (k + 3, r) = F (t, Y (k, r), Y ′(k, r), Y ′′(k, r), Y (k, r), Y
′

(k, r), Y
′′

(k, r)),

for k = 1, 3, 5, . . . and

(k + 1)(k + 2)(k + 3)Y (k + 3, r) = F (t, Y (k, r), Y ′(k, r), Y ′′(k, r), Y (k, r), Y
′

(k, r), Y
′′

(k, r))

(k + 1)(k + 2)(k + 3)Y (k + 3, r) = F (t, Y (k, r), Y ′(k, r), Y ′′(k, r), Y (k, r), Y
′

(k, r), Y
′′

(k, r)),

for k = 0, 2, 4, . . ., where F (.) and F (.) denote the transformed function of

f(t, y(t, r), y′(t, r), y′′(t, r), y(t, r), y′(t, r), y′′(t, r)) and

f(t, y(t, r), y′(t, r), y′′(t, r), y(t, r), y′(t, r), y′′(t, r)) respectively.

6. Numerical examples

Example 6.1. Consider the following second order two-point fuzzy boundary value

problem

y′′(t) = 2(r − 1, 1 − r),

y(0) = 1
8
(r − 1, 1 − r), y(1) = 3

8
(r − 1, 1 − r).

(6.1)

If y is (1) or (2)-differentiable, then (6.1) can be written as

y′′(t, r) = 2(r − 1), y′′(t, r) = 2(1 − r),(6.2)

with boundary conditions

y(0, r) = 1
8
(r − 1), y(0, r) = 1

8
(1 − r),

y(1, r) = 3
8
(r − 1), y(1, r) = 3

8
(1 − r).

(6.3)

If y is (1)-differentiable, the differential transformation of (6.2) becomes

(k + 1)(k + 2)Y (k + 2, r) = 2(r − 1)δ(k − 0)

(k + 1)(k + 2)Y (k + 2, r) = 2(1 − r)δ(k − 0)
, when k = 0, 1, 2, . . .(6.4)
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From (3.1) and (6.3) we get,

Y (0, r) = 1
8
(r − 1), Y (0, r) = 1

8
(1 − r),

Y (1, r) = a1(r), Y (1, r) = b1(r),
(6.5)

where a1(r) = y′(0, r) and b1(r) = y′(0, r). By recursive method and substituting

(6.5) into (6.4), we get

Y (2, r) = r − 1, Y (2, r) = 1 − r

Y (k, r) = 0, Y (k, r) = 0, for k ≥ 3.
(6.6)

Substituting all Y , Y in (6.6) into (3.3),

y(t, r) = 1
8
(r − 1) + a1(r)t + (r − 1)t2,

y(t, r) = 1
8
(1 − r) + b1(r)t + (1 − r)t2.

(6.7)

a1(r) and b1(r) are evaluated from the boundary conditions given in (6.3) at t = 1 as

follows

a1(r) = −3

4
(r − 1), b1(r) = −3

4
(1 − r).

y(t, r) =

(

1

8
(r − 1)(8t2 − 6t + 1),

1

8
(1 − r)(8t2 − 6t + 1)

)

(6.8)

Theorem 2.1, we see y(t, r) in (6.8) represents a valued fuzzy number when 8t2 −6t+

1 ≥ 0. Hence (6.8) represents fuzzy number for t ∈ [0, 1
4
] ∪ [1

2
, 1]. The (1)-derivative

of (6.8) is given by

y′(t) =

(

r − 1

4
(8t − 3),

1 − r

4
(8t − 3)

)

and it is a fuzzy number when t ∈ [1
2
, 1]. Then it is again (1)-differentiable

y′′(t) = 2(r − 1, 1 − r)

and it is a fuzzy number when t ∈ [1
2
, 1]. Hence y in (6.8) is a (1,1,1)-solution of the

fuzzy boundary value problem (6.2)–(6.3) on {0}∪ [1
2
, 1]. Lower and upper branch of

(1,1) solution of the fuzzy boundary value problem (6.2)–(6.3) is plotted in Figure 1

for different r.
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Figure 1. (1,1) solution for different r.

If y is (2)-differentiable, the differential transformation of (6.2) becomes

(k + 1)(k + 2)Y (k + 2, r) = 2(r − 1)δ(k − 0),

(k + 1)(k + 2)Y (k + 2, r) = 2(1 − r)δ(k − 0)

}

when k = 0, 2, . . .

(k + 1)(k + 2)Y (k + 2, r) = 2(1 − r)δ(k − 0),

(k + 1)(k + 2)Y (k + 2, r) = 2(r − 1)δ(k − 0)

}

when k = 1, 3, . . .

(6.9)

From (3.2) and (6.3) we get,

Y (0, r) = 1
8
(r − 1), Y (0, r) = 1

8
(1 − r),

Y (1, r) = a2(r), Y (1, r) = b2(r),
(6.10)

where a2(r) = y′(0, r) and b2(r) = y′(0, r). By recursive method and substituting

(6.10) into (6.9), we get

Y (2, r) = r − 1, Y (2, r) = 1 − r

Y (k, r) = 0, Y (k, r) = 0, for k ≥ 3.
(6.11)

Substituting all Y , Y into (3.4).

y(t, r) = 1
8
(r − 1) + b2(r)t + (r − 1)t2,

y(t, r) = 1
8
(1 − r) + a2(r)t + (1 − r)t2.

(6.12)

The constants a2(r) and b2(r) are evaluated from the boundary conditions given in

(6.3) at t = 1 as follows

a2(r) = −3

4
(1 − r), b2(r) = −3

4
(r − 1).

We get y(t, r) as in (6.8). We already see that y(t, r) in (6.8) represents a valued

fuzzy number when for t ∈ [0, 1
4
] ∪ [1

2
, 1]. The (2)-derivative of (6.8) is given by

y′(t) =

(

1 − r

4
(8t − 3),

r − 1

4
(8t − 3)

)

and it is a fuzzy number when t ∈ [0, 1
4
]. Then it is again (2)-differentiable

y′′(t) = 2(r − 1, 1 − r)
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and it is a fuzzy number when t ∈ [0, 1
4
]. Hence y in (6.8) is a (2,2,2)-solution of the

fuzzy boundary value problem (6.2)–(6.3) on [0, 1
4
] ∪ {1}. Lower and upper branch

of (2,2) solution y is plotted in Figure 2 for different r. The solution of the fuzzy

boundary value problem (6.2)–(6.3) for different t is plotted in Figure 3. From this

figure we see that y is a fuzzy number valued function.
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Figure 2. (2,2) solution for different r.
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Figure 3. y(t, r) and y(t, r) for different t ∈ [0, 1
4
] ∪ [1

2
, 1].

Example 6.2. Consider the following third order three-point fuzzy boundary value

problem

y′′′(t) = 6(r − 1, 1 − r),

y(0) = 0̃,

y(1) = 1
8
(r − 1, 1 − r),

y(2) = 17
4
(r − 1, 1 − r).

(6.13)

If y is (1)-differentiable, then (6.13) can be written as

y′′′(t, r) = 6(r − 1), y′′′(t, r) = 6(1 − r),(6.14)
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with boundary conditions

y(0, r) = 0, y(0, r) = 0,

y(1, r) = 1
8
(r − 1), y(1, r) = 1

8
(1 − r),

y(2, r) = 17
4
(r − 1),y(2, r) = 17

4
(1 − r).

(6.15)

Taking the differential transformation of (6.14)

(6.16)
(k + 1)(k + 2)(k + 3)Y (k + 3, r) = 6(r − 1)δ(k − 0)

(k + 1)(k + 2)(k + 3)Y (k + 3, r) = 6(1 − r)δ(k − 0)
when k = 0, 1, . . .

From (3.1) and (6.15) we get,

Y (0, r) = 0, Y (0, r) = 0,

Y (1, r) = c1(r), Y (1, r) = c2(r)

Y (2, r) = d1(r), Y (2, r) = d2(r)

(6.17)

where c1(r) = y′(0, r), c2(r) = y′(0, r) d1(r) =
y′′(0,r)

2
and d2(r) = y′′(0,r)

2
. By

recursive method and substituting (6.17) into (6.16), we get

Y (3, r) = r − 1, Y (3, r) = 1 − r

Y (k, r) = 0, Y (k, r) = 0, for k ≥ 4.
(6.18)

Substituting all Y , Y in (6.18) into (3.3), we get

y(t, r) = c1(r)t + d1(r)t
2 + (r − 1)t3,

y(t, r) = c2(r)t + d2(r)t
2 + (1 − r)t3.

The constants c1(r), d1(r), c2(r) and d2(r) are evaluated from the boundary condi-

tions given in (6.15) at t = 1 and t = 2 as follows

c1(r) =
1

8
(r − 1), d1(r) = −(r − 1), c2(r) =

1

8
(1 − r), d2(r) = −(r − 1).

We get,

y(t) =

(

(r − 1)

8
(8t3 − 8t2 + t),

(1 − r)

8
(8t3 − 8t2 + t)

)

.(6.19)

By Theorem 2.1, y(t) in (6.19) represents a valued fuzzy number for t ∈ [0, 1
4
(2 −√

2)] ∪ [1
4
(2 +

√
2), 2]. The (1)-derivative of (6.19) is given by

y′(t) =

(

r − 1

8
(24t2 − 16t + 1),

1 − r

8
(24t2 − 16t + 1)

)

which is a fuzzy number when t ∈ [0, 1
12

(4 −
√

10)] ∪ [1
4
(2 +

√
2), 2]. Then it is again

(1)-differentiable

y′′(t) = ((r − 1)(6t − 2), (1 − r)(6t − 2))

which is a fuzzy number when t ∈ [1
4
(2 +

√
2), 2] and the (1)-differentiability of y′′(t)

is

y′′′(t) = 6(r − 1, 1 − r)
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which is a fuzzy number when t ∈ [1
4
(2+

√
2), 2]. Hence y in (6.19) is a (1,1,1)-solution

of the boundary value problem (6.13) on {0} ∪ [1
4
(2 +

√
2), 2].

If y is (2)-differentiable, then (6.13) can be written as

y′′′(t, r) = 6(1 − r), y′′′(t, r) = 6(r − 1),(6.20)

with the boundary conditions (6.15). Taking the differential transformation of (6.20),

we get,

(k + 1)(k + 2)(k + 3)Y (k + 3, r) = 6(r − 1)δ(k − 0)

(k + 1)(k + 2)(k + 3)Y (k + 3, r) = 6(1 − r)δ(k − 0)

}

when k = 1, 3, . . .

(k + 1)(k + 2)(k + 3)Y (k + 3, r) = 6(1 − r)δ(k − 0)

(k + 1)(k + 2)(k + 3)Y (k + 3, r) = 6(r − 1)δ(k − 0)

}

when k = 0, 2, . . .

(6.21)

From (3.2) and (6.15) we get,

Y (0, r) = 0, Y (0, r) = 0,

Y (1, r) = e1(r), Y (1, r) = e2(r),

Y (2, r) = f1(r), Y (2, r) = f2(r),

(6.22)

where e1(r) = y′(0, r), e2(r) = y′(0, r) f1(r) =
y′′(0,r)

2
and f2(r) = y′′(0,r)

2
. By

recursive method and substituting (6.22) into (6.21), we get

Y (3, r) = (1 − r), Y (3, r) = (r − 1),

Y (k, r) = 0, Y (k, r) = 0, for k ≥ 4.
(6.23)

Substituting all Y , Y in (6.22) and (6.23) into (3.4).

y(t, r) = e2(r)t + f1(r)t
2 + (r − 1)t3,

y(t, r) = e1(r)t + f2(r)t
2 + (1 − r)t3.

The constants e1(r), f1(r), e2(r) and f2(r) are evaluated from the boundary condi-

tions given in (6.15) at t = 1 and t = 2 as follows

e2(r) =
1

8
(r − 1), f1(r) = −(r − 1), e1(r) =

1

8
(r − 1), f2(r) = −(r − 1).

We get,

y(t) =

(

(1 − r)

8
(8t3 − 8t2 + t),

(r − 1)

8
(8t3 − 8t2 + t)

)

.(6.24)

Theorem 2.1, we see y(t, r) in (6.24) represents a valued fuzzy number when 8t3 −
8t2 + t ≤ 0. Hence (6.24) represents fuzzy number for t ∈ [1

4
(2 −

√
2), 1

4
(2 +

√
2), 2].

The (2)-derivative of (6.24) is given by

y′(t) =

(

r − 1

8
(24t2 − 16t + 1),

1 − r

8
(24t2 − 16t + 1)

)

and it is not a fuzzy number. Hence the fuzzy boundary value problem (6.13) has no

(2,2,2)-solution. Lower and upper branch of (1,1,1) solution of the fuzzy boundary
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value problem (6.15) is plotted for different r and for different t is plotted in Figure 4

and Figure 5 respectively. From Figure 5 we see that y is a fuzzy number valued

function.
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Figure 4. (1,1,1) solution for different r.
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Figure 5. y(t, r) and y(t, r) for different t ∈ [0, 1
4
] ∪ [1

4
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√
2), 2].

7. Conclusion

In this paper, we have shown that the differential transform method can be

successfully applied for the (1,1) and (2,2) solutions of the second order two-point

fuzzy boundary value problems and (1,1,1) and (2,2,2) solutions of the third order

three-point fuzzy boundary value problems. Construction of numerical methods for

finding all kind of solutions of fuzzy boundary value problems will be considered in

future.
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