
Neural, Parallel, and Scientific Computations 22 (2014) 127-148

QUANTUM K-MEANS CLUSTERING

SRIMANTA PAL1 AND PIJUSH KUMAR KOLEY2

1Electronics and Communication Sciences Unit, Indian Statistical Institute,
203 B T Road, Kolkata 700 108, India

2Department of Instrumentation and Electronics Engineering
Jadavpur University, Kolkata, India

e-mail: 1srimanta@isical.ac.in 2pijush-kolay@yahoo.com

ABSTRACT. In this paper we first propose a quantum subtraction algorithm along with its
quantum circuit and the quantum circuit for computation of the inverse Fourier transform which is
used in computation of a quantum mean. Finally we present a quantum mechanical version of the
K-means clustering algorithm. Quantum K-means clustering algorithm takes only O(LNK) time
while classical the K-means takes O(LNpK) after L iterations with N data points of dimension p.
This algorithm, thus, performs better than classical algorithm when dimension p of data is large
enough.

AMS (MOS) Subject Classification. 65C60, 68M15, 94C12

1. Introduction

Feynman observed that simulation of a quantum mechanical system on an ordi-

nary computer would entail an exponential slowdown in the efficiency. This is due

to the fact that the description of the size of the quantum system would become

exponential [21]. Feynman wrote [22] “But the full description of quantum mechanics

for a large system with R particles is given by a function ψ(x1, x2, · · · , xR, t) which

we call the amplitude to find the particles x1, x2, · · · , xR, and therefore, because it has

too many variables, it cannot be simulated with a normal computer with a number of

elements proportional to R” He suggested that the only way to overcome this

shortcoming was to simulate the quantum mechanical system on a computer governed

by quantum laws. Quantum computing has now emerged as a synthesis of ideas from

fields like computer science and quantum mechanics.

Deutsch [15] in 1985 first established a solid ground for quantum computation.

After this, research on quantum computing remained at a low profile until 1994 when

Shor [38] proposed quantum algorithms for factoring integers and extracting discrete

logarithms in polynomial time and in 1996 Grover [23] proposed a quantum search

algorithm for a database, which is quadratically faster than known classical algorithm.

Received December 18, 2013 1061-5369 $15.00 c©Dynamic Publishers, Inc.

128 S. PAL AND P. K. KOLEY

Over the last few years there has been a very rapid development of methods for

processing quantum information [2, 3, 4, 5, 8, 9, 10, 11, 12, 14, 16, 17, 18, 24, 25, 35,

37, 39, 42].

In this paper we present a quantum K-means clustering algorithm. This algo-

rithm is well known and widely used in pattern recognition. The time complexity of

its classical version is O(LNpK) but its quantum mechanical version takes O(LNK).

This will save enormous time for data mining type applications where dimension p

is large. This paper is organized as follows. In Section 2, the classical model of

K-means clustering algorithm is described with its time-complexity O(LNpK). Sec-

tion 3 presented few basic concepts of quantum computing techniques. In Section 4,

details for the design of quantum K-means clustering algorithm is described. This

also includes representation of data and centroides as well as quantum computations

of squared distance, minimum, mean, discrete logarithm, Fourier transform, inverse

Fourier transform, exponentiation. Time-complexity O(LNK) of quantum K-means

clustering algorithm is presented in this section. A brief concluding remark is also

given in Section 5.

2. Classical Model of K-Means Clustering Algorithm

The K-means clustering algorithm tries to partition a data set X ⊂ Rp into K-

groups X1, X2, . . . , XK such that Xi

⋂
Xj = φ,

⋃K
i=1Xi = X, |X| = N and each

Xi is homogeneous [1, 19, 32, 36]. The partitioning algorithm is deriven by a set of

centroides V = {v1,v2, . . . ,vK}, vi ∈ Rp, i = 1, 2, . . . , K, generated from the data

set X. The process requires a method for computing a centroid point vj, for some

subset of the data points X, and a metric D(xi,vj) between data point xi and the

centroid point vj.

The classical K-means clustering algorithm is described in Algorithm 1 which

iterates between two major steps such as (1) updating of the clusters and (2) updating

of the centroides.

We now provide an algorithmic description of a version of K-means algorithm.

Algorithm 1. Classical K-means clustering algorithm

Input: Data Xi, i = 1, 2, . . . , N of p dimensions

Output: Centroid vi, i = 1, 2, . . . , K

Step 1: [Initialization] Randomly generate a set of K centroides vi(0)

for i = 1, 2, . . . , K

t = 0

QUANTUM K-MEANS CLUSTERING 129

Step 2: [Loop for classification of X ⊂ Rp into K-groups for the

updation of centroides]

Repeat

nj = 0 ∀ j = 1, 2, . . . , K

for i = 1 to N do

begin

find j = Augminl||xi − vl(t)||2

vj(t+ 1) = vj(t+ 1) + xi

nj = nj + 1

end;

Step 2.1: [Updating the Centroids]

for i = 1 to K do

vi(t+ 1) =
vi(t+ 1)

ni

t← t+ 1

until ||V (t)− V (t+ 1)||2 ≤ ε

Step 3: [Termination] Stop

2.1. Analysis. Now we discuss the complexity of classical K-means algorithm. Con-

sider the data point xi and determine its closest representation vj, where i = 1, 2, . . . , N .

The following steps are involved

Step 1: Compute distance D(xi,vj), j = 1, 2, . . . , K, takes (3p − 1)K opera-

tions.

Step 2: Compute the minimum distance Dl = min1≤l≤kDi requires (K − 1)

operations.

The total time requirement for updating the cluster with N points is

N [(3p− 1)K +K − 1] = N(3pK − 1)

and for updating the center is Np+N +K.

Hence the time complexity for an iteration is

3NpK −N +Np+N +K = 3NpK +Np+K = O(NpK).

If the algorithm converges after L number of iterations then the time complexity for

Algorithm 1 is O(LNpK).

Before going into the proposed quantum mechanical version of K-means cluster-

ing algorithm, basic concepts of quantum computing will be discussed in Section 3.

130 S. PAL AND P. K. KOLEY

3. Basic Concepts of Quantum Computing Techniques

In this section we discuss quantum gate arrays or quantum acyclic circuits, which

are analogous to acyclic circuits in classical computer science. We also discuss about

reversible computation. Besides the network model of quantum computer, there are

two other types of models such as quantum Turing machine [8, 15, 43] and quantum

cellular automata [22, 29, 30, 31, 33, 34]. Quantum Turing machine and quantum

gate arrays can compute some function with a small probability of error in polynomial

time [43].

Suppose a system has n components and each component can have two states.

Classically we can represent the system with n bits, but in quantum mechanics we

need 2n complex numbers for a complete description of the system, i.e., the state of

the quantum system is a point in a 2n-dimensional Hilbert space. A quantum state

is represented by the ket notation (first used by Dirac). The Hilbert space associated

with this quantum system is the vector space with these 2n states as basis vectors.

A unit-length vector in this Hilbert space represents a state of the system at any

instant of time. In quantum computation the superposition of a state is represented

by
∑2n−1

i=0 αi|xi〉 where, αi = amplitude of ith state such that
∑

i |αi|2 = 1 and |xi〉
= a basis vector of the Hilbert space.

Quantum circuits allow only local unitary transforms, i.e., unitary transforms

on a fixed number of qubits [2, 4, 5]. Two qubit transforms are more useful than

any general unitary transform which takes place on n-qubits, because it is not easy to

implement n-qubit transforms, whereas two-bits transformations can be implemented

by relatively simple physical systems. These two qubits transformations are the heart

of a quantum computer. For quantum computation there are two well known quantum

gates, NOT and controlled-NOT gates. NOT gate has a single qubit input and

controlled-NOT gate has two qubits input. The input and output of a NOT gate and

a controlled-NOT gate are shown below.

A NOT gate has a single qubit input and a controlled-NOT gate has two qubits

input. The input and output of a NOT gate and a controlled-NOT gate are shown

in Table 1 and Table 2 respectively.

Table 1: Input and output relation of a NOT gate

Input qubit Output qubit

|0〉 |1〉
|1〉 |0〉

QUANTUM K-MEANS CLUSTERING 131

Table 2: Input and output relation of a controlled-NOT gate

Input qubit Output qubit

|00〉 |00〉
|01〉 |01〉
|10〉 |11〉
|11〉 |10〉

As mentioned earlier quantum circuits allow only local unitary transforms. So to

realize these gates we need unitary matrices. It is not difficult to construct the

unitary matrices to achieve the desired goals. The rows of such a matrix correspond

to input basis vectors and the columns represent output basis vectors. If the ith basis

vector, when applied as an input to the gate, produces the jth basis vector as the

output, then the (i, j)th entry of the matrix is set to the amplitude of the output

vector (in this case the amplitude is 1); otherwise, it is set to 0. Thus the matrix

MNOT corresponding to the NOT gate is shown in Table 3.

Table 3: Unitary matrix corresponding to a NOT gate

|0〉 |1〉
|0〉 0 1

|1〉 1 0

MNOT =

(
0 1

1 0

)
.

Similarly, for a controlled-NOT gate the unitary matrix MCNOT is shown in Table 4.

Table 4: Unitary matrix corresponding to a controlled-NOT gate

|00〉 |01〉 |10〉 |11〉
|00〉 1 0 0 0

|01〉 0 1 0 0

|10〉 0 0 0 1

|11〉 0 0 1 0

MCNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .

However for simulating AND, OR, NAND, NOR gates we need Taffoli gate [40].

The input-output relation for the Taffoli gate is Table 5.

Table 5: Unitary matrix corresponding to a NOT gate

Input Output Input Output

|000〉 |000〉 |001〉 |001〉
|010〉 |010〉 |011〉 |011〉
|100〉 |100〉 |101〉 |101〉
|110〉 |111〉 |111〉 |110〉

Taffoli gate is a two controlled-output (taget input) gate. The schematic diagram

of a Taffoli gate is shown Fig. 1(a). In this figure there are two controlling inputs,

|x1〉 and |x2〉, and one input qubit. If two controlling qubits are |1〉|1〉 then the input

qubit flips, i.e., if the input qubit is |0〉, then it is changed to |1〉 and vice versa.

132 S. PAL AND P. K. KOLEY

Figure 1. (a) Taffoli gate and (b) Quantum AND gate.

Figure 2. Quantum copy gate.

Using Taffoli gate we can implement other gates also. An AND gate can be easily

realised from Taffoli gate by simply keeping the input qubit always to |0〉. Its imple-

mentation is shown in Fig. 1(b). Similarly, we can implement controlled copy gate

using Taffoli gate as shown in Fig. 2. In this case one control qubit controls the copy

operation and the control qubit is the qubit that is to be copied and target qubit is

set to 0.

A quantum gate array is a set of quantum gates with logical “wires” connecting

their inputs and outputs. When quantum gate arrays are associated with a quantum

Turing machine, these gate arrays must be in a uniform complexity class. To make

it uniform two additional requirements are added to the definition of quantum gate

arrays. The first one is that the design of the gate array be produced by a polynomial-

time computation and the second one is the standard part of the definition of analog

complexity classes. The entries in the unitary matrix for gate representation must be

computable numbers.

An important aspect of quantum computation is reversibility. The quantum gate

arrays perform reversible computations. That is if we know the quantum state on

the wires leading out of a gate, we can tell unambiguously the input state of the

gate. This reveals that the laws of physics are reversible despite the macroscopic

arrow of time. In a classical computer energy is dissipated so the computations

are thermodynamically irreversible. But in case of a quantum computer we have to

maintain the superposition of quantum states throughout the computation, so it uses

reversible computation. This imposes extra costs when a classical computation is

performed on a quantum computer. This raises another issue, if we want to perform

a deterministic computation, we have to convert it into a reversible one. In classical

paradigm a Turing machine computes output from input according to its control

function non-reversibly, i.e., we cannot get back the input from its output. In this

QUANTUM K-MEANS CLUSTERING 133

case there are two types of tapes associated with the Turing machine, one is input

tape and other is output tape. To convert the computation on Turing machine from

irreversible to reversible we add another tape (initially blank) in which it saves all

information of intermediate states. We can call these information history and the

tape as record tape. History must be of sufficient detail so that the preceding state

can be uniquely determined by the present state. At the end of the computation

only the input and output should be present and the record tape must be erased. A

tape full of random data cannot be erased except by an irreversible process. But the

data on the record tape are not random, there exists mutual redundancy between

the data and the machine that produced it, which will be helpful to erase the data

reversibly from the record tape. For example, suppose we get an output from an

input and in the record tape there is sufficient history of the operation performed

on the input. If we reverse the operation then the record tape returns to its original

blank condition. But the backward steps would convert the output into the original

input. As a result the whole operation will be useless. Annihilation of desired output

can be prevented simply by making an extra copy of it on a separate tape after the

completion of forward computation and before backward computation. During the

copying operation the data on record tape remain unaltered. This copying operation

must be done reversibly. Now if backward or inverse operation is applied, the output

will be erased out not the copy of the output. As a result at the end of whole

computation there will be only the input and output. Lecerf [27], Bennett [6, 7]

already showed that any non-reversible deterministic computation can be converted

into a reversible deterministic computation. In 1989 Bennett [7] has given a method

to convert a non-reversible deterministic computation to a reversible deterministic

computation using a Turing machine. Table 6 shows Bennett’s proposed method.

Table 6: Reversible deterministic computation using Bennett’s method [7]

Step Input tape Record tape Working tape Output tape

1 input —– —– —–

2 input record(R) output ——

3 input record(R) output output

4 input —— —— output

5 input record(R−1) input output

6 —– record(R−1) input output

7 —– —– —— output

Bennett’s algorithm uses four tapes (Table 6) associated with the Turing machine:

input tape, record tape, working tape and output tape. To convert a non-reversible

deterministic computation to a reversible deterministic computation sufficient history

must be kept to reverse back to previous state. In case of classical computation we do

not keep any history and we cannot go back to previous state. Record tape is used in

134 S. PAL AND P. K. KOLEY

Bennett’s method to store the intermediate state of the computation and final output

is obtained from the output tape. According to Table 3, the first 4 steps, i.e., steps 1

to 4 compute reversibly the output from the input using function R and next 3 steps,

i.e., steps 4 to 7 computes reversibly input from output using function R−1. After the

completion the output is obtained from the output tape. Now we describe the action

of each step.

Algorithm 2. To convert a non-reversible deterministic computation to a reversible

deterministic computation (Bennett’s method [7]).

Input: Input record

Output: Output record

Step 1: Input is copied to input tape.

Step 2: Output is computed from input and sufficient history of compu-

tation is stored in the record tape and the output is stored in

working tape.

Step 3: Output is copied into output tape from working tape.

Step 4: History and output are erased from record tape and working

tape respectively.

Step 5: Input is computed from output using inverse function and suffi-

cient history of computation is stored in record tape and input

is stored in working tape respectively.

Step 6: Input is erased from input tape.

Step 7: Input and record are erased from working tape and record tape

respectively. Only output remains in output tape.

Step 8: [Termination] Stop

In the above computation we need to compute R(input) and R−1(input). These

two functions must be computable in polynomial time otherwise computation time

will increase exponentially with the increase of input.

Now computations can be made reversible with a cost of constant factor time and

space. Even if classical computation takes much less space and time, when we make

it reversible, by Algorithm 2 it may take a lot of space. Levine and Sherman [28]

proposed another method which takes more time but less space. There is no general

method to ensure that a method will not take much time and space.

If we try to convert a non-reversible deterministic computation to reversible de-

terministic computation through a network all classical gates (AND, OR, NAND,

NOR) have to be converted into reversible gates using Taffoli gate and for this we

need additional input bits which must be reset to 0 after the completion of computa-

tion, otherwise they will affect the interference pattern in quantum computation. A

quantum network is a quantum computing device consisting of quantum logic gates

and these gates operate synchronously. The network inputs are stored in qubits where

QUANTUM K-MEANS CLUSTERING 135

a qubit is prepared appropriately at the beginning of each computation performed

by the network. Inputs are encoded in a binary form as a computational basis for

selected qubits. This is known as quantum register. For example the binary form

of number 410 or 4 is (100)2 and it is represented in a quantum register with three

qubits in state |1〉
⊗
|0〉
⊗
|0〉.

Here we provide a compact notation:

|b〉 = |bn〉
⊗
|bn−1〉

⊗
· · ·
⊗
|b1〉

⊗
|b0〉

which represents a quantum register of n qubits prepared with the value

b = 20b0 + 21b1 + · · ·+ 2nbn.

Similarly, if we require more qubits then expand it as we do in a binary representa-

tion. Each computation is a unitary transform which takes input as initial state and

produces an output as the final state.

4. Design of Quantum K-Means Clustering Algorithm

Now we realize the clustering algorithm described in Algorithm 1, we need mech-

anisms to realize the following in a quantum paradigm:

1. Representation of a data point, xi ∈ Rp, so that it can be identified and pro-

cessed.

2. Representation of centroids so that they can be manipulated.

3. Computation of squared distances.

4. Finding the minimum of a set of real values.

5. Addition of real vectors.

6. Subtraction of real vectors.

Now we shall explain how each of the above issues can be addressed in a quantum

computing paradigm.

4.1. Representation of Data. Let X = {x1,x2, . . . ,xN} ⊂ R and n is the smallest

integer such that N ≥ 2n. k is the smallest integer such that K ≥ 2k. Suppose to

store a real value we need r qubits (this will depend on the desired precision) then to

store a data point in Rp (i.e., xi ∈ Rp) we need at least pr qubits. In addition to this

we need n qubits to store the index of a data points and k qubits to store the index

of the centroid closest to a data point. Hence, to store xi ∈ Rp we need a composite

register with (n+ k + rp) qubits as shown in Fig. 3(a).

136 S. PAL AND P. K. KOLEY

Figure 3. (a) Data register (b) centroidnew register (c) centroidold

register (d) integer register (e) constant register

4.2. Representation of Centroids. As stated earlier the number of centroids is K

and k is a smallest number such that K ≥ 2k. Centroids are also in p dimension. So

to store a centroid at least pr qubits are needed. Again we need another k qubits

to store the index of centroids. Hence, to store a centroid we need another type

of composite register with (k + rp) qubits as shown in Fig. 3(b). For our proposed

algorithm we will need two sets of such composite register, one set for storing the new

set of cetroids and other set for storing the old set of centroids.

In addition to these there will be temporary composite registers to hold the

intermediate results of computation and two constant registers each with only two

qubits. These two registers will be used to store 0 and 1. The first qubit will be

needed for identification, while the second qubit for the value. These two registers

are shown in Fig. 3(e). These two registers will be used for quantum arithmatic

operations. There will be another integer type composite register with (k+n) qubits,

(Fig. 3(d)). The first k qubits will be used for indicating the centroid index and the

next n qubits will be used to indicate number of data points associated to a cluster.

4.3. Quantum Squared Distance Computation. The squared distance compu-

tation requires the following basic operations: (a) subtraction, (b) addition and (c)

squaring.

4.3.1. Quantum Subtraction. In the classical paradigm, subtraction operation is per-

formed using logic gate network which is irreversible. But in quantum computing

QUANTUM K-MEANS CLUSTERING 137

Figure 4. (a) Quantum subtraction operation and (b) quantum ad-

dition operation.

paradigm subtraction operation must be reversible. A quantum subtraction oper-

ation was first proposed by Vedral et al. [41] and was modified by Koley and Pal

[26].

Consider two quantum registers R1 and R2. R1 contains data x1 and R2 contains

x2. Let us define the ith qubit of R1 as x1i and that of R2 as x2i . If a is a qubit then

a denotes NOT a.

To realize subtraction, we compute the borrow bi as

(4.1) bi ← (x1i AND x2i) OR (x1i AND bi−1) OR (x2i AND bi−1)

and the resultant output is computed by

ri = x1i XOR x2i XOR bi−1.

Subsequently we reverse all these operations in order to restore every qubit of

the temporary register to its initial state 0 as we use this network for subtraction

repeatedly.

The quantum version of the above procedure can be written as

|x1〉|x2〉|0〉 → |x1〉|x2〉|x1 − x2〉

and its quantum circuit is shown in Fig. 4(a). This figure has two parts, one is

for resultant computation and other is for computation of the borrow. The resultant

computation module accepts three inputs and produces three outputs. Here resultant

is generated by XOR-ing all inputs. The borrow calculation is slightly difficult. It

accepts four inputs and produces four outputs as shown in Fig. 4(a).

This subtraction operation is defined for two scalar numbers. We can easily

compute subtraction operation between two vectors using the same circuit. To do this

138 S. PAL AND P. K. KOLEY

we need two composite registers which will store the data and for each component we

perform the subtraction operation and store the result in another composite register.

4.3.2. Quantum Addition. In the classical paradigm, addition is performed using logic

gate network which is irreversible. But in the quantum paradigm addition must be

reversible, so we use quantum addition as described in [41] and [26].

Consider two quantum registers R1 and R2. R1 contains x1 and R2 contains x2.

The ith qubit of R1 is denoted by x1i and that for R2 is x2i .

To realize addition, we compute carry ci as

ci = (x1i AND x2i) OR (ci−1 AND (x1i OR x2i))

and the sum (result) is computed as

si = x1i XOR x2i XOR ci−1.

Subsequently we reverse all these operations in order to restore every qubit of the

temporary register to its initial state 0 as we use this network for repeated addition.

Therefore, the quantum addition operation can be done by the following operation

|x1i〉|x2i〉|0〉 → |x1i〉|x2i〉|x1i + x2i〉

and its quantum circuit is shown in Fig. 4(b). It has two parts, one is for sum

computation and other is for carry computation. The sum computation module

accepts three inputs and produces three outputs. Here sum is generated by an XOR

operation with all inputs. The carry computation module accepts four inputs and

produces four outputs resulting from the operations shown in Fig. 4(b).

This quantum addition scheme is defined for two scalars. To perform quantum

addition of two vectors, we have to store these two vectors in two composite quantum

registers and for each component we have to perform the quantum addition operation.

The results are then stored in another composite quantum register.

4.3.3. Quantum Squaring. In case of quantum squaring the computation algorithm

must be reversible, so we use the procedure as described in [41]. Square of a number

can be computed by simple multiplication operation between two such numbers. And

multiplication is equivalent to repeated additions.

The quantum squaring of a number can be performed by the following operations:

Suppose x is stored in a quantum register R of n qubits and we try to compute

x2. We can write x as x = 20x0 + 21x1 + · · ·+ 2n−1xn−1. Let us denote the ith qubit

of R as xi. Initially, the quantum register is in state |0〉. The number 2ixi is added

conditionally depending on the ith qubit xi and another control bit c (Fig. 5). In

QUANTUM K-MEANS CLUSTERING 139

Figure 5. Quantum multiplication operation.

other words we implement the following.

(4.2) |c〉|x〉|0〉 =

{
|c〉|x〉|x× x〉 if |c〉 = |1〉
|c〉|x〉|x〉 if |c〉 = |0〉

If |c〉|xi〉 = |1〉|1〉 then the ith qubit of the register is loaded with 2ix, otherwise with

0. To do this we use a Taffoli gate in which |c〉 and |xi〉 act as control bits. If |c〉 = |0〉
only 0 is added at each stage to the result register. But as the desired state must be

|c〉|x〉|x〉, so a copy operation is performed. The copy operation is implemented by

the rightmost elements of the network as shown in Fig. 5. The conditional copy is

implemented using an array of Taffoli gates as shown in Fig. 2.

The above squaring operation is performed for a scalar x. If we want to compute

the squaring operation on different components of a vector, then the vector data point

must be stored in a composite quantum register and for each component we use the

squaring operation and store the results in another composite quantum register.

4.4. Quantum Minimum Square Distance Computation. For conventional com-

puter there are many algorithms to find minimum from a given set of scalars. In

quantum computing paradigm to find the minimum of a set of scalars an algorithm

is suggested in [20]. The minimum computation is basically a searching operation

Figure 6. Data register used in minimum computation.

on a given scalar data set. Suppose, N scalars are stored in an array of registers in

unsorted manner. Registers are composite type and shown in Fig. 6. Register consists

two parts, in one part data index is stored and in other part the value is stored. The

data index part consists of n qubits where n is the smallest integer such that N ≥ 2n

and the other part has r qubits (this will depend on the precision required). So each

register consists of (n+ r) qubits. We denote this set of register by T , i.e., if we write

140 S. PAL AND P. K. KOLEY

Figure 7. Integer register for storing N

T [i], then it indicate ith data. The quantum search algorithm [13, 14] will find the

index i such that T [i] is minimum.

4.4.1. Quantum Search. The minimum computation [20] is described in Algorithm 3.

Algorithm 3. Determination of minimum item and its index.

Input: Data items and their index

Output: Minimum item and its index

Step 1: Initialize the threshold index 0 ≤ θ ≤ N − 1 using an uniformly

distributed random number generator.

Step 2.1: Set the register as
∑N−1

j=0
1√
N
|j〉|θ〉, ∀ j = 0, 1, . . . , N − 1 and

mark every register j for which T [j] < T [θ], where T denotes

set of register.

Step 2.2: Perform the quantum search algorithm as in [13].

Step 2.3: Measure the first register: let θ′ be the result.

If T [θ′] < T [θ] then threshold index change to θ′.

Step 3: Return θ as the desired index for minimum item.

Step 4: [Termination] Stop

4.5. Quantum Mean Computation. In the computation of the mean of N num-

bers, first we add these numbers and then divide that sum by N . For the quantum

computing paradigm we propose a new algorithm to find mean of a given set of scalars.

In this algorithm we use “discrete logarithm algorithm” [38] and “exponentiation al-

gorithm” [41] as subroutines. To store the real data we need registers. We use the

same type of register as shown in Fig. 6. Again to store the value of N we need an

integer type register. This register will be composite type and one part consists of

one qubit by which we identify it and other part stores the value of N . There is n

qubits in this part, where n is smallest integer such that N ≥ 2n. The register is

shown in Fig. 7.

The mean of N real values computation is described in Algorithm 4.

Algorithm 4. Quantum mean computation.

Input: N real values.

QUANTUM K-MEANS CLUSTERING 141

Output: Mean

Step 1: Compute S, the sum of N real values. This can be done by

addition algorithm [41, 26].

Step 2: Compute log2 S and log2N using “discrete logarithm” algorithm

described next.

Step 3: Compute log2 S − log2N and round off the result into integer.

Step 4: Compute antilogarithm of log2 S − log2N using “exponential

algorithm” described later.

Step 5: [Termination] Stop

We have used two algorithms, “discrete logarithm” and “exponential algorithm”.

Now we describe them one after another.

4.5.1. Quantum Discrete Logarithm. In quantum computing paradigm we compute

discrete logarithm using the procedure suggested in [38]. The discrete logarithm

problem can be described as follows: given, a real number s, we find another real

number γ1 such that s = 2γ1 . Then γ1 is the logarithm of s with respect to the base 2.

The discrete logarithm algorithm uses two exponentiations and two quantum Fourier

transforms. Inputs for the algorithm are y1,y2 and f(y1, y2) = sy12y2 is computed

reversibly. We store this inputs into three registers. To store y1 and y2 we need

registers with O
(
[log t] + log

(
1
ε

))
qubits where t is the period of the function and ε is

the precision required. The size of the third register depends on the desired precision

of the function. All these registers are initially set to zero.

The procedure is as follows.

Algorithm 5. Quantum discrete logarithm.

Input: y1, y2

Output: γ1, γ2

Step 1: Set the initial state of all three registers to 0, i.e., |0〉|0〉|0〉.
Step 2: In the first two registers, put y1 and y2 and create superposi-

tion using Walsh-Hadamard gate. So the contents of the three

registers become
1
2α

∑2α−1
y1=0

∑2α−1
y2=0 |y1〉|y2〉|0〉

Step 3: Compute function f(y1, y2) and store into the third register.

Hence, contents of the three registers become
1
2α

∑2α−1
y1=0

∑2α−1
y2=0 |y1〉|y2〉|f(y1, y2)〉.

Step 4: Apply Fourier transform [38] on the third register and contents

of the register now changed to

1
2α
√
γ2

∑γ2−1
β=0

∑2α−1
y1=0

∑2α−1
y2=0 e

2πj
(γ1βy1+βy2)

γ2 |y1〉|y2〉|F (γ1β, β)〉

= 1
2α
√
γ2

∑γ2−1
β=0 [

∑2α−1
y1=0 e

2πj
(γ1βy1)
γ2 |y1〉][

∑2α−1
y2=0 e

2πj
(βy2)
γ2 |y2〉]|F (γ1β, β)〉

142 S. PAL AND P. K. KOLEY

Step 5: Apply inverse Fourier transform on the first and second registers.

The contents of the three registers become

1√
γ2

∑γ2−1
β=0 |

γ̃1β
γ2
〉| β̃
γ2
〉|F (γ1β, β)〉

where Ã denotes a good approximation of A.

Step 6: Measure the first two registers and from the first register get γ̃1β
γ2

and from the second register get β̃
γ2

.

Step 7: Apply generalized continued fraction method [38] to compute

γ1, γ1 is the desired logarithm of a number.

Step 8: [Termination] Stop

In the above algorithm we use Fourier transform and inverse Fourier transform.

So we first describe how Fourier transform is performed in quantum computation

domain.

Figure 8. Quantum Fourier transform operation.

4.6. Quantum Fourier Transform [38]. First we consider the classical paradigm.

Given x0, x1, . . . , xN−1, each xi a complex number the transforms y0, y1, . . . , yN−1 are

given by yk ≡ 1√
N

∑N−1
i=0 xie

2πjik
N , k = 0, 1, . . . , N − 1.

The quantum discrete Fourier transform is the same transform, but the compu-

tation is done in a different manner. We consider a set of orthogonal basis |0〉, |1〉, . . . ,
|N − 1〉 where ith basis |i〉 is |i〉 → 1√

N

∑N−1
k=0 e

2πjik
N |k〉.

Equivalently, for arbitrary state we may write
∑N−1

i=0 xi|i〉 →
∑N−1

k=0 yk|k〉. For

simplicity we considerN = 2n, where n is some integer and the basis |0〉, |1〉, . . . , |2n−1〉
are the computational basis for a n qubits quantum computer. So, i = i1i2 . . . in or

i = i12
n−1 + i22

n−2 + · · ·+ in20.

Now we do a little manipulation to rearrange the relation to get a simpler struc-

ture that can be computed by gate structure.

|i〉 → 1

2
n
2

2n−1∑
k=0

e
2πjik
2n |k〉

=
1

2
n
2

1∑
k1=0

· · ·
1∑

kn=0

e

2πji

0B@
n∑

m=1

km2−m
1CA
|k1 · · · kn〉

QUANTUM K-MEANS CLUSTERING 143

=
1

2
n
2

1∑
k1=0

· · ·
1∑

kn=0

n⊗
m=1

e2πjikm2−m|km〉

=
1

2
n
2

n⊗
m=1

[
1∑

km=0

e2πjikm2−m |km〉

]

=
1

2
n
2

n⊗
m=1

[|0〉+ e2πji2
−m|1〉]

=
(|0〉+ e2πjO.in|1〉)(|0〉+ e2πjO.in−1in|1〉) · · · (|0〉+ e2πjO.i1i2···in|1〉)

2
n
2

In the above expression we use the notation 0 · imim−1 · · · in to represent the binary

fraction im
2

+ im+1

4
+ · · ·+ in

2n−m+1 .

The above expression can be implemented by gate structure and it is shown in

Fig. 8. In Figure 8 we use Fk and the matrix associated with it is

Fk ≡

(
1 0

0 e
2πj

2k

)
.

Fk expression can be implemented easily by phase gates. Above we computed Fourier

transform for scalar numbers. If the data points are in p dimensions, then for each

component we have to perform the same operation. The data must be stored in a

composite quantum register and the result of the operation will also be stored in

another composite quantum register.

4.7. Quantum Inverse Fourier Transform. The inverse Fourier transform is the

reverse action of the Fourier transform and similarly we can write as

|i〉 → 1√
N

N−1∑
k=0

e
−2πjik
N |k〉.

We propose a gate structure of the circuit to perform the inverse Fourier transform

is shown in Fig. 9. Here we use gate IF which is a combination of two gates, one is Z

and other is F . The unitary operator corresponding to each gate is shown below:

Z ≡

(
1 0

0 −1

)
.

The operator Fk is the same as used with the Fourier transform algorithm. If we

want to compute inverse Fourier transform operation for a sequence of vectors then

the vector quantity must be stored in a composite quantum register and we need to

perform the above mentioned operation for every component.

144 S. PAL AND P. K. KOLEY

Figure 9. Quantum inverse Fourier transform operation.

Figure 10. Quantum exponential operation.

4.8. Quantum Exponentiation Algorithm. To compute antilogarithm in quan-

tum computing paradigm we follow the procedure described in [41]. Suppose x is

stored in a quantum register R and our objective is computation of 2x. We de-

fine the ith qubit of R as xi. We can write a number x in binary form as x =

20x0 +21x1 +22x2 + · · ·+2nxn. So 2x can be written as 2x = 220x0 ·221x1 ·222x2 · · · 22nxn .

As a result exponentiation can be computed by setting initially the result register to

|1〉 and computing n multiplication by 22i depending on the value of the qubit |xi〉.
The whole operation is as follows.

|220x0+···+2i−1xi−1〉|0〉 →

{
|220x0+···+2i−1xi−1〉|220x0+···+2i−1xi−1〉 if |xi〉=0

|220x0+···+2i−1xi−1〉|220x0+···+2ixi〉 if |xi〉=1

The above operation can be implemented by the gate structure shown in Fig. 10.

We have devised algorithm for computation of mean of N number of real values.

If we want to compute the mean of N data points in Rp, then the algorithm has to

be applied p times to compute the mean vector.

Now we describe the quantum mechanical K-means algorithm.

4.9. Quantum Mechanical K-means Algorithm. The quantum mechanical ver-

sion of K-means algorithm is almost similar to the classical K-means algorithm which

QUANTUM K-MEANS CLUSTERING 145

is described in Section 2 but the representation of data and operations applied on the

data are different. The algorithm is described below.

Algorithm 6. Quantum K-means clustering.

Input: N data points, X1, i = 1, 2, · · · , N
Output: K centroides, vi for i = 1, 2, · · · , K.

Step 1: Set the data points into the registers. Set the first k qubits

of every register to zero, next n qubits store data index and

next every r qubits represent a component of a data point. The

registers are represented as
N−1∑
i=0

K−1∑
j=0

p−1∑
l=0

|i〉|j〉|xl〉.

Step 2: Randomly set K number of centroides in K registers. This set

of registers will be denoted by voldi ; i = 1, 2, · · · , K. Also set all

K registers for the new centroides vnewi ; i = 1, 2, · · · , K to zero.

The first k qubits of voldi and vnewi store the value of i.

Step 3: Repeat

Step 3.1: For j = 1, 2, · · · , k set the first k qubits of the integer register

IRj to j and the remaining n qubits to zero.

Step 3.2: for i=1 to N

Step 3.2.1: for j=1 to K

Compute squared distance between (xi and voldj).

Compute minimum of the K-squared distances.

The index of closest centre is marked in the first k-qubits of the

data point xi.

Add xi to vnewl when the first k-qubits of data register for xi

contains l.

Add 1 to the integer register IRl.

Step 3.3: For i = 1 to K

vnewi =
voldi
IRi

.

Step 3.4: ε = ||V old − V new||
Step 3.5: V old ← V new.

Step 4: Until (ε < ε0)

Step 5: [Termination] Stop

The above algorithm requires three major computations: squared distance, min-

imum and mean. All these operations can be performed on the data points efficiently

if we store these properly. We have already discussed in Section 4.1 how we store

the data points. Finding of the squared distance between two points is discussed in

Section 4.3. Minimum squared distance can be found using Algorithm 3 described in

Section 4.4. After finding the minimum squared distance we add the data points to

146 S. PAL AND P. K. KOLEY

the appropriate centroid. To find the new cluster centroid we just divide vnewi by the

corresponding integer register(IRi).

4.10. Analysis of the Algorithm. The time complexity for this quantum K-means

clustering algorithm depends on the complexity of the different modules such as (1)

squared distance computation, (2) minimum computation, and (3) mean computation

using quantum computing techniques.

In squared distance computation we have performed subtraction, squaring and

addition operations serially. As we have designed a quantum network to perform

these operations, so operations will take constant time. We have considered a set of

data X = {x1,x2, . . . ,xN} in p dimensions. For each components we have to compute

subtraction and squaring operations. The computation of squared distance takes K

operations. Time requirement for the computation of minimum squared distance

is O(
√
K) as described in [20]. The time requirement for the process of updating

the cluster is N [K + O(
√
K)]. Mean computation consists of discrete logarithm

and exponentiation. Exponentiation takes constant time as it is performed through

gate structure. Discrete logarithm computation time depends on the computation of

Fourier transform and inverse Fourier transform. Since these operations are performed

through gate structures, time requirement is also constant. The time requirement for

updating centroides is N + K. Hence time complexity for an iteration is N [K +

O(
√
K)] +N +K = O(NK). If the algorithm converges after L number of iterations

then the time complexity for the algorithm is O(LNK).

5. Conclusion

In this paper a K-means clustering algorithm using quantum computing tech-

nique is proposed. Unlike traditional K-means clustering, which takes O(LNpK)

time, its quantum mechanical version takes only O(LNK) time. This could save a

lot of time for data mining type applications where often dimension of the data is on

the order of hundreds. The proposed algorithm can be improved if we use exponen-

tial search [14] algorithm. In this case minimum finding will take only O(2(dlog4Ke))
iterations. However, building quantum gates or quantum computer is a difficult task.

There are five different techniques namely, simple harmonic oscillator, photons and

nonlinear optical media, ion trap, NMR and cavity quantum electrodynamics. These

are of course, still in the experimental stage.

REFERENCES

[1] G. H. Ball and D. J. Hall (1967). A clustering technique for summarizing multivariate data.
Behavioral Science, 12, pp. 153–155.

QUANTUM K-MEANS CLUSTERING 147

[2] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A.
Smolin and H. Weinfurther (1995). Elementary gates for quantum computation, Phys. Rev.
A., 52, pp. 3457–3467.

[3] P. Benioff (1980). The computer as a physical system: A microscopic quantum mechanical
Hamiltonian model of computers as represented by Turing machines.Journal of Stat. Phys.,
22, pp. 563–591.

[4] P. Benioff (1982). Quantum mechnical Hamiltonian models of Turing machines, J. Statist.
Phys., 29, pp. 515–546.

[5] P. Benioff (1982). Quantum mechnical Hamiltonian models of Turing machines that dissipate
no energy, Phys. Rev. Letter, 48, pp. 1581–1585.

[6] C. H. Bennett (1973). Logical reversibility of computation, IBM J. Res. Develop., 17, pp.
525–532.

[7] C. H. Bennett (1989). Time/space trade-offs for reversible computation, SIAM J. Comput.,
18, pp. 766–776.

[8] E. Bernstein and U. Vazirani (1993). Quantum complexity theory, Proc. 25th Annual ACM
Symposium on Theory of Computing, Association for computing Machinery, New York, pp.
11–20.

[9] A. Berthiaume and G. Brassad (1992). The quantum challenge to structural complexity theory,
Proc. Seventh Annual Structure in Complexity theory conference, IEEE comp. Scociety Press,
Los Alamitos, CA, pp. 132–137.

[10] A. Berthiaume and G. Brassad (1994). Oracle quantum computing, J. Mod. Optics, 41, pp.
2521–2535.

[11] M. Biafore (1994). Can quantum computers have simple Hamiltonians, Proc. Workshop on
Physics Computation: PhysComp ’94, IEEE Computer Society Press, Los Alamitos, CA, pp.
63–68.

[12] P. van Emde Boas (1990). Machine models and simulations, in Handbook of theoretical com-
puter science vol. A. J. van Leeuwen ed. Elsevier, Amsterdam, pp. 1–66.

[13] M. Boyer, G. Brassard, P. Hoyer and A. Tapp (1998). Tight bounds on quantum searching.
arXiv:quant-ph/9605034.

[14] G. Chen and Z. Diao (2000). Exponentially fast quantum search algorithm. arXiv:quant-
ph/0011109.

[15] D. Deutsch (1985). Quantum theory, the Church-Turing principle and universal quantum com-
puter, Proc. Roy. Soc. London Ser. A., 400, pp. 96–117.

[16] D. Deutsch, A. Barenco and A. Ekert (1995). Universality of quantum computation, Proc.
Roy. Soc. London. Ser. A., 449, pp. 669–677.

[17] D. Deutsch and R. Jozra (1992). Rapid solution of problems by quantum computation, Proc.
Roy. Soc. London Ser. A., 439, pp. 553–558.

[18] D. P. DiVincenzo (1995). Two-bit gates are universal for quantum computations, Phys. Rev.
A., 51, pp. 1015–1022.

[19] R. O. Dudo and P.E. Hart (1973). Pattern classification and Scene analysis, John Wiley and
Sons.

[20] C. Durr and P. Hoyer (1996). A quantum algorithm for finding the minimum. arXiv:quant-
ph/9607014.

[21] R. P. Feynman (1982). Simulating physics with computers. Intl. J. Of Theoretical Physics, 21,
pp. 467.

[22] R. P. Feynman (1986). Quantum mechanical computers, Found. Phys., 16, pp. 507–531.

148 S. PAL AND P. K. KOLEY

[23] L. K. Grover (1996). A fast quantum mechanical algorithm for database search. Proceedings
28th Annual Symposium on the Theory of Computing (STOC), pp. 212–219.

[24] M. Hirvensalo (2002). Quantum computing - Facts and folklore, Natural Computing, 1, pp.
135–155.

[25] M. Hirvensalo (2001). Quantum computing. Springer.
[26] P. K. Koley and S. Pal, Comments on “Quantum networks for elementary arithmetic opera-

tions”, Neural, Parallel and Scientific Computation 20:11–16, 2012.
[27] Y. Lecref (1963). Machines de Turing reversibles. Recursive insolubilite en n ∈ N de l’equation

u = θnu, ou θ est un isomorphisme de codes. C. R. Acad. Francaise Sci., 257, pp. 2597–2600.
[28] R. Y. Levine and A. T. Sherman (1990). A note on Bennett;s time-space tradeoff for reversible

computations, SIAM J. Comput., 19, pp. 673–677.
[29] S. Lloyd (1993). A potentially realizable quantum computer. Science, 261, pp. 1569–1571.
[30] S. Lloyd (1994). Envisioning a quantum supercomputer, Science, 263, pp. 695.
[31] S. Lloyd (1995). Almost any quantum logic gate is universal. Phys. Rev. Lett., 75, pp. 346–349.
[32] J. B. MacQueen (1967). Some methods for classification and analysis of multivariate observa-

tions. Proceedings of 5th Barkeley Symposium, 2, pp. 281–297.
[33] N. Margolus (1986). Quantum computation. Ann. New York Acad. Sci., 480, pp. 346–349.
[34] N. Margolus (1990). Parallel quantum computation. Complexity, Entropy and the Physics of

Information, Santa Fe Institute Studies in the Sciences of Complexity, Vol. VIII, W. H.
Zurek, ed., Addision Wesley, Reading, MA, pp. 273–287.

[35] M. A. Nielsen and I. L. Chuang (2000). Quantum computation and quantum information.
Cambridge University Press.

[36] S. Z. Selim and M. A. Ismail (1984). K-means type algorithms: A generalized Convergence
theorem and characterization of local optimality. IEEE Tr. on PAMI, vol.6(1), pp. 81–87.

[37] D. Simon (1994). On the power of quantum computation, Proc. 35th Annual Symposium on
Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, pp.
116–123.

[38] P. W. Shor (1994). Algorithm for quantum computation: discrete logarithms and factoring.
Proceedings 35th Annual Symposium on Fundamentals of Computer Science (FOCS), pp. 124–
134.

[39] K. Steiglitz (1988). Two non-standard paradigms for computation: Analog machines and
cellular automata, in Performance Limits in Communication Theory and practice. Proc. NATO
Advanced Study Institute, Il Ciocco, Castelvecchio Pascoli, Tuscany, Italy, J.K. Skwirzynski,
ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 173–192.

[40] T. Taffoli (1980). Reversible computing, an Automata, Language and Programming, Seventh
colloquium, Lecture notes in computer science, 84, J.W. de Bakker and J. van Leeuwen eds.,
Springer-Verlag, Berlin, pp. 632–644.

[41] V. Vedral, A. Barenco and A. Ekert (1996). A Quantum Networks for Elementary Arithmatic
Operations.Phys. Rev. A, pp. 147–153.

[42] A. Vergis, K. Steiglitz and B. Dickinson (1986). The complexity of analog computation, Math.
comput. Simulation, 28, pp. 91–113.

[43] A. Yao (1993). Quantum circuit complexity, Proc. 36th Annual Symposium on Foundations of
Computer Science, IEEE computer society press, Los Alamitos, CA, pp. 352–361.

