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ABSTRACT. This paper deals with the problem global stabilization of discrete-time neural net-

works with interval time-varying delays. The problem is solved by applying a novel set of Lyapunov

functionals, and an improved delay-dependent stability criterion is obtained in terms of a linear

matrix inequality. The stabilizing state feedback controller can be constructed by using the corre-

sponding feasible solution of the linear matrix inequality. An examples is presented to demonstrate

the effectiveness of the proposed approach.
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1. Introduction

In the past few decades, stability of neural networks have been extensively stud-

ied since their wide applications, such as optimization, classification, signal and im-

age processing, solving nonlinear algebraic equations, pattern recognition, associative

memories, automatic control, and so on [1,2]. Problem of stability and control of

neural networks is a very important issue, and many results have been developed in

the literature (see, e.g. [3–8] and the references cited therein). Although most neu-

ral networks are concerned with continuous-time cases, discrete-time neural networks

(DNNs) have gradually attracted much attention. DNNs are important in formulat-

ing discrete-time systems that are analogues of the continuous-time neural networks

in order to provide convenient ways in simulating and computing the continuous-

time systems. Therefore, both analysis and synthesis problems for DNNs have been

extensively studied and many nice results have been reported [9–11]. Based on con-

structing a Lyapunov functional which divide delay interval into two subintervals, an

improved stability criterion was proposed in [12] for DDNs with time-varying delays.

However, when the number of delay-partitioning number increases, the matrix for-

mulation becomes more complex, and the computational burden and time-consuming
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grow bigger. Recently, by construction of an augmented Lyapunov-Krasovskii func-

tional and utilization of discrete version of Jensen inequality, new stability criteria are

derived in [13, 14] for DDNs with time-varying delays. There have been several papers

[15–17] reported on stabilization criteria for delayed neural networks. Nevertheless,

the results reported therein either for continuous-time case or neural networks with

constant delays. Motivated by this discussed above, the problem of global stabiliza-

tion of discrete-time neural networks with time-varying delays is considered in this

paper.

In this paper, our objective is to obtain new delay-dependent stabilizability cri-

teria for a class of DNNs with interval time-varying delays by choosing a new set

of augmented Lyapunov-Krasovski functionals and estimating its derivative tightly

from a novel viewpoint. Different from the previous investigations, this paper focuses

on the global stabilization of DNNs by using a combination of Lyapunov functional

method with the linear matrix inequality (LMI) technique. The main advantages of

the present approach include: (i) it leads to less conservation and less restriction;

(ii) it can be efficiently verified via numerically solving the LMI using interior-point

algorithms or just the LMI-toolbox in Matlab [18].

The paper is organized as follows. The problem statement is given in Section 2.

Sufficient delay-dependent conditions for global stabilization of DDNs with time-

varying delays and a numerical example showing the effectiveness of the proposed

result are given in Section 3.

Notation: The following notations will be used throughout this paper: Z
+ denotes

the set of all nonnegative integers; R
n denotes the n-dimensional Euclidean space;

R
n×m is the set of all n × m real matrices; I is the identity matrix of appropriate

dimensions; an asterisk ∗ denotes the symmetric part; AT denotes the transpose of

A; λ(A) denotes the set of all eigenvalues of A; λmax(A) = max{Reλ : λ ∈ λ(A)};

λmin(A) = min{Reλ : λ ∈ λ(A)}; Matrix A is semi-positive definite (A ≥ 0) if

〈xT Ax〉 ≥ 0 for all x ∈ R
n; A is positive definite (A > 0) if 〈xT Ax〉 > 0 for all x 6= 0;

Matrices X and Y , the notation X > Y (respectively, X ≥ Y ) means that the matrix

X − Y is positive definite (respectively, semi-positive definite).

2. Problem Statetment

Consider the discrete-time neural networks with time-varying delay:

(2.1)






x(k + 1) = −Ax(k) + W0f(x(k)) + W1g(x(k − h(k))) + Bu(k), k ∈ Z
+

x(k) = φ(k), k ∈ [−h, . . . , 0],

where x(k) = [x1(k), x2(k), . . . , xn(k)]T ∈ R
n is the state; u(k) is the control; n is

the number of neurals; f(x(k)) = [f1(x1(k)), f2(x2(k)), . . . , fn(xn(k))]T and g(x(k)) =
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[g1(x1(k)), g2(x2(k)), . . . , gn(xn(k))]T are the activation functions; the diagonal matrix

A = diag(λ1, λ2, . . . , λn) represents the self-feedback term and the matrices W0, W1 ∈

R
n×n, B ∈ R

n×m denote the distributively delayed connection weights and the control

input weights; the time-varying delay funtion h(k) satisfies the condition:

0 ≤ h ≤ h(k) ≤ h, k ∈ Z
+.

In this paper, we consider various activation functions and assume that the activation

functions f(x), g(x) satisfy the following growth conditions:

∃ai > 0, bi > 0 : |fi(ξ)| ≤ ai|ξ|, i = 1, 2, . . . , n, ∀ξ ∈ R,(2.2)

|gi(ξ)| ≤ bi|ξ|, i = 1, 2, . . . , n, ∀ξ ∈ R.

Definition 2.1. The system (2.1) is stabilizable if there is a state feedback control

u(k) = Kx(k) such that the zero solution of the closed-loop system

x(k + 1) = −[A + BK]x(k) + W0f(x(k)) + W1g(x(k − h(k))), k ∈ Z+,

is asymptotically stable.

The following well-known propositions will be used for the proofs in the subse-

quent section.

Proposition 2.1 (Schur Complement lemma [19]). Given constant matrices X, Y, Z

where Y T = Y > 0, X = XT . Then X + ZY −1ZT < 0 if and only if
(

X Z

ZT −Y

)

< 0.

Proposition 2.2. For any given vectors vi ∈ R
n, i = 1, 2, . . . , n, the following in-

equality holds:
[

n
∑

i=1

vi

]T [ n
∑

i=1

vi

]

≤ n

n
∑

i=1

vT
i vi.

3. Main Result

In this section, we present stabilizability criteria for neurals networks (2.1). Be-

fore stating main result, the following notations of several matrices variables are

defined for simplicity.

F = diag{a1, a2, . . . , an}, H = diag{b1, b2, . . . , bn},

T11 = −P + QT A + AT Q + (h − h + 1)R + M + N

+ (1 + h)U + (1 + h)S + P1 + P T
1 + FF + HH,

T12 = QT + AT Q, T13 = −QT W0 + P T
1 ; T14 = −QT W1 + P T

1 ,

T15 = P T
2 + P T

1 − P1; T16 = P T
1 − P1;
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T22 = P + QT + Q − QT BBT − BBT Q + BBT ,

T55 = −R − P2 − P T
2 − P1 − P T

1 ; T56 = −P T
2 − P2 − P1 − P T

1 ,

T66 = −P T
2 − P2 − P1 − P T

1 ,

Σ11 =





















T11 T12 T13 T14 T15 T16

∗ T22 QT W0 QT W1 −P1 P T
2 − P1

∗ ∗ −I 0 −P1 −P1

∗ ∗ ∗ −I −P1 −P1

∗ ∗ ∗ ∗ T55 T56

∗ ∗ ∗ ∗ ∗ T66





















,

Σ12 =





















P1 P1 P1 P1 QB QB

0 0 0 0 QB 0

0 0 0 0 0 0

0 0 0 0 0 0

−P1 −P1 −P1 −P1 0 0

−P1 −P1 −P1 −P1 0 0





















,

Σ22 = diag

{

−N,−M,−
1

1 + h
U,−

1

1 + h
S,−I,−I

}

.

Theorem 3.1. System (2.1) is stabilizable if there exist symmetric positive definite

matrices P, R, U, S, M, N and any matrices P1, P2, Q such that the following LMI

holds:

(3.1)

(

Σ11 Σ12

∗ Σ22

)

< 0.

The state-feedback controller is given by

u(k) = −BT Qx(k), k ∈ Z
+.

Proof. With the state feedback control u(k) = −BT Qx(k) the closed-loop system

becomes:

(3.2)






x(k + 1) = −Ax(k) + W0f(x(k)) + W1g(x(k − h(k))), k ∈ Z
+

x(k) = φ(k), k ∈ [−h,−h + 1, . . . , 0],

where A = A + BBT Q. Consider Lyapunov-Krasovskii functional for system (3.2)

V (x(k)) =
∑5

i=1 Vi(x(k)), where

V1(x(k)) = xT (k)Px(k),

V2(x(k)) =

k−1
∑

i=k−h(k)

xT (i)Rx(k),
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V3(x(k)) =

−h+1
∑

l=−h+2

k−1
∑

i=k+l−1

xT (i)Rx(i),

V4(x(k)) =

k−1
∑

i=k−h

xT (i)Mx(i) +

k−1
∑

i=k−h

xT (i)Nx(i),

V5(x(k)) =
k
∑

j=k−h

k−1
∑

i=j

xT (i)Sx(i) +
k
∑

j=k−h

k−1
∑

i=j

xT (i)Ux(i).

The difference of V1(x(k)) gives

∆V1(x(k)) = V1(x(k + 1)) − V1(x(k))

= xT (k + 1)Px(k + 1) − xT (k)Px(k).

Let us denote x(k + 1) = y(k), z(k) = [x(k), y(k), f(·), g(·)], Γ =













P 0 0 0

Q Q 0 0

0 0 I 0

0 0 0 I













.

Since

0 = −y(k) − Ax(k) + W0f(x(k)) + W1g(x(k − h(k))),

we have

∆V1(x(k)) = zT (k)
[













0 0 0 0

0 P 0 0

0 0 0 0

0 0 0 0













− ΓT













1
2
I 0 0 0

−A −I W0 W1

0 0 0 0

0 0 0 0













(3.3)

−













1
2
I 0 0 0

−A −I W0 W1

0 0 0 0

0 0 0 0













T

Γ
]

z(k).

The difference of ∆V2(x(k)) gives

∆V2(x(k)) = V2(x(k + 1)) − V2(x(k))(3.4)

=
k
∑

i=k+1−h(k+1)

xT (i)Rx(i) −
k−1
∑

i=k−h(k)

xT (i)Rx(i)

= xT (k)Rx(k) − xT (k − h(k))Rx(k − h(k))

+

k−h
∑

i=k+1−h(k+1)

xT (i)Rx(i)

+

k−1
∑

i=k+1−h

xT (i)Rx(i) −

k−1
∑

i=k+1−h(k)

xT (i)Rx(i).
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The difference of ∆V3(x(k)) gives

∆V3(x(k)) =

−h+1
∑

l=−h+2

k
∑

i=k+l

xT (i)Rx(i) −

−h+1
∑

l=−h+2

k−1
∑

i=k+l−1

xT (i)Rx(i)(3.5)

=

−h+1
∑

l=−h+2

[

k−1
∑

i=k+l

xT (i)Rx(i) + xT (k)Rx(k) −
k−1
∑

i=k+l

xT (i)Rx(i)

− xT (k + l − 1)Rx(k + l − 1)
]

=

−h+1
∑

l=−h+2

(xT (k)Rx(k) − xT (k + l − 1)Rx(k + l − 1))

= (h − h)xT (k)Rx(k) −

−h+1
∑

l=−h+2

xT (k + l − 1)Rx(k + l − 1)

= (h − h)xT (k)Rx(k) −

k−h
∑

i=k+1−h

xT (i)Rx(i).

The difference of ∆V4(x(k)) gives

(3.6) ∆V4(x(k)) = xT (k)(M +N)x(k)−xT (k−h)Nx(k−h)−xT (k−h)Mx(k−h).

Using Proposition 2.2, the estimation of difference of ∆V5(x(k)) gives

∆V5x(k) =

k+1
∑

j=k+1−h

k
∑

i=j

xT (i)Ux(i) −

k
∑

j=k−h

k−1
∑

i=j

xT (i)Ux(i)

(3.7)

+
k+1
∑

j=k+1−h

k
∑

i=j

xT (i)Sx(i) −
k
∑

j=k−h

k−1
∑

i=j

xT (i)Sx(i)

=

k
∑

j=k−h

k
∑

i=j+1

xT (i)Ux(i) −

k
∑

j=k−h

k−1
∑

i=j

xT (i)Ux(i)

+
k
∑

j=k−h

k
∑

i=j+1

xT (i)Sx(i) −
k
∑

j=k−h

k−1
∑

i=j

xT (i)Sx(i)

=
k
∑

j=k−h

(xT (k)Ux(k) − xT (j)Ux(j)) +
k
∑

j=k−h

(xT (k)Sx(k) − xT (j)Sx(j))

= (1 + h)xT (k)Ux(k) −

k
∑

j=k−h

xT (j)Ux(j)

+ (1 + h)xT (k)Sx(k) −
k
∑

j=k−h

xT (j)Sx(j)
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≤ (1 + h)xT (k)Ux(k) −
1

1 + h





k
∑

j=k−h

x(j)





T

U





k
∑

j=k−h

x(j)





+ (1 + h)xT (k)Sx(k) −
1

1 + h





k
∑

j=k−h

x(j)





T

S





k
∑

j=k−h

x(j)



 .

Since 0 ≤ h ≤ h(k) ≤ h, ∀k ∈ Z
+, we have:

k−1
∑

i=k+1−h

xT (i)Rx(i) ≤
k−1
∑

i=k+1−h(k)

xT (i)Rx(i);(3.8)

k−h
∑

i=k+1−h(k+1)

xT (i)Rx(i) ≤

k−h
∑

i=k+1−h

xT (i)Rx(i).

Let ν(k) = x(k +1)−x(k), we obtain x(k)−
k−1
∑

i=k−h(k)

ν(i)−x(k−h(k)) = 0, then

for arbitrary matrices P1, P2 we have

(3.9) XT

(

0 P1

0 P2

)

Y = 0,

where

XT =



ξT (k),

k−1
∑

i=k−h(k)

νT (i) + xT (k − h(k))



 ,

Y T =



yT (k), xT (k) −

k−1
∑

i=k−h(k)

νT (i) − xT (k − h(k))



 ,

ξ(k) = (x(k) + y(k) + x(k − h(k)) + x(k − h) + x(k − h) +
k
∑

i=k−h

x(i)

+

k
∑

i=h+h

x(i) +

k−1
∑

i=k−hj(k)

ν(i) + f(·)).

We note that the condition (2.2) is equivalent to

(3.10) zT
i (k)













−FF − HH 0 0 0

0 0 0 0

0 0 I 0

0 0 0 I













zi(k) ≤ 0.

Therefore, from (3.3)-(3.10) it follows that

∆V (xk) ≤ xT (k)Φ11x(k) + 2xT (k)Φ12y(k) + 2xT (k)T13f(x(k)) + 2xT (k)T14g(x(k))

(3.11)
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+ 2xT (k)T15x(k − h(k)) + 2xT (k)T16

k−1
∑

i=k−hj(k)

ν(i) + 2xT (k)P T
1 x(k − h)

+ 2xT (k)P T
1 x(k − h) + 2xT (k)P T

1

k
∑

i=k−h

x(i) + 2xT (k)P T
1

k
∑

i=k−h

x(i)

+ 2yT (k)T22y(k)x + 2yT (k)QT W0f(x(k)) + 2yT (k)QT W1g(x(k))

− 2yT (k)P1x(k − h(k)) + 2yT (k)(P T
2 − P1)

k−1
∑

i=k−h(k)

ν(i)

− fT (x(k))If(x(k)) − fT (x(k))P1x(k − h(k)) − fT (x(k))P1

k−1
∑

i=k−h(k)

ν(i)

− gT (x(k))Ig(x(k − h(k))) − gT (x(k))P1x(k − h(k))

− gT (x(k))P1

k−1
∑

i=k−h(k)

ν(i) + x(k − h(k))T T55x(k − h(k))

+ x(k − h(k))T T56

k−1
∑

i=k−h(k)

ν(i) − x(k − h(k))T P T
1 x(k − h)

− x(k − h(k))T P T
1 x(k − h) − x(k − h(k))T P T

1

k
∑

i=k−h

x(i)

− x(k − h(k))T P T
1

k
∑

i=k−h

x(i) +

k−1
∑

i=k−hj(k)

ν(i)T T66

k−1
∑

i=k−hj(k)

ν(i)

−
k−1
∑

i=k−hj(k)

ν(i)T P T
1 x(k − k) −

k−1
∑

i=k−hj(k)

ν(i)T P T
1 x(kk)

−
k−1
∑

i=k−hj(k)

ν(i)T P T
1

k
∑

i=k−h

x(i) −
k−1
∑

i=k−hj(k)

ν(i)T P T
1

k
∑

i=k−h

x(i)

− xT (k − h)Nx(k − h) − xT (k − h)Mx(k − h)

−
k
∑

i=k−h

x(i)
1

1 + h
U

k
∑

i=k−h

x(i) −
k
∑

i=k−h

x(i)
1

1 + h
S

k
∑

i=k−h

x(i).

Let

ϕ(x(k)) = [x(k), y(k), f(x(k)), g(x(k − h(k))), x(k − h(k)),

k−1
∑

i=k−h(k)

ν(i),

x(k − h), x(k − h),
∑

i=k−h

x(i),
∑

i=k−h

x(i)];

Φ11 = −P + QT A + AT Q + 2QT BBT Q + (h − h + 1)R
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+ M + N + (1 + h)U + (1 + h)S + P1 + P T
1 + FF + HH ;

Φ12 = QT + AT Q + QBBT Q.

Φ22 = P + QT + Q

Thus, from the difference inequality (3.11) we obtain

∆V (x(k)) ≤ ϕ(x(k))T Σ′ϕ(x(k)),

where

Σ′ =









































Φ11 Φ12 T13 T14 T15 T16 P T
1 P T

1 P T
1 P T

1

∗ Φ22 QT W0 QT W1 −P1 P T
2 − P1 0 0 0 0

∗ ∗ −I 0 −P1 −P1 0 0 0 0

∗ ∗ ∗ −I −P1 −P1 0 0 0 0

∗ ∗ ∗ ∗ T55 T56 −P T
1 −P T

1 −P T
1 −P T

1

∗ ∗ ∗ ∗ ∗ T66 −P T
1 −P T

1 −P T
1 −P T

1

∗ ∗ ∗ ∗ ∗ ∗ −N 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −M 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1
1+h

U 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1
1+h

S









































.

Using Shur complement lemma Proposition 2.1, the condition Σ′ < 0 is equivalent to

(3.12) Ξ =

(

Ξ11 Ξ12

∗ Ξ22

)

< 0,

where

Ξ11 =





















T11 T12 T13 T14 T15 T16

∗ Ψ22 QT W0 QT W1 −P1 P T
2 − P1

∗ ∗ −I 0 −P1 −P1

∗ ∗ ∗ −I −P1 −P1

∗ ∗ ∗ ∗ T55 T56

∗ ∗ ∗ ∗ ∗ T66





















,

Ξ12 =





















P1 P1 P1 P1 QT B QT B

0 0 0 0 QT B 0

0 0 0 0 0 0

0 0 0 0 0 0

−P1 −P1 −P1 −P1 0 0

−P1 −P1 −P1 −P1 0 0





















,

Ξ22 = diag

{

−N,−M,−
1

1 + h
U,−

1

1 + h
S,−I,−I

}

.

T11 = −P + QT A + AT Q + (h − h + 1)R + M + N
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+ (1 + h)U + (1 + h)S + P1 + P T
1 + FF + HH

T12 = QT + AT Q, .

Note that (QT − I)BBT (Q − I) ≥ 0, and then

QT BBT Q ≤ −QT BBT − BBT Q + BBT ,

we obtain that the condition Ξ < 0 holds if LMI (3.1) holds, which gives

∆V (x(k) < 0, ∀k ∈ Z+.

The proof of the theorem is complete.

Remark 3.1. The designed state feedback controller can ensure asymptotical stabil-

ity of the closed-loop system which is expressed in the solutions of LMI. The result

in this paper advances recent findings state feedback controller reported in [9, 11, 15]

in that time delays considered are interval time-varying as oppose constant delays.

Moreover, we construct Lyapunov-like functionals different from the ones in [10, 12-

14] and estimate the derivative of V (x(k) by new summation inequality, which leads

to a less conservative LMI condition and reduced numerical complexity, and also as

shown in the numerical example below, the proposed LMI condition in this paper can

be solved with less free weighting matrix unknowns comparatively.

Example 3.1. Consider system (2.1), where

A =

[

0.25 0

0 0.1

]

, W0 =

[

0.12 0.24

−0.15 0.2

]

, W1 =

[

−0.25 0.1

0.02 0.09

]

, F =

[

0.2 0

0 0.3

]

,

H =

[

0.2 0

0 0.3

]

, B =

[

0.1

0.1

]

, I =

[

1 0

0 1

]

,

h(k) = 1 + 5 sin
kπ

2
, k ∈ Z+.

Note that the functions h(k) are interval time-varying, therefore, the methods pro-

posed in [10, 12-14, 17] are not applicable to this system. Given h = 1 and h = 6, by

using the Matlab LMI toolbox, we find that the LMI (3.1) of Theorem 3.1 is feasible

with

P =

[

1.9106 0.0808

0.0808 2.1116

]

, R =

[

0.0400 −0.0030

−0.0030 0.0375

]

,

U =

[

0.0515 −0.0045

−0.0045 0.0476

]

, S =

[

0.0235 −0.0014

−0.0014 0.0222

]

,

M =

[

0.1673 −0.0150

−0.0150 0.1566

]

, N =

[

0.1673 −0.0150

−0.0150 0.1566

]

,



STABILIZATION OF DISCRETE NEURAL NETWORKS 259

Figure 1. Response solution of the closed-loop system

P1 =

[

0.0178 −0.0106

0.0085 0.0158

]

, P2 =

[

0.0064 −0.0028

0.0012 0.0062

]

,

Q =

[

−2.0695 −0.4646

0.2137 −2.0971

]

.

The state feedback controller is:

u(k) = 0.1856x1(k) + 0.2562x2(k), k ∈ Z+.

Fig. 1 shows the simulation of the state response of the closed-loop systems with

initial condition φ(k) = [−2 2]T .

4. Conclusions

This paper has investigated the global stabilzation via state feedback control for

discrete-time neural networks with interval time-varying delays. Based on construct-

ing the improved Lyapunov functionals and by utilizing a new estimation techniqueas,

a new LMI-based sufficient condition for designing state feedback controller is derived

for the considered system. A numerical example is given to illustrate the effectiveness

of the proposed main result.
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