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ABSTRACT. In this article, we have presented the development and implementation of a nonstan-

dard variable step length numerical method for solving first order initial value problems in ordinary

differential equations. The method is convergent and stable. The method applied to find the nu-

merical solution of several model problems. The theoretical conclusions of the proposed method are

confirmed by the numerical results obtained for these model problems with known solution. The

computation results obtained for these model problems suggest that method is accurate and efficient

but theoretical order of the convergence is reduced in computation.
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1. Introduction

The numerical solution of initial value problems in ordinary differential equations,

in general have following form

(1)
dy

dx
= f(x, y(x)), x ∈ [a, b], y(a) = y0, and y, f(x, y) ∈ R

However it is disappointing if we think about solution of these problems. Relatively

few differential equations have analytical solutions. Even if f(x, y) is sufficiently

smooth, it is challenging problem in computational mathematics to achieve desired

accurate numerical solutions [1, 2]. We have not considered any specific assumption

on the source function f(x, y) to ensure existence and uniqueness of the solution. So

we assume that problem (1) possess unique solution in a domain of interest.

Many physical problems for example in study of decay of radioactive material

or climatic change in natural sciences, economic growth, logistic support distribution
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in social sciences and growth of bacteria in study of medical sciences, are modeled

mathematically in form of either ordinary differential equations or partial differential

equations. In general, to find an exact analytical solution to these problems are not

possible, a challenging task to obtain an approximate solutions being faced by the

scientist. Thus a natural interest is to develop an appropriate numerical method, to

obtain an approximate solution to this modeled problem.

In numerical solution of the differential equations a step length plays a critical

role. For example small step length there are too many round off error in comparison

to large step length, hence it causes a numerical instability. Thus the introducing

concept of variable step length method may be useful in solving differential equation

and some literary work can be found in [3, 4]. The motivation of variable step length

in nonstandard method arises from work in [5, 6].

In this article, we have considered initial value problems and the solution of these

initial value problems can be obtained by moving away from the given specified initial

condition and approximating the derivative by discrete expressions. We propose a

numerical method that is efficient and reliable for solving these initial value problems

(1) and solution is obtained by moving non uniformly away from specified initial

condition. For developing propose method, we have assume that the solution of the

problems (1) depends differential on the initial condition only.

The present work is organized in six sections. Section 2 deals with development

of the method while local truncation error estimated in section 3. The sections 4 and

5, we have discussed convergence and stability of the method. Numerical experiments

on model test problem discussed in final section 6. A discussion on the performance

of the method are presented as a conclusion.

2. The Derivation of the method

We define the nodes which are non-uniformly spaced throughout in the interval

of interest [a, b] : xi+1 = xi + hi+1, i = 0, 1, 2, . . . , N , where hi+1 is step length.

So △= {a = x0, x1, x2, . . . , xN , xN+1 = b} be a set a set of non-uniform nodes in

interval [a, b]. Let us assume yi represent an approximate value of of the theoretical

solution y(x) of the problem (1) at the node x = xi and fi represent f(xi, yi) at

node x = xi. Suppose we have numerically solved problem at node xi and obtained

numerical value yi, an approximate value of y(xi). We are interested in finding an

approximate value yi+1 of y(xi+1). Let us assume a local assumption as in [7] that

no previous truncation errors have been made i.e. y(xi) = yi and following the ideas

in [8, 9, 10], we propose an approximation to the analytical solution y(xi+1) of the

problem (1) at node x = xi+1 as:

(2) y(xi+1) = y(xi) +
hi+1y

′(xi)

Φ(xi + hi+1) + y(xi)
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where Φ is differentiable function of xi which is to be determined. Let us define a

function Fi(h, x, y, y′) as:

(3) Fi(h, x, y, y′) ≡ (y(xi + hi+1) − y(xi))(Φ(xi + hi+1) + y(xi)) − hi+1y
′(xi)

Thus from (2) and (3), we have

(4) Fi(h, x, y, y′) = 0

If we write Fi(h, x, y, y′) in Taylor series about node x = xi, and from (4), we have

hi+1y
′(xi)(Φ(xi) + y(xi) − 1) +

h2
i+1

2
(y′′(xi)(Φ(xi) + y(xi))(5)

+ 2y′(xi)Φ
′(xi)) + O(h3) = 0

To determine function Φ, compare the coefficients of hi+1 and h2
i+1 both side in (5),

we have

Φ(xi) + y(xi) − 1 = 0(6)

(Φ(xi) + y(xi))y
′′(xi) + 2y′(xi)Φ

′(xi) = 0

To determine Φ and Φ′, solve the system of equations (6), we have

Φ(xi) = 1 − y(xi)(7)

Φ′(xi) = −
1

2

y′′(xi)

y′(xi)
, y′(xi) 6= 0

Thus from (7), we approximate Φ(xi + hi+1) as:

Φ(xi + hi+1) = Φ(xi) + hi+1Φ
′(xi) + O(h2)(8)

= 1 − y(xi) −
hi+1

2

y′′(xi)

y′(xi)
+ O(h2

i+1)

Neglecting the terms O(h2
i+1) and higher in (8), substitute Φ(xi + hi+1) in (2), we

have

(9) y(xi+1) = y(xi) +
2hi+1(y

′(xi))
2

2y′(xi) − hi+1y′′(xi)

Thus, using notations as defined above in (9) and from (1), we have our proposed

nonstandard variable step length method as:

(10) yi+1 = yi +
2hi+1f

2
i

2fi − hi+1f
′
i

where f ′
i = (∂f

∂x
+ ∂f

∂y
f)(xi,yi).

Thus we have developed non uniform step length method of the form yi+1 =

yi + G(h, f, f ′), where G is an increment function depends on variables hi+1, f and

f ′. If we replace f ′
i in (10) by first order difference approximation, we have

(11) yi+1 = yi +
2hi+1f

2
i

3fi − fi+1
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If 3fi − fi+1 becomes zero in the course of numerical integration, we may replace
f2

i

3fi−fi+1
in (11) by 3fi+fi+1

9
in computation of numerical solution. Thus method (11)

reduces to following expression:

yi+1 = yi +
2hi+1

9
(3fi + fi+1)

Thus method (11) is an implicit method. Method (11) is linear if we have source

function f(x) otherwise it is nonlinear. We have applied Newton-Raphson and quasi

linearization technique while solving nonlinear method (11) otherwise it was computed

by direct method.

3. Local Truncation Error

The local truncation error in method (10) at the node x = xi using the exact

arithmetic, is given as:

Ti+1 = y(xi + hi+1) − y(xi+1)(12)

= y(xi + hi+1) − yi −
2hi+1f

2
i

2fi − hi+1f
′
i

=
h3

i+1

12

(

2y′′′
i (ξ) − 3

(y′′
i )

2

yi

)

+ O(h4
i+1)

where ξ ∈ (xi, xi+1). If we define M = max
∣

∣

∣

(

2y′′′(x) − 3(y′′(x))2

y′(x)

)
∣

∣

∣
all a ≤ x ≤ b, then

from (12) we have

(13) |Ti+1| ≤
h3

i+1

12
M + O(h4

i+1)

Thus from (13), we conclude that method is at least second order accurate.

4. Convergence Analysis

To include the effect of the rounding errors, following the ideas in [4], we introduce

a new approximation yi, which is determined by same method, except that rounding

errors are allowed. Thus we have

(14) yi+1 = yi +
2hi+1(f i)

2

2f i − hi+1f
′

i

where f i = f(xi, yi) and f
′

i = y′′
i . The rounding error Ri+1 is the amount by which

method (10) not satisfied by yi. Apply method (10) and (14) to test equation y′ = λy,

where λ = ∂f

∂y
at some point xi ∈ [a, b] and subtracting, we have

(15) y(xi+1) − yi+1 = y(xi) − yi + hi+1
2λ(yi − yi)

2 − hi+1λ
+ Ti+1 + Ri+1
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Let we have error ǫi = yi − yi at node x = xi. Substitute ǫi in (15), we have

ǫi+1 = ǫi + λhi+1ǫi

(

1 −
λhi+1

2

)−1

+ Ti+1 + Ri+1(16)

ǫi+1 = ǫi

(

1 + λhi+1 +
(λhi+1)

2

2
+ · · ·

)

+ Ti+1 + Ri+1

ǫi+1 = exp(λhi+1)ǫi + B

where exp(λhi+1) ≈ 1 + λhi+1 + (λhi+1)2

2
and B ≥ Ti+1 + Ri+1. Let us introduce a

difference equation, so (16) can be written as:

(17) Ei+1 = exp(λhi+1)Ei + B

So if |ǫ0| ≤ E0 then |ǫi| ≤ Ei. Thus we obtain

(18) Ei = exp(λhi + hi−1 + · · · + h1)E0 + χ(hi)B

where χ(hi) = exp(λhi)χ(hi−1) + 1, χ(h0) = 0, i = 0, 1, 2, . . . . Also we know that

h1 + h2 + · · · + hN = b − a, so (18) can be written as:

Ei = exp(λ(b − a))E0 + (exp(λ(b − a − h1))(19)

+ exp(λ(b − a − h1 − h2)) + · · ·+ exp(λhi))B

Substitute E0 = |ǫ0| in (19). Thus we have if λ > 0,

(20) |ǫi| ≤ exp(λ(b − a)) |ǫ0| +
i exp(λ(b − a))

exp(λh1)
|T + R|

and if λ < 0,

(21) |ǫi| ≤ exp(λ(b − a)) |ǫ0| + i |T + R|

where R = max |Ri+1| and T = max |Ti+1|for all i = 0, 1, 2, . . . . Let ǫ0 = 0 and

R0 = 0 then from (20) and (21), we have

(22) |ǫi| ≤ max{i, i exp(λ(b − a − h1)} |T |

Thus from (13), we have

(23) |ǫi| ≤ max{i, i exp(λ(b − a − h1))}O(h2
i+1)

From (23) we have |ǫi| → 0 as hi+1 → 0. Thus method (10) is convergent. If ǫ0 = 0

but R0 6= 0 then

(24) |ǫi| ≤ max{i, i exp(λ(b − a))}

∣

∣

∣

∣

(

R

exp(λh1)
+

T

exp(λh1)

)
∣

∣

∣

∣

Since T = O(h2
i+1), we see bound decrease if h1 decrease until the contribution due

to R becomes dominant, at which further decrease in h1 will increase bound. Thus

bound on error depends on h1 i.e. first step length from specified condition.
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5. Stability Analysis

If we solve test equation y′ = λy by proposed method (10), we have

yi+1 = yi +
2hi+1λ

2y2
i

2λyi − hi+1λ2yi

(25)

yi+1 = yi + λhi+1(1 −
λhi+1

2
)−1yi

yi+1 = (1 + λhi+1 +
(λhi+1)

2

2
+ · · · )yi

yi+1 ≤ exp(λhi+1)yi

yi+1 = E(λhi+1)yi

where E(λhi+1) is second order approximation of the exp(λhi+1). Solving (25), we find

that −2 < λhi+1 < 0 for all i = 0, 1, 2, . . . Thus proposed method (10) is absolutely

stable.

6. Numerical Experiments

In this section, we have reported the computational performance of the method

(11) when applied to solve numerically several initial value problems in ODEs. We

have computed maximum absolute error on non-uniform step length nodes in the

interval of integration. In tables, we have shown MAU the maximum absolute error

and ERR, the error in numerical solution of the problem at the end point of the

interval of integration using following formulas:

MAY = max
1≤i≤N

|y(xi) − yi|

and

ERR = |y(b) − yN+1|

Let us define the step lengths ratio between two adjacent nodes in the interval as:

ri+1 =
hi+1

hi

, i = 1, 2, 3, . . . , N

So in computation, we have consider ri+1 as fixed and in tables it is written as r.

We have used iterative Newton-Raphson method and quasi linearization technique

to solve nonlinear equation/system of equations and applied Gauss Seidel method

to solve linear equation/system of linear equations. All the computations in the

experiment were performed on MS Window 2007 professional operating system in

the GNU FORTRAN environment version -99 compiler (2.95 of gcc) running on Intel

Duo core 2.20 Ghz PC. The stopping condition for iteration was either error of order

10−6 or number of iterations 103 .
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Problem 1. Consider a nonlinear initial value problem [9] which, when solving

consists of
dy

dx
= 1 + y2(x), 0 ≤ x ≤ 1

with the specified initial condition y(0) = 0 in [0, 1]. The exact known analytical

solution of the problem is y(x) = tan(x). In table 1, we have presented the computed

MAY and ERR for different values of N and r.

Problem 2. Consider a stiff linear initial value problem [11] which, when solving

consists of
dy

dx
= −100y + 99 exp(2x), 0 ≤ x ≤ 1

with the specified initial condition y(0) = 0 in [0, 1]. The exact known analytical

solution of the problem is y(x) = 33
34

(exp(2x) − exp(−100x)). In table 2, we have

presented the computed MAY and ERR for different values of N and r.

Problem 3. Consider a linear initial value problem [12] which, when solving consists

of
dy

dx
= y(x) cos(x), 0 ≤ x ≤ 1

with the specified initial condition y(0) = 1 in [0, 1]. The exact known analytical

solution of the problem is y(x) = exp(sin(x)). In table 3, we have presented the

computed MAY and ERR for different values of N and r.

Problem 4. Consider a linear initial value problem [12] which, when solving consists

of
dy

dx
= sin(5x) − 0.4y(x), 0 ≤ x ≤ 1

with the specified initial condition y(0) = 5 in [0, 1]. The exact known analytical

solution of the problem is

y(x) =
1

629

(

3270 exp

(

−2x

5

)

− 125 cos(5x) + 10 sin(5x)

)

In table 4, we have presented the computed MAY and ERR for different values of N

and r.

Problem 5. Consider a stiff system of nonlinear initial value problems [13] which,

when solving consist of

dy

dx
= −1002y(x) + 1000(z(x))2

dz

dx
= y(x) − z(x)(1 + z(x)), 0 ≤ x ≤ 1

with the specified initial conditions y(0) = 1.0 and z(x) = 1.0 in [0, 1]. The exact

known analytical solution of the problem is y(x) = exp(−2x) and z(x) = exp(−x).

In tables 5-6, we have presented the computed MAY and MAZ for different values of

N and r.
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Table 1. Maximum absolute error and ERR in y(x) = tan(x) for

problem 1.

N

Errors

r = 0.8 r = 0.9

MAY ERR MAY ERR

16 .24703383(-1) .24703383(-1) .11529207(-1) .11529207(-1)

32 .21677494(-1) .21677494(-1) .53838491(-2) .53838491(-2)

64 .21597147(-1) .21597147(-1) .46275854(-2) .46275854(-2)

128.21597862(-1) .21597862(-1) .46033859(-2) .46033859(-2)

Table 2. Maximum absolute error and ERR in y(x) = 33
34

(exp(2x) −

exp(−100x)) for problem 2.

N

Errors

r = 1.1 r = 1.9

MAY ERR MAY ERR

16 ....... ........ .47334686(-1) .47334686(-1)

32 .25728671(-1) .20617316(-1) .47332413(-1) .47332413(-1)

64 .18685706(-2) .18685706(-2) .47332566(-1) .47332566(-1)

128.18594265(-2) .18594265(-2) .47332399(-1) .47332399(-1)

Table 3. Maximum absolute error and ERR in y(x) = exp(sin(x)) for

problem 3.

N

Errors

r = 0.8 r = 2.9

MAY ERR MAY ERR

16 .37977695(-2) .37977695(-2) .86135864(-1) .86135864(-1)

32 .36189556(-2) .36189556(-2) .86135864(-1) .86135864(-1)

64 .36139488(-2) .36139488(-2) .86134911(-1) .86134911(-1)

128 .36141872(-2) .36137104(-2) ....... ........
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Table 4. Maximum absolute error and ERR in y(x) =
1

629
(3270 exp(−2x

5
) − 125 cos(5x) + 10 sin(5x)) for problem 4.

N

Errors

r = 0.8 r = 1.9

MAY ERR MAY ERR

16 .47373772(-1) .41676283(-1) .84107161(-1) .84107161(-1)

32 .43942451(-1) .38583040(-1) .81969976(-1) .81969976(-1)

64 .43847561(-1) .38498163(-1) .81969500(-1) .81969500(-1)

128.43847084(-1) .38497448(-1) .81966400(-1) .81966400(-1)

Table 5. Maximum absolute error and ERR in y(x) = exp(−2x) for

problem 5.

N

Errors

r = 0.8 r = 1.9

MAY ERR MAY ERR

8 .52329898(-2) .23737401(-2) .93970448(-2) .93970448(-2)

16 .36774576(-2) .14648288(-2) .92419237(-2) .92419237(-2)

32 .34802258(-2) .13534874(-2) .92389882(-2) .92389882(-2)

64 .44892371(-1) .43899119(-1) .92389882(-2) .92389882(-2)

Table 6. Maximum absolute error and ERR in z(x) = exp(−x) for

problem 5.

N

Errors

r = 0.8 r = 1.9

MAZ ERR MAZ ERR

8 .40714741(-2) .31358898(-2) .12899548(-1) .12899548(-1)

16 .28175712(-2) .20039976(-2) .12681425(-1) .12681425(-1)

32 .26341677(-2) .18441677(-2) .12680054(-1) .12680054(-1)

64 .26290417(-2) .18346310(-2) .12680054(-1) .12680054(-1)
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7. Conclusion

In this article, formulation and a study of the variable step length nonstandard

finite difference method for solving initial value problems in ordinary differential equa-

tions is presented. A comprehensive study of the proposed method shows that method

is absolutely stable and converges. The performance of the present method in solv-

ing stiff and non-stiff differential equations is considered. The computational results

obtained for the model problem is in good agreement to the estimated order of the

accuracy of the method. This result may be even better in absence of the second

order derivative of the variable in method. This fact creates some difficulties in im-

plementation and performance of the method accurately. Our future work will deal

with extension of the present method to solve higher order boundary value problems

and to improve the computational performance; work in this specific direction is in

progress.
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