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ABSTRACT. In this paper we offer an approximate solution of a fractional order two-point bound-

ary value problem (FBVP). We use the reproducing kernel method (RKM) that has been employed

for the fractional order differential equations rarely. In order to illustrate the applicability and accu-

racy of the present method, the method is applied to some examples. The results are compared with

the ones obtained by the Cubic splines (CS) and sinc-Galerkin method (SGM). Because there are

only a few studies regarding the application of reproducing kernel method to fractional order differ-

ential equations, this study is going to be a new contribution and highly useful for the researchers in

fractional calculus area of scientific research. Results of numerical examples show that this method

is simple, effective, and easy to use.
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1. Introduction

Fractional calculus is one of the most novel types of calculus having a broad

range of applications in many different scientific and engineering disciplines. Order of

the derivatives in the fractional calculus might be any real number which separates

the fractional calculus from the ordinary calculus where the derivatives are allowed

only positive integer numbers. Therefore fractional calculus might be considered as

an extension of ordinary calculus. Fractional calculus is a highly useful tool in the

modelling of many sorts of scientific phenomena including image processing, earth-

quake engineering, biomedical engineering and physics. In the references [1] and [2]

(amongst many others), fundamental concepts of fractional calculus and applications

of it to different scientific and engineering areas are studied.

Even though fractional calculus is a highly useful and important topic, a general

solution method which could be used at almost every sorts of problems has not yet

been established. Most of the solution techniques in this area have been developed

for particular sorts of problems. As a result, a single standard method for problems

regarding fractional calculus has not emerged. Therefore, finding reliable and accu-

rate solution techniques along with fast implementation methods is useful and active
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research area. Some well-known methods for the analytical and numerical solutions

of fractional differential and integral equations might be listed as power series method

[3], differential transform [4] and [5], homotopy analysis method [6], variational it-

eration method [7], homotopy perturbation method [8] and sinc–Galerkin method

[9].

The aim of our work is to investigate the effectiveness of the RKM to solve

FBVP. To demonstrate this, we solve several examples in the succeeding sections.

The theory of reproducing kernels [10] was used for the first time at the beginning of

the 20th century by Zaremba in his work on boundary value problems for harmonic

and biharmonic functions. Reproducing kernel theory has important applications in

numerical analysis, differential equations, probability and statistics [11, 12]. Recently,

using the RKM, some authors discussed fractional differential equations, nonlinear

oscillators with discontinuity, singular nonlinear two-point periodic boundary value

problems, integral equations and nonlinear partial differential equations [10, 13, 14,

15, 16, 17, 18, 19, 20, 21, 11, 12, 22, 23, 24, 25, 26, 27, 28, 29].

In this paper, we consider the numerical solution of the following equation:

(1.1) y′′(x) − g(x)y′(x) + AC
0 D

a
xy(x) +By(x) = f(x),

subject to boundary conditions

(1.2) y(0) = m, y(1) = b,

where B, m and b are real constants; f(x) and g(x) are continuous on the interval

[0, 1].

This paper is organized as follows. Section 2 reviews the underlying ideas and

basic theorems of fractional calculus. Section 3 introduces several reproducing kernel

spaces. A reproducing kernel function satisfying FBVP is constructed. The represen-

tation in W 3
2 [0, 1] and a related linear operator are presented in Section 4. Section 5

provides the main results. The exact and approximate solutions of (1.1)–(1.2) are

given in this section. An iterative method are developed for the kind of problems

in the reproducing kernel space. We prove that the approximate solution converges

uniformly to the exact solution. Numerical experiments are illustrated in Section 6.

Some conclusions are given in the last section.

2. Fractional Calculus

In this section, we give the definitions of the Riemann-Liouville and the Caputo

of fractional derivative.

Definition 2.1 (See [9]). Let f : [a, b] → R be a function, α be a positive real number,

n be the integer satisfying n−1 ≤ α ≤ n, and Γ be the Euler gamma function. Then:
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i. The left and right Riemann-Liouville fractional derivatives of order α of f(x)

are given as

(2.1) aD
α
xf(x) =

1

Γ(n− α)

dn

dxn

∫ x

a

(x− t)n−α−1f(t)dt

and

(2.2) xD
α
b f(x) =

(−1)n

Γ(n− α)

dn

dxn

∫ b

x

(t− x)n−α−1f(t)dt

respectively.

ii. The left and right Caputo fractional derivatives of order α of f(x) are given as

(2.3) C
a D

α
xf(x) =

1

Γ(n− α)

∫ x

a

(x− t)n−α−1f (n)(t)dt

and

(2.4) C
xD

α
b f(x) =

1

Γ(n− α)

∫ b

x

(−1)n(t− x)n−α−1f (n)(t)dt

respectively.

Definition 2.2 (See [9]). If 0 < α < 1 and f is a function such that f(a) = f(b) = 0,

we can write

(2.5)

∫ b

a

g(x)C
a D

α
xf(x)dx =

∫ b

a

f(x)xD
α
b g(x)dx

and

(2.6)

∫ b

a

g(x)C
xD

α
b f(x)dx =

∫ b

a

f(x)aD
α
xg(x)dx.

3. Reproducing Kernel Spaces

In this section, we define some useful reproducing kernel spaces.

Definition 3.1 (Reproducing kernel function). Let E 6= ∅. A functionK : E×E → C

is called a reproducing kernel function of the Hilbert space H if and only if

a) K(·, t) ∈ H for all t ∈ E,

b) 〈ϕ,K(·, t)〉 = ϕ(t) for all t ∈ E and all ϕ ∈ H .

The last condition is called “the reproducing property” as the value of the function

ϕ at the point t is reproduced by the inner product of ϕ with K(·, t).

Definition 3.2 (Reproducing kernel Hilbert space). A Hilbert space H which is

defined on a nonempty set E is called a reproducing kernel Hilbert space if there

exists a reproducing kernel function K : E × E → C.
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Definition 3.3. We define the space W 1
2 [0, 1] by

W 1
2 [0, 1] = {u ∈ AC[0, 1] : u′ ∈ L2[0, 1]}.

The inner product and the norm in W 1
2 [0, 1] are defined by

(3.1) 〈u, g〉W 1

2

=

∫ 1

0

u(x)g(x) + u′(x)g′(x)dx, u, g ∈W 1
2 [0, 1]

and

(3.2) ‖u‖W 1

2

=
√

〈u, u〉W 1

2

, u ∈W 1
2 [0, 1].

The space W 1
2 [0, 1] is a reproducing kernel space, and its reproducing kernel function

Tx is given by [13]

(3.3) Tx(y)=
1

2 sinh(1)
[cosh(x+ y − 1) + cosh(|x− y| − 1)].

Definition 3.4. We define the space W 3
2 [0, 1] by

W 3
2 [0, 1] = {u ∈ AC[0, 1] : u′, u′′ ∈ AC[0, 1], u(3) ∈ L2[0, 1], u(0) = u(1) = 0}.

The inner product and the norm in W 3
2 [0, 1] are defined by

〈u, v〉W 3

2

=
2∑

i=0

u(i)(0)v(i)(0) +

∫ 1

0

u(3)(x)v(3)(x)dx, u, v ∈W 3
2 [0, 1]

and

‖u‖W 3

2

=
√

〈u, u〉W 3

2

, u ∈W 3
2 [0, 1].

Theorem 3.5. The space W 3
2 [0, 1] is a reproducing kernel space, and its reproducing

kernel function Ry is given by

(3.4) Ry(x) =






∑5
i=1 ci(y)x

i, 0 ≤ x ≤ y ≤ 1,
∑5

i=0 di(y)x
i, 0 ≤ y < x ≤ 1,
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where

c1(y) = −
1

156
y5 +

5

156
y4 −

5

78
y3 −

5

26
y2 +

3

13
y,

c2(y) = −
1

624
y5 +

5

624
y4 −

5

312
y3 +

21

104
y2 −

5

26
y,

c3(y) = −
1

1872
y5 +

5

1872
y4 −

5

936
y3 +

7

104
y2 −

5

78
y,

c4(y) =
1

3744
y5 −

5

3744
y4 +

5

1872
y3 +

5

624
y2 −

1

104
y,

c5(y) = −
1

18720
y5 +

1

3744
y4 −

1

1872
y3 −

1

624
y2 −

1

156
y +

1

120
,

d0(y) =
1

120
y5,

d1(y) = −
1

156
y5 −

1

104
y4 −

5

78
y3 −

5

26
y2 +

3

13
y,

d2(y) = −
1

624
y5 +

5

624
y4 +

7

104
y3 +

21

104
y2 −

5

26
y,

d3(y) = −
1

1872
y5 +

5

1872
y4 −

5

936
y3 −

5

312
y2 −

5

78
y,

d4(y) =
1

3744
y5 −

5

3744
y4 +

5

1872
y3 +

5

624
y2 +

5

156
y,

d5(y) = −
1

18720
y5 +

1

3744
y4 −

1

1872
y3 −

1

624
y2 −

1

156
y.

Proof. Let u ∈W 3
2 [0, 1] and 0 ≤ y ≤ 1. Define Ry by (3.4). Note that

R′

y(x) =






∑4
i=0(i+ 1)ci+1(y)x

i, 0 ≤ x < y ≤ 1,
∑4

i=0(i+ 1)di+1(y)x
i, 0 ≤ y < x ≤ 1,

R′′

y(x) =






∑3
i=0(i+ 1)(i+ 2)ci+2(y)x

i, 0 ≤ x < y ≤ 1,
∑3

i=0(i+ 1)(i+ 2)di+2(y)x
i, 0 ≤ y < x ≤ 1,

R(3)
y (x) =






∑2
i=0(i+ 1)(i+ 2)(i+ 3)ci+3(y)x

i, 0 ≤ x < y ≤ 1,
∑2

i=0(i+ 1)(i+ 2)(i+ 3)di+3(y)x
i, 0 ≤ y < x ≤ 1,

R(4)
y (x) =






∑1
i=0(i+ 1)(i+ 2)(i+ 3)(i+ 4)ci+4(y)x

i, 0 ≤ x < y ≤ 1,
∑1

i=0(i+ 1)(i+ 2)(i+ 3)(i+ 4)di+4(y)x
i, 0 ≤ y < x ≤ 1,

and

R(5)
y (x) =





120c5(y), 0 ≤ x < y ≤ 1,

120d5(y), 0 ≤ y < x ≤ 1.
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By Definition 3.4 and integrating by parts two times, we obtain

〈u,Ry〉W 3

2

=

2∑

i=0

u(i)(0)R(i)
y (0) +

∫ 1

0

u(3)(x)R(3)
y (x)dx

= u′(0)R′

y(0) + u′′(0)R′′

y(0) + u′′(1)R(3)
y (1) − u′′(0)R(3)

y (0)

−u′(1)R(4)
y (1) + u′(0)R(4)

y (0) +

∫ 1

0

u′(x)R(5)
y (x)dx

= c1(y)u
′(0) + 2c2(y)u

′′(0)

+6(d3(y) + 4d4(y) + 10d5(y))u
′′(1) − 6c3(y)u

′′(0)

−24(d4(y) + 5d5(y))u
′(1) + 24c4(y)u

′(0)

+

∫ y

0

120c5(y)u
′(x)dx+

∫ 1

y

120d5(y)u
′(x)dx

= (c1(y) + 24c4(y))u
′(0) + 2(c2(y) − 3c3(y))u

′′(0)

+6(d3(y) + 4d4(y) + 10d5(y))u
′′(1) − 24(d4(y) + 5d5(y))u

′(1)

+120(c5(y) − d5(y))u(y)

= u(y).

This completes the proof.

4. Solution Representation in W 3
2 [0, 1]

In this section, the solution of (1.1)–(1.2) is given in the reproducing kernel space

W 3
2 [0, 1]. On defining the linear operator L : W 3

2 [0, 1] →W 1
2 [0, 1] by

(4.1) Lu = u′′(x) − g(x)u′(x) + AC
0 D

a
xu(x) +Bu(x), u ∈W 3

2 [0, 1],

after homogenizing the boundary conditions, model problem (1.1)–(1.2) changes to

the problem

(4.2)





Lu = z(x),

u(0) = 0, u(1) = 0.

Theorem 4.1. The linear operator L defined by (4.1) is a bounded linear operator.

Proof. We only need to prove ‖Lu‖2
W 1

2

≤ M ‖u‖2
W 3

2

, where M > 0 is a positive con-

stant. By (3.1) and (3.2), we get

‖Lu‖2
W 1

2

= 〈Lu, Lu〉W 1

2

=

∫ 1

0

[Lu(x)]2 + [Lu′(x)]
2
dx.

By reproducing property, we have

u(x) = 〈u(·), Rx(·)〉W 3

2

,



FRACTIONAL ORDER BOUNDARY VALUE PROBLEMS 229

and

Lu(x) = 〈u(·), LRx(·)〉W 3

2

,

so

|Lu(x)| ≤ ‖u‖W 3

2

‖LRx‖W 3

2

= M1 ‖u‖W 3

2

,

where M1 > 0 is a positive constant, thus
∫ 1

0

[(Lu) (x)]2 dx ≤ M2
1 ‖u‖

2
W 3

2

.

Since

(Lu)′(x) = 〈u(·), (LRx)
′(·)〉W 3

2

,

then

|(Lu)′(x)| ≤ ‖u‖W 3

2

‖(LRx)
′‖W 3

2

= M2 ‖u‖W 3

2

,

where M2 > 0 is a positive constant so, we have

[(Lu)′(t)]
2
≤M2

2 ‖u‖
2
W 3

2

,

and ∫ 1

0

[(Lu)′(x)]
2
dx ≤M2

2 ‖u‖
2
W 3

2

,

that is

‖Lu‖2
W 1

2

≤

∫ 1

0

(
[(Lu) (x)]2 + [(Lu)′(x)]

2
)

dx ≤
(
M2

1 +M2
2

)
‖u‖2

W 3

2

= M ‖u‖2
W 3

2

,

where M = M2
1 +M2

2 > 0 is a positive constant.

5. The Structure of the Solution and the Main Results

Put ϕi(x) = Txi
(x) and ψi(x) = L∗ϕi(x), where L∗ is conjugate operator of L.

The orthonormal system
{

Ψ̂i(x)
}

∞

i=1
of W 3

2 [0, 1] can be derived from Gram-Schmidt

orthogonalization process of {ψi(x)}
∞

i=1 and

(5.1) ψ̂i(x) =

i∑

k=1

βikψk(x), (βii > 0, i = 1, 2, . . .).

Theorem 5.1. Let {xi}
∞

i=1 be dense in [0, 1] and ψi(x) = LyRx(y)|y=xi
. Then the

sequence {ψi(x)}
∞

i=1 is a complete system in W 3
2 [0, 1].

Proof. We have

ψi(x) = (L∗ϕi)(x) = 〈(L∗ϕi)(y), Rx(y)〉 = 〈(ϕi)(y), LyRx(y)〉 = LyRx(y)|y=xi
.

The subscript y by the operator L indicates that the operator L applies to

the function of y. Clearly, ψi(x) ∈ W 3
2 [0, 1]. For each fixed u(x) ∈ W 3

2 [0, 1], let

〈u(x), ψi(x)〉 = 0, (i = 1, 2, . . .), which means that,

〈u(x), (L∗ϕi)(x)〉 = 〈Lu(·), ϕi(·)〉 = (Lu)(xi) = 0.
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Note that, {xi}
∞

i=1 is dense in [0, 1], hence, (Lu)(x) = 0. It follows that u ≡ 0

from the existence of L−1. So the proof of Theorem (5.1) is complete.

Theorem 5.2. If u(x) is the exact solution of (4.2), then

(5.2) u(x) = L−1z(x) =

∞∑

i=1

i∑

k=1

βikz(xk)Ψ̂i(x).

where {(xi)}
∞

i=1 is dense in [0, 1].

Proof. From the (5.1) and uniqueness of solution of (4.2) we have

u(x) =

∞∑

i=1

〈
u(x), Ψ̂i(x)

〉

W 3

2

Ψ̂i(x)

=
∞∑

i=1

i∑

k=1

βik 〈u(x),Ψk(x)〉W 3

2

Ψ̂i(x)

=

∞∑

i=1

i∑

k=1

βik 〈u(x), L
∗ϕk(x)〉W 3

2

Ψ̂i(x)

=
∞∑

i=1

i∑

k=1

βik 〈Lu(x), ϕk(x)〉W 1

2

Ψ̂i(x)

=

∞∑

i=1

i∑

k=1

βik 〈z(x), Txk
〉W 1

2

Ψ̂i(x)

=
∞∑

i=1

i∑

k=1

βikz(xk)Ψ̂i(x).

This completes the proof.

Now the approximate solution un(x) can be obtained from the n- term intercept

of the exact solution u and

(5.3) un(x) =
n∑

i=1

i∑

k=1

βikz(xk)Ψ̂i(x).

Theorem 5.3. If u ∈ W 3
2 [0, 1] then

‖un − u‖W 3

2

→ 0, n→ ∞.

Moreover a sequence ‖un − u‖W 3

2

is monotonically decreasing in n.

Proof. From (5.2) and (5.3), it follows that

‖un − u‖W 3

2

=

∥∥∥∥∥

∞∑

i=n+1

i∑

k=1

βikz(xk)Ψ̂i

∥∥∥∥∥
W 3

2

.

Thus

‖un − u‖W 3

2

→ 0, n→ ∞.
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In addition

‖un − u‖2
W 3

2

=

∥∥∥∥∥

∞∑

i=n+1

i∑

k=1

βikz(xk)Ψ̂i

∥∥∥∥∥

2

W 3

2

=

∞∑

i=n+1

(
i∑

k=1

βikz(xk)Ψ̂i

)2

.

Clearly, ‖un − u‖W 3

2

is monotonically decreasing in n.

6. Numerical Results

In this section, three problems that have homogeneous and nonhomogeneous

boundary conditions will be tested by using RKM. The numerical solutions which are

obtained by using the RKM for these problems are presented in Tables 1–6.

Example 6.1. We start with the linear fractional boundary value problem

(6.1) y′′(x) +C
0 D

0.5
x y(x) = f(x),

with the boundary conditions

(6.2) y(0) = 0 = y(1),

where f(x) = 2 + 1
Γ(0.5)

(2.65x1.5 − 2x0.5). The exact solution of (6.1)–(6.2) is given as

[9]

y(x) = x(x− 1).

Using the above method, we obtain Table 1 and Table 2.

Example 6.2. We consider the linear fractional boundary value problem

(6.3) y′′(x) + 0.5C
0 D

0.3
x y(x) + y(x) = f(x),

with the boundary conditions

(6.4) y(0) = 0 = y(1),

where f(x) = 4x2(5x− 3) + 0.5x3.7
(

120
Γ(5.7)

x− 24
Γ(4.7)

)
+ x4(x− 1). The exact solution

of (6.3)–(6.4) is given as [9]

y(x) = x4(x− 1).

Using the above method, we obtain Table 3 and Table 4.

Example 6.3. We take notice of the linear fractional boundary value problem

(6.5) y′′(x) − xy′(x) +C
0 D

0.5
x y(x) = f(x),

with the nonhomogeneous boundary conditions

(6.6) y(0) = 0, y(1) = 2,
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where f(x) = −3x3 − 2x2 + 6x + 2 + 1
Γ(0.5)

(2.67x1.5 + 3.2x2.5). The exact solution of

(6.5)–(6.6) is given as [9]

y(x) = x2(x+ 1).

We use the transformation u(x) = y(x) − 2x to homogenize the nonhomogeneous

boundary conditions. Then we obtain

u′′(x) − xu′(x) +C
0 D

0.5
x u(x) = −3x3 − 2x2 + 8x+ 2(6.7)

+
1

Γ(0.5)
(2.67x1.5 + 3.2x2.5 − 4x0.5),

with the homogeneous boundary conditions

(6.8) u(0) = 0 = u(1).

After homogenizing the boundary conditions and using the above method, we obtain

Table 5 and Table 6.

Remark 6.4. In Tables 1–6, we abbreviate the exact solution and the approximate

solution by AS and ES, respectively. AE stands for the absolute error, i.e., the

absolute value of the difference of the exact solution and the approximate solution,

while RE indicates the relative error, i.e., the absolute error divided by the absolute

value of the exact solution.

x ES AS AE RE

0.1 −0.09 −0.090000037926874219158 3.792 × 10−8 4.214 × 10−7

0.2 −0.16 −0.1599999349864336603 6.501 × 10−8 4.063 × 10−7

0.3 −0.21 −0.21000008124579205921 8.124 × 10−8 3.868 × 10−7

0.4 −0.24 −0.23999999946480029926 5.351 × 10−10 2.229 × 10−9

0.5 −0.25 −0.25000045192082762963 4.519 × 10−7 1.807 × 10−6

0.6 −0.24 −0.23999999946480029926 5.351 × 10−10 2.229 × 10−9

0.7 −0.21 −0.21000008124579205921 8.124 × 10−8 3.868 × 10−7

0.8 −0.16 −0.1599999349864336603 6.501 × 10−8 4.063 × 10−7

0.9 −0.09 −0.090000037926874219158 3.792 × 10−8 4.214 × 10−7

Table 1. Numerical results for Example 6.1.
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x
[9]

L = 5, M = 5

[9]

L = 40, M = 100 RKM

0.1 7.79 × 10−4 1.15 × 10−6 3.79 × 10−8

0.2 2.34 × 10−3 1.50 × 10−6 6.50 × 10−8

0.3 1.74 × 10−3 1.85 × 10−6 8.12 × 10−8

0.4 4.25 × 10−4 1.43 × 10−6 5.35 × 10−10

0.5 1.72 × 10−3 1.04 × 10−6 4.51 × 10−7

0.6 1.19 × 10−3 1.27 × 10−6 5.35 × 10−10

0.7 5.87 × 10−4 5.20 × 10−7 8.12 × 10−8

0.8 1.55 × 10−3 1.59 × 10−7 6.50 × 10−8

0.9 4.46 × 10−4 3.50 × 10−7 3.79 × 10−8

Table 2. Comparision of absolute error for Example 6.1.

x ES AS AE RE

0.125 −0.000213623046875 −0.0002136232381859200181 1.913× 10−10 8.955× 10−7

0.250 −0.0029296875 −0.00292968664148474342 8.585× 10−10 2.930× 10−7

0.375 −0.012359619140625 −0.01235961965183831573 5.112× 10−10 4.136× 10−8

0.500 −0.03125 −0.031250001394911557614 1.394× 10−9 4.463× 10−8

0.625 −0.057220458984375 −0.057220459685518786418 7.011× 10−10 1.225× 10−8

0.750 −0.0791015625 −0.079101562855525299581 3.555× 10−10 4.494× 10−9

0.875 −0.073272705078125 −0.073272705086263394319 8.138× 10−12 1.110× 10−10

Table 3. Numerical results for Example 6.2.
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x

[9]

L = 5, M = 5

SGM

[9]

L = 5, M = 5

CS

[9]

L = 40, M = 100

SGM

0.125 2.80 × 10−4 1.99 × 10−3 2.06 × 10−9

0.250 4.72 × 10−3 4.08 × 10−3 2.19 × 10−9

0.375 4.28 × 10−3 5.83 × 10−3 3.61 × 10−9

0.500 3.00 × 10−3 6.85 × 10−3 5.73 × 10−9

0.625 3.17 × 10−3 5.83 × 10−1 5.40 × 10−9

0.750 1.85 × 10−3 5.56 × 10−3 2.47 × 10−9

0.875 3.09 × 10−3 3.26 × 10−3 2.61 × 10−11

RKM

1.91 × 10−10

8.58 × 10−10

5.11 × 10−10

1.39 × 10−9

7.01 × 10−10

3.55 × 10−10

8.13 × 10−12

Table 4. Comparision of absolute error for Example 6.2.

x ES AS AE RE

0.1 0.011 0.010999354265061277546 6.4573 × 10−7 5.8703 × 10−5

0.2 0.048 0.04799979716411731643 2.0283 × 10−7 4.2257 × 10−6

0.3 0.117 0.11699764761663712586 2.3523 × 10−6 2.0105 × 10−5

0.4 0.224 0.22400650686738379444 6.5068 × 10−6 2.9048 × 10−5

0.5 0.375 0.37499233675382009937 7.6632 × 10−7 2.0435 × 10−5

0.6 0.576 0.57600049159156832193 4.9159 × 10−6 8.5345 × 10−7

0.7 0.833 0.83299966665968847031 3.3334 × 10−7 4.0016 × 10−7

0.8 1.152 1.1520031386360497278 3.1386 × 10−6 2.7245 × 10−6

0.9 1.539 1.5389933357337636439 6.6642 × 10−6 4.3302 × 10−6

Table 5. Numerical results for Example 6.3.
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x
[9]

L = 5, M = 5

[9]

L = 50, M = 100 RKM

0.1 5.14 × 10−3 4.32 × 10−5 6.45 × 10−7

0.2 1.97 × 10−3 8.58 × 10−5 2.02 × 10−7

0.3 5.34 × 10−3 1.30 × 10−4 2.35 × 10−6

0.4 3.13 × 10−3 1.69 × 10−4 6.50 × 10−6

0.5 1.40 × 10−4 2.01 × 10−4 7.66 × 10−7

0.6 8.77 × 10−6 2.24 × 10−4 4.91 × 10−6

0.7 2.94 × 10−3 2.48 × 10−4 3.33 × 10−7

0.8 4.64 × 10−3 2.40 × 10−4 3.13 × 10−6

0.9 1.03 × 10−3 1.61 × 10−4 6.66 × 10−6

Table 6. Comparision of absolute error for Example 6.3.

7. Conclusion

In this study, fractional order boundary value problems were solved by the repro-

ducing kernel method. We described the method and used it in some test examples

in order to show its applicability and validity in comparison with exact and other

numerical solutions. The obtained results show that this approach can solve the

problem effectively with few computations. The results are satisfactory. The results

that we obtained were compared with the results that were obtained in [9]. Numerical

experiments on test examples show that our proposed schemes are of high accuracy,

supporting the theoretical results. It has been shown that the obtained results are

uniformly convergent and the operator that was used is a bounded linear operator.
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