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ABSTRACT. Let X be a real reflexive Banach space with its dual X∗. Let L : X ⊃ D(L)→ X∗

be densely defined linear maximal monotone, T : X → 2X
∗

bounded maximal monotone, and

C : X ⊃ D(C)→ X∗ bounded demicontinuous of type (S+) w.r.t. D(L). An eigenvalue problem of

the type Lx+Tx+C(λ, x) 3 0 is solved. Here, T satisfies 0 ∈ T (0) and C(λ, ·), λ > 0, is like C above

with C(0, x) = 0. In addition, an open mapping theorem is established for L+T+C. The topological

degree theory developed by Addou and Mermri is used along with the methodology of Berkovits and

Mustonen and recent invariance of domain and eigenvalue results by Kartsatos and Skrypnik.
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1. Introduction and Preliminaries

Let X be a real reflexive Banach space with norm ‖ · ‖ with the dual space X∗. In order to

emphasize that the norm is of a Banach space Y , we write ‖ · ‖Y . The symbol Br(x) denotes the

open ball of radius r > 0 with center at x. We denote by 〈x∗, x〉 the value of the functional x∗ ∈ X∗

at x ∈ X. If {xn} is a sequence in X, we denote its strong convergence to x0 in X by xn → x0

and its weak convergence in X by xn ⇀ x0. The term “continuous” means “strongly continuous”.

An operator T : X ⊃ D(T )→ Y , with Y another Banach space, is said to be “bounded” if it maps

bounded subsets of the domain D(T ) onto bounded subsets of Y . The symbols R and R+ denote

(−∞,∞) and [0,∞), respectively. Also, the symbols ∂D and D denote the strong boundary and

closure of the set D, respectively. The normalized duality mapping J : X ⊃ D(J)→ 2X
∗

is defined

by

Jx = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2, ‖x∗‖ = ‖x‖}, x ∈ X.

The Hahn-Banach theorem ensures that D(J) = X and therefore J : X → 2X
∗
.

By a well-known renorming theorem due to Trojanski [16], one can always renorm a reflexive

Banach space X with an equivalent norm so that both X and X∗ are locally uniformly convex

(therefore strictly convex). Henceforth we assume that X and X∗ are locally uniformly convex

reflexive. In this setting, the normalized duality mapping J is single-valued homeomorphism from

X onto X∗ and satisfies J(αx) = αJ(x), (α, x) ∈ R+ ×X.

For a multi-valued operator T from X to X∗ we write T : X ⊃ D(T ) → 2X
∗
, where D(T ) =

{x ∈ X : Tx 6= ∅} is the effective domain of T . We denote by G(T ) the graph of T, i.e., G(T ) =

Received June 13, 2014 1061-5369 $15.00 c©Dynamic Publishers, Inc.



262 DHRUBA R ADHIKARI

{(x, y) : x ∈ D(T ), y ∈ Tx}. An operator T : X ⊃ D(T )→ 2X
∗

is called “monotone” if for every

(x, u), (y, v) ∈ G(T ) we have

〈u− v, x− y〉 ≥ 0.

A monotone operator T is “maximal monotone” if G(T ) is maximal in X×X∗, in view of the Zorn’s

lemma, when X ×X∗ is partially ordered by inclusion.

In a reflexive Banach space X, it is known that a monotone operator T is maximal monotone

if and only if R(T + λJ) = X∗ for all λ ∈ (0,∞) (equivalently for some λ > 0). If T is maximal

monotone, then it is is a well-known fact that the Yosida approximant Ts := (T−1 + sJ−1)−1 :

X → X∗ is bounded, demicontinuous, maximal monotone and satisfies Tsx ⇀ T {0}x as s → 0+

for every x ∈ D(T ), where T {0}x denotes the element y∗ ∈ Tx of minimum norm, i.e. ‖T {0}x‖ =

inf{‖y∗‖ : y∗ ∈ Tx}. In our setting this infimum is always attained, D(T {0}) = D(T ). Also,

Tsx = 1
sJ(x− Jsx) and Tsx ∈ TJsx, where Js := I − sJ−1Ts : X → X and satisfies lims→0 Jsx = x

for all x ∈ coD(T ), where coA denotes the convex hull of the set A. In addition, x ∈ D(T ) and s0 > 0

imply lim
s→s0

Tsx = Ts0x, and for every s > 0, we have ‖Tsx‖ ≤ ‖w‖ for all w ∈ Tx. The operators Ts

and Js were introduced by Brézis, Crandall and Pazy in [8]. Since X and X∗ are locally uniformly

reflexive spaces one has Tsx→ T {0}x as s→ 0+ for every x ∈ D(T ). For some basic properties, we

refer the reader to [8, 4] as well as Pascali and Sburlan [14, pp. 128-130].

If T satisfies either (i) or (ii) of the following lemma, then we say that T is demiclosed. The

lemma can be found in [17, p. 915].

Lemma 1.1. Let T : X ⊃ D(T )→ 2X
∗

be maximal monotone. Then the following are true:

(i) {xn} ⊂ D(T ), xn → x0 and Txn 3 yn ⇀ y0 imply x0 ∈ D(T ) and y0 ∈ Tx0.
(ii) {xn} ⊂ D(T ), xn ⇀ x0 and Txn 3 yn → y0 imply x0 ∈ D(T ) and y0 ∈ Tx0.

Definition 1.2. An operator f : G → X∗, G ⊂ X, is said to be demicontinuous on G if for every

sequence {xn} ∈ G with xn → x0 in G, we have Cxn ⇀ Cx0 in X∗.

Definition 1.3. Let L : X ⊃ D(L)→ X∗ be a densely defined linear maximal monotone operator

and G a bounded open subset of X. A bounded demicontinuous operator C : G→ X∗ is said to be

of type (S+) w.r.t. D(L) if for every sequence {xn} ⊂ D(L)∩G with xn ⇀ x0 in X, Lxn ⇀ Lx0 in

X∗ and

lim sup
n→∞

〈Cxn, xn − x0〉 ≤ 0,

we have xn → x0 ∈ D(L) = X.

Since the graph G(L) of L is closed in X ×X∗, the space Y = D(L) associated with the graph

norm ‖ · ‖Y defined by

‖x‖Y = ‖x‖X + ‖Lx‖X∗ , x ∈ Y,

becomes a real reflexive Banach space. We may assume that Y and its dual Y ∗ are locally uniformly

convex. Let j : Y → X be the natural embedding and j∗ : X∗ → Y ∗ its adjoint. Since j : Y → X is

continuous, j−1(G) = G ∩D(L) is closed in D(L) and j−1(G) = G ∩D(L) is open in D(L) for any

open set G ⊂ X. Moreover,

j−1(G) ⊂ j−1(G), and ∂(j−1(G)) ⊂ j−1(∂G).

Definition 1.4. Let L : X ⊃ D(L)→ X∗ be a densely defined linear maximal monotone operator,

G a bounded open subset of X and C(t) : G→ X∗, t ∈ [0, 1], a one-parameter family of operators.
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The family {C(t)}t∈[0,1] is said to be a “homotopy of type (S+) w.r.t. D(L)” if for every pair of

sequences {xn} ⊂ D(L) ∩G and {tn} ⊂ [0, 1] with xn ⇀ x0 in X, Lxn ⇀ Lx0 in X∗, tn → t0, and

lim sup
n→∞

〈C(tn)xn, xn − x0〉 ≤ 0,

we have xn → x0 in X and C(tn)xn ⇀ C(t0)x0 in X∗.

Definition 1.5. A family T (t) : X → 2X
∗
, t ∈ [0, 1], of maximal monotone operators is said to be

bounded if the set
⋃
t∈[0,1] T (t)(G) is bounded in X∗ for every bounded subset G of X.

Definition 1.6. Let T (t) : X → 2X
∗
, t ∈ [0, 1], be a family of maximal monotone operators with

0 ∈ Tt(0) for all t. Then {Tt} is called a “pseudomonotone homotopy” if for every {tn} ⊂ [0, 1] with

tn → t0 and {(xn, yn)} ⊂ G(Ttn) with xn ⇀ x0 in X and yn ⇀ y0 ∈ X∗ such that

lim sup
n→∞

〈yn, xn〉 ≤ 〈y0, x0〉,

we have (x0, y0) ∈ G(Tt0) and lim
n→∞

〈yn, xn〉 = 〈y0, x0〉.

Browder [6] gave the concept of a pseudomonotone homotopy of maximal monotone operators

with 4 equivalent conditions one of which is in Definition 1.6. For the remaining three conditions,

the reader is referred to [6].

Let HG denote the set of all operators of the form L + T (t) + C(t), where L and C(t) are as

above and T (t) is a bounded pseudomonotone homotopy of maximal monotone operators from X

into 2X
∗
. For F (t) := L+ T (t) + C(t) ∈ HG, we define

L̂ := j∗ ◦ L ◦ j : Y → Y ∗, Ĉ(t) := j∗ ◦ C(t) ◦ j : j−1(G)→ Y ∗,

and for every s > 0

T̂s(t) := j∗ ◦ Ts(t) ◦ j : Y → Y ∗,

where Ts(t) is the Yosida approximant of T (t). We also define M : Y → Y ∗ by

(Mx, y) = 〈Ly, J−1(Lx)〉, x, y ∈ Y.

Here, the duality pair (·, ·) is in Y ∗ × Y and J−1 is the inverse of the duality map J : X → X∗. In

particular, for every x ∈ Y such that Mx ∈ j∗(X∗), we have J−1(Lx) ∈ D(L∗) and

Mx = j∗ ◦ L∗ ◦ J−1(Lx).

The operator M is monotone because

(Mx−My, x− y) = 〈Lx− Ly, J−1(Lx)− J−1(Ly)〉 ≥ 0

for all x, y ∈ Y . One can see that J−1 coincides with the normalized duality map from X∗ to X∗∗

when we identify X and X∗∗.

The following lemma whose proof can be found in [1] will be needed later on.

Lemma 1.7. If F (t) ∈ HG and s > 0, then F̂s(t) := L̂+ T̂s(t) + Ĉ(t) + sM is a bounded homotopy

of type (S+) from j−1(G) ⊂ Y to Y ∗. Moreover, for every continuous h : [0, 1] → X∗, the set

{u ∈ j−1(G) : F̂s(t)(u) = j∗h(t), t ∈ [0, 1]} is bounded in Y .

The full proof of Lemma 1.8 below can be found in [3]. The reader is also referred to Brézis,

Crandall and Pazy [8].
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Lemma 1.8. Assume that the operators T : X ⊃ D(T ) → 2X
∗

and S : X ⊃ D(S) → 2X
∗

are

maximal monotone with 0 ∈ D(T ) ∩ D(S) and 0 ∈ S(0) ∩ T (0). Assume, further, that T + S is

maximal monotone and that there is a sequence {sn} ⊂ (0,∞) such that sn ↓ 0, and a sequence

{xn} ⊂ D(S) such that xn ⇀ x0 ∈ X and Tsnxn + w∗n ⇀ y∗0 ∈ X∗, where w∗n ∈ Sxn. Then the

following are true:

(i) the inequality

(1.1) lim
n→∞

〈Tsnxn + w∗n, xn − x0〉 < 0

is impossible;

(ii) if

(1.2) lim
n→∞

〈Tsnxn + w∗n, xn − x0〉 = 0,

then x0 ∈ D(T + S) and y∗0 ∈ (T + S)x0.

Remark 1.9. Lemma 1.8 is also valid if we replace Tsn with T (in the absence of the sequence

{sn}) and make necessary notational changes.

Lemma 1.10 below from Kartsatos and Skrypnik [11] is needed in the proof of Theorem 2.3 in

Section 2.

Lemma 1.10. Let T : X ⊃ D(T ) → 2X
∗

be maximal monotone and such that 0 ∈ D(T ) and

0 ∈ T (0). Then the mapping (t, x)→ Ttx is continuous on the set (0,∞)×X.

Addou and Mermri [1] extended the Berkovits-Mustonen [5] degree for L + C to the triplet

L+ T +C, with a bounded maximal monotone operator T . In this paper we consider an eigenvalue

problem and an open mapping theorem for nonlinear perturbations of linear densely defined maximal

monotone operators using the methodology of the construction of the degree theories by Berkovits

and Mustonen [5] and by Addou and Mermri [1]. These results generalize similar ones of Kartsatos

and Skrypnik in [12, 13].

Kartsatos [9] established invariance of domain theorems for maximal monotone operators whose

domain do not necessarily contain any open sets. Kartsatos and Skrypnik [13] have extended the

well-known invariance of domain theorem of Schauder about injective operators of the type I + C

with C compact to the operators of the form T + C with T maximal monotone and C bounded

demicontinuous of type (S+) using the topological degrees of Browder and Skrypnik. In addition,

Kartsatos and Skrypnik [13] gave invariance of domain theorems for the operators of the form T +C

with both T, C densely defined and T single-valued. These results make use of the topological degree

theory developed by the authors for the sum T +C, where T is single-valued maximal monotone T

and C satisfies conditions like quasiboundedness and (S+) w.r.t T . Recent results on open balls in

the ranges of nonlinear operators were obtained by Kartsatos and Quarcoo in [10].

The author and Kartsatos created a new degree theory in [2] for L + T + C, where L is

densely defined linear maximal monotone, T (possibly nonlinear) maximal monotone and strongly

quasibounded (a notion more general than boundedness, cf. [7]), and C bounded, demicontinuous

and of type (S+) w.r.t. the set D(L). This degree theory for the case T = 0 reduces to the

degree theory of Berkovits and Mustonen [5]. For a bounded T , it reduced to the degree theory of

Addou and Mermri [1]. As in [5], the construction of the degree mappings in [1, 2] uses the graph

norm topology of the space Y = D(L). It should be noted that there is a large class of strongly

quasibounded maximal monotone operators. For example, Browder and Hess [7] have shown that a

maximum monotone operator with zero in the interior of its domain is strongly quasibounded.
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2. Existence of Eigenvalues

In this section we utilize various topological degree theories to solve the implicit eigenvalue

problem Lx+Tx+C(λ, x) 3 0, which generalizes the eigenvalue problem Tx+C(λ, x) = 0 considered

in Kartsatos and Skrypnik [12]. Here, T : X ⊃ D(T ) → X∗ is maximal monotone with 0 ∈ D(T )

and 0 ∈ T (0), and C : [0,Λ]×G→ X∗, G ⊂ X bounded open and 0 ∈ G, is bounded demicontinuous

of type (S+).

The following definition is a variant of one in [12, p. 3854] and will be needed for an eigenvalue

problem which generalizes a similar result of Kartsatos and Skrypnik in [12].

Definition 2.1. Let G ⊂ X be open and bounded, Λ > 0. An operator C : [0,Λ] × G → X∗

is said to be demicontinuous if {(tn, xn)} ⊂ [0,Λ] × G such that (tn, xn) → (t0, x0) ∈ [0, λ] × G
implies C(tn, xn) ⇀ C(t0, x0) in X∗. A demicontinuous operator C(t, x) is said to be continuous in

t uniformly w.r.t. x ∈ G if {tn} ⊂ [0,Λ] with tn → t0 ∈ [0, λ] implies C(tn, x) → C(t0, x) for all

x ∈ G. A demicontinuous operator C : [0,Λ]×G→ X∗ is said to be of type (S+) w.r.t D(L) if for

every sequence {xn} ∈ D(L) and every λ ∈ (0,Λ] with xn ⇀ x0 in X, Lxn ⇀ Lx0 in X∗ and

lim sup
n→∞

〈C(λ, xn), xn − x0〉 ≤ 0,

we have xn → x0 in X.

Definition 2.2. An operator T : X ⊃ D(T ) → 2X
∗

is said to satisfy condition “(Sq)” on a set

A ⊂ D(T ) if for every sequence {xn} ⊂ A with xn ⇀ x0 in X and any x∗n ∈ Txn with x∗n → x∗ for

some x∗ ∈ X∗, we have xn → x0 in X.

We next have an eigenvalue result for our setting of L, T and C by employing the Browder and

Skrypnik degree theory as well as the methodology established by Kartsatos and Skrypnik in [12].

Theorem 2.3. Let G ⊂ X be open, bounded and 0 ∈ G. Let L : X ⊃ D(L) → X∗ be a densely

defined linear maximal monotone operator and T : X → 2X
∗
a bounded maximal monotone operator

with 0 ∈ D(T ) and 0 ∈ T (0). Let C : [0,Λ] × G → X∗ be a bounded demicontinuous operator of

type (S+) w.r.t. to D(L). Assume that C(0, x) = 0, x ∈ G, and C(t, x) is continuous in t uniformly

w.r.t. x ∈ G. Let ε, ε0 be positive numbers. Assume further that

(P) there exists λ ∈ (0,Λ] such that the inclusion

Lx+ Tx+ C(λ, x) + εJx 3 0

has no solution in x ∈ D(L) ∩G. Then

(i) there exists (λ0, x0) ∈ (0,Λ]× (D(L) ∩ ∂G) such that

(2.1) Lx0 + Tx0 + C(λ0, x0) + εJx0 3 0;

(ii) if 0 /∈ (L+T )(D(L)∩∂G), L+T satisfies condition (Sq) on D(L), and property (P) is satisfied for

every ε′ ∈ (0, ε0], then there exists (λ0, x0) ∈ (0,Λ]×(D(L)∩∂G) such that Lx0+Tx0+C(λ0, x0) 3 0.

Proof: Assume that (2.1) is not true. Then the inclusion

H(λ, x) := Lx+ Tx+ C(λ, x) + εJx 3 0

has no solution on D(L)∩ ∂G for every λ ∈ [0,Λ]. Here, L+ T + εJ is strictly monotone and so the

assumption is obviously true for λ = 0. Thus,

(2.2) H(λ,D(L) ∩ ∂G) 63 0, λ ∈ [0,Λ].
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Let Y = D(L) be equipped with the graph norm. We are now going to show that there exist

s0 > 0, λ0 ∈ (0,Λ] such that for every s ∈ (0, s0] and λ ∈ (0, λ0], the equation

(2.3) H1(s, λ, x) := L̂x+ T̂sx+ Ĉ(λ, x) + εĴx+ sMx = 0

has no solution x ∈ ∂GR(Y ), where GR(Y ) = j−1(G) ∩ BY (0, R). Here, BY (0, R) := {y ∈ Y :

‖y‖Y < R}. By Lemma 1.7, the set of solutions of (2.3) in j−1(G) is bounded in Y and 0 ∈ j−1(G),

and therefore such an R > 0 exists. Moreover, GR(Y ) is bounded and open in Y . We also note that

∂(j−1(G)) ⊂ j−1(∂G).

Assume that the assertion about (2.3) is not true. Then there exist sn ↓ 0, λn ↓ 0, xn ∈
∂(j−1(G)), x0 ∈ Y , such that xn ⇀ x0 in Y (Y is reflective in the graph norm) and

(2.4) L̂xn + T̂snxn + Ĉ(λn, xn) + εĴxn + snMxn = 0,

where Ĵ = j∗ ◦ J ◦ j. The definitions of L̂, T̂s, Ĉ, Ĵ , M , monotonicity of J , and (2.4) imply

(L̂xn, xn − x0) = −(Ĉ(λn, xn), xn − x0)− (T̂snxn, xn − x0)

−ε(Ĵxn, xn − x0)− sn(Mxn, xn − x0)

= −〈C(λn, xn), xn − x0〉 − 〈Tsnxn, xn − x0〉(2.5)

−ε〈Jxn, xn − x0〉 − sn〈Lxn − Lx0, J−1(Lxn)〉

≤ ‖C(λn, xn)‖‖xn − x0‖ − 〈Tsnx0, xn − x0〉 − ε〈Jx0, xn − x0〉

−sn〈Lxn − Lx0, J−1(Lxn)〉.

We note that xn ⇀ x0 in Y implies xn ⇀ x0 in X and Lxn ⇀ Lx0 in X∗. Since Tsnx0 → y0 :=

T {0}x0, where T {0}x0 is the element of minimum norm in the closed convex set Tx0, we obtain

lim sup
n→∞

(L̂xn, xn − x0) ≤ lim
n→∞

[‖C(λn, xn)‖‖xn − x0‖]− ε lim
n→∞

〈Jx0, xn − x0〉

− lim
n→∞

〈Tsnx0, xn − x0〉 − lim
n→∞

sn〈Lxn − Lx0, J−1(Lxn)〉

= 0.

Here, we have also used the continuity of C(λ, x) in λ uniformly w.r.t. x ∈ G, the fact that

∂(j−1(G)) ⊂ j−1(∂G) = ∂G ∩ Y ⊂ G, and the boundedness of J−1. Also, the monotonicity of L̂

implies

lim inf
n→∞

(L̂xn, xn − x0) ≥ lim
n→∞

(L̂x0, xn − x0) ≥ 0.

Therefore

lim
n→∞

(L̂xn, xn − x0) = 0.

This along with (2.5) gives

lim sup
n→∞

〈Tsnxn + εJxn, xn − x0〉 = 0.

If

lim sup
n→∞

〈Jxn, xn − x0〉 > 0,

then it follows, for a subsequence of {n} again denoted by {n}, that

lim inf
n→∞

〈Tsnxn, xn − x0〉 < 0.

This is impossible by Lemma 1.8(i) by using an appropriate further subsequence of {n}. This shows

that we must have

lim sup
n→∞

〈Jxn, xn − x0〉 ≤ 0.
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Since it is a well-known fact that J is of type (S+) (cf., [6]), we have xn → x0 in X and x0 ∈
∂G ∩ Y = j−1(∂G). The continuity of Ĵ implies Ĵxn → Ĵx0. Since, for each s > 0 and x ∈
D(T ), ‖Tsx‖ ≤ ‖w‖ for all w ∈ Tx and T is bounded, {Tsnxn} is bounded, and therefore we may

assume that Tsnxn ⇀ w0 ∈ Tx0 for a subsequence of {n} again denoted by {n}. Then (2.4) implies

L̂xn + T̂snxn + εĴxn ⇀ L̂x0 + j∗w + εĴx0 = 0.

Let y ∈ Y . Then

(L̂x0 + j∗w0 + εĴx0, y) = 0,

which implies

〈Lx0 + w0 + εJx0, y〉 = ((j∗ ◦ L ◦ j)x0 + j∗w0 + ε(j∗ ◦ J ◦ j)x0, y)

= (L̂x0 + j∗w0 + εĴx0, y)

= 0.

Since Y is dense in X, we have that Lx0 +w0 +εJx0 = 0 which is a contradiction because L+T +εJ

is strictly monotone and 0 ∈ G ∩ Y . Therefore the assertion about (2.3) is true.

Now, we fix s ∈ (0, s0] and λ ∈ (0, λ0] and consider the homotopy function

(2.6) H2(t, x) := L̂x+ T̂sx+ Ĉ(tλ, x) + εĴx+ sMx, (t, x) ∈ [0, 1]× j−1(G).

By a similar argument as used previously, we can show that 0 6∈ H2(t, ∂GR(Y )) for all t ∈ [0, 1] and

for possibly a bigger R > 0. Obviously, we can use this R hereafter.

Set S(t) = C(tλ, ·) + εJ and T (t) = Ts. Then Ŝ(t) = Ĉ(tλ, ·) + εĴ and T̂t = T̂s. In order

to show that H2(t, x) is an admissible homotopy for the Browder and Skrypnik degree, in view of

Lemma 1.7, it suffices to show that S(t) is a bounded homotopy of type (S+) with respect to D(L)

and Tt is a bounded pseudomonotone homotopy of maximal monotone operators. The latter follows

immediately from the former because Ts is bounded whenever T is bounded. Let {xn} ⊂ D(L) be

such that xn ⇀ x0 in X, Lxn ⇀ Lx0 in X∗, tn → t ∈ [0, 1] and

(2.7) lim sup
n→∞

〈S(tn)xn, xn − x0〉 ≤ 0.

We observe that

〈S(tn)xn, xn − x0〉 = 〈C(tnλ, xn), xn − x0〉+ ε〈Jxn, xn − x0〉

= 〈C(tnλ, xn), xn − x0〉+ ε〈Jxn − Jx0, xn − x0〉(2.8)

+ε〈Jx0, xn − x0〉

≥ 〈C(tnλ, xn), xn − x0〉+ ε〈Jx0, xn − x0〉.

Using this with (2.7) we get

(2.9) lim sup
n→∞

〈C(tnλ, xn), xn − x0〉 ≤ 0.

If t = 0, then C(tnλ, xn)→ 0 and

lim
n→∞

〈C(tnλ, xn), xn − x0〉 = 0.

Using this in (2.9), we obtain

(2.10) lim sup
n→∞

〈Jxn, xn − x0〉 ≤ 0.

Since J is of type (S+), we obtain xn → x0. This implies C(tnλ, xn)→ C(0, x0) = 0 and Jxn → Jx0.

It follows that S(tn)xn = C(tnλ, xn) + εJxn → εJx0 = S(0, x0).
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We next consider the case t > 0 and observe that

(2.11) 〈C(tnλ, xn), xn − x0〉 = 〈C(tnλ, xn)− C(tλ, xn), xn − x0〉+ 〈C(tλ, xn), xn − x0〉.

Using

lim
n→∞

[C(tnλ, xn)− C(tλ, xn)] = 0

and (2.9) in (2.11) we obtain

lim sup
n→∞

〈C(tλ, xn), xn − x0〉 ≤ 0.

The (S+) property of C w.r.t. D(L) implies xn → x0 in X. So, Jxn → Jx0 and by the demiconti-

nuity of C we have

S(tn)xn = C(tnλ, xn) + εJxn ⇀ C(tλ, x0) + εJx0 = S(t)x0.

This establishes the admissibility of the homotopy H2(t, x) according to the Skrypnik degree dS (cf.

[15]). Therefore, by the homotopy invariance of this degree, we have

dS(H2(t, ·), GR(Y ), 0) = dS(H2(1, ·), GR(Y ), 0)

= dS(H2(0, ·), GR(Y ), 0)

= dS(L̂+ T̂s + εĴ + sM,GR(Y ), 0).(2.12)

Consider another homotopy function

H0(t, x) := t(L̂+ T̂s + εĴ + sM) + (1− t)(L̂+ εĴ + sM), (t, x) ∈ [0, 1]× j−1(G).

Since T (t) = tT is a bounded pseudomonotone homotopy, it is clear that H0(t, x) is a homotopy of

type (S+) from j−1(G) ⊂ Y to Y ∗. By using the techniques in the proof of Lemma 1.1 which is given

in [5], one can show that the set of solutions of H0(t, x) = 0 is bounded in Y . Choose the number

R > 0 bigger enough so that all the solutions of H0(t, x) = 0 are contained in BY (0, R) so that

H0(t, x) = 0 has no solution (t, x) ∈ [0, 1]×∂GR(Y ). Otherwise, for some (t0, x0) ∈ [0, 1]×∂GR(Y ),

we have

L̂+ tT̂s + εĴ + sM = 0.

Consequently,

(L̂x0, x0) + t0(T̂sx0, x0) + ε(Ĵx0, x0) + s(Mx0, x0) = 0

which implies x0 = 0. But x0 ∈ ∂(j−1(G)) which implies 0 = x0 ∈ ∂G. This is a contradiction.

Thus, by the invariance under homotopy of the degree, we have

(2.13) dS(L̂+ T̂s + εĴ + sM,GR(Y ), 0) = dS(L̂+ εĴ + sM,GR(Y ), 0).

The topological degree, d, developed in [1] is based on the methodology of degree developed in [5]

by Berkovits and Mustonen and the degree is the limit

d(H(λ, ·), G, 0) = lim
s↓0

dS(H1(s, λ, ·), GR(Y ), 0)

= lim
s↓0

dS(H2(1, ·), GR(Y ), 0)

= lim
s↓0

dS(L̂+ T̂s + εĴ + sM,GR(Y ), 0)

= lim
s↓0

dS(L̂+ εĴ + sM,GR(Y ), 0)

= d(L+ εJ,G, 0)

= 1.
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Here, we have used (2.12) and (2.13) and Corollary 1 in [5, p.611]. Therefore there exists x ∈
G ∩D(L) such that

Lx+ Tx+ C(λ, x) + εJx 3 0.

This contradicts our assumption (P).

(ii) In view of (i), for each positive integer n, there exist {xn} ⊂ ∂G ∩ D(L), x∗n ∈ Txn,

λn ∈ (0,Λ] such that

(2.14) Lxn + x∗n + C(λn, xn) +
1

n
Jxn = 0.

We may assume that λn → λ0 ∈ [0,Λ], C(λn, xn) ⇀ c∗ and Jxn ⇀ p. Since T is bounded, (2.14)

implies {Lxn} is bounded in X∗. Since {xn} is bounded in X, it follows that {xn} is bounded in

Y = D(L) with the graph norm. Since Y is reflexive, we may assume that xn ⇀ x0 in Y . Therefore,

we have xn ⇀ x0 in X and Lxn ⇀ Lx0 in X∗.

We now consider two cases: (a) λ0 = 0; (b) λ0 > 0.

(a) Since

Lxn + x∗n = −C(λn, xn)− 1

n
Jxn → 0

and L+ T satisfies (Sq) on D(L), we have xn → x0 ∈ ∂G in X. Since L+ T is maximal monotone,

by Lemma 1.1 we have x0 ∈ D(L) and 0 ∈ Lx0 + Tx0, which contradicts 0 /∈ (L+ T )(∂G ∩D(L)).

(b) We first assert that

(2.15) lim sup
n→∞

〈C(λn, xn), xn − x0〉 ≤ 0.

Assume that it is not true. Then there is a subsequence of {xn}, which we again denote by {xn},
such that

(2.16) lim
n→∞

〈C(λn, xn), xn − x0〉 = q > 0.

Since Lxn + x∗n ⇀ −c∗, we invoke (2.14) and (2.16) to obtain

lim
n→∞

〈Lxn + x∗n, xn − x0〉 < 0,

which is impossible by Lemma 1.8. Therefore, (2.15) is true. Using (2.15), C(λn, xn)−C(λ0, xn)→ 0,

and

〈C(λ0, xn), xn − x0〉 = 〈C(λ0, xn)− C(λn, xn), xn − x0〉+ 〈C(λn, xn), xn − x0〉,

we obtain

lim sup
n→∞

〈C(λ0, xn), xn − x0〉 ≤ 0.

Since C is a homotopy of class (S+) w.r.t. Y , we obtain xn → x0 in X. Since C is demicontinuous,

C(λn, xn) ⇀ C(λ0, x0) = c∗. Thus, Lxn + x∗n ⇀ −C(λ0, x0). Since L + T is maximal monotone,

it is demiclosed by Lemma 1.1. Thus, Lx0 + Tx0 + C(λ0, x0) 3 0 and the proof of the theorem is

complete.

3. Open Mapping Theorem

In this section, we obtain an open mapping theorem for the triplet L+T +C with the operators

L, T, C as previously considered. Unlike in Theorem 2.3, we need not assume 0 ∈ D(T ) and

0 ∈ T (0).
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Definition 3.1. An operator T : X ⊃ D(T )→ Y, with Y another real Banach space, is “injective”

if for every x1, x2 ∈ D(T ) with Tx1∩Tx2 6= ∅ we have x1 = x2. Given an operator T : X ⊃ D(T )→
2X

∗
, we say that T is “locally injective” on G ⊂ X if for every x0 ∈ D(T ) ∩ G there exists a ball

Br(x0) ⊂ X such that T is injective on D(T )∩Br(x0). If G = X, then we simply say that T “locally

injective”

The following open mapping theorem generalizes a similar result of Kartsatos and Skrypnik in

[13] for T +C, where T : X ⊃ D(T )→ 2X
∗

is maximal monotone and C : G→ X∗ demicontinuous,

bounded and locally of type (S+) with G ⊂ X open and bounded.

Theorem 3.2. Let L : X ⊃ D(L) → X∗ be a densely defined linear maximal monotone operator,

T : X → 2X
∗

a bounded maximal monotone operator and C : G → X∗ a bounded demicontinuous

operator of type (S+) with respect to D(L), where G ⊂ X is an open bounded subset of X. Assume

that L+ T +C + εJ is locally injective on G for all ε ≥ 0. Then (L+ T +C)(D(L) ∩G) is open in

X∗.

Proof: Let u∗ ∈ (L + T + C)(D(L) ∩ G). We may assume without loss of generality that

u∗ = 0, 0 ∈ D(L) ∩G, 0 ∈ T (0), 0 ∈ C(0). Since L+ T + C is locally injective on G, choose q > 0

such that Bq(0) ⊂ G and L+T +C is locally injective on Bq(0). It is sufficient to show the existence

an r > 0 such that Br(0) ⊂ (L+ T + C)(D(L) ∩Bq(0)).

We claim that there is r > 0 such that (L + T + C)(D(L) ∩ ∂Bq(0)) ∩ Br(0) = ∅. Suppose

that the contrary is true. Then there exists a sequence {rn}, rn ↓ 0 and {xn} ⊂ D(L) ∩ Bq(0) and

p∗n ∈ Brn(0), v∗n ∈ Txn such that

(3.1) Lxn + v∗n + Cxn = p∗n.

Let Y = D(L) with the graph norm. Since T and C are bounded, it follows that {‖Lxn‖} is bounded

and hence {‖xn‖Y } is bounded. Since Y is reflexive, we may assume that xn ⇀ x0 in Y , which

implies xn ⇀ x0 in X and Lxn ⇀ Lx0 in X∗. We are now going to show that

(3.2) lim sup
n→∞

〈Cxn, xn − x0〉 ≤ 0.

If (3.2) is not true, we may assume that

(3.3) lim
n→∞

〈Cxn, xn − x0〉 > 0.

In view of (3.1) and (3.3), we obtain

lim
n→∞

〈Lxn + v∗n, xn − x0〉 < 0,

which is impossible by Remark 1.9 after Lemma 1.8 since L+ T is maximal monotone. Thus (3.2)

is true. Since C is of type (S+) w.r.t. L, we obtain xn → x0 ∈ ∂Bq(0) in X. By the demicontinuity

of C, we get Cxn → Cx0 and therefore Lxn + v∗n → −Cx0. Since L + T is demiclosed as given in

Lemma 1.1, we obtain 0 ∈ (L+ T +C)(x0) which is a contradiction to the injectivity of L+ T +C

on Bq(0) and our claim is proved.

We now fix p∗ ∈ Br(0) and define f(t) = tp∗, t ∈ [0, 1]. Clearly, f(t) lies in Br(0) for all

t ∈ [0, 1]. We next claim that there exist an integer n0 > 0 and a number s0 > 0 such that

(3.4) L̂x+ T̂sx+ Ĉx+ sMx+
1

n
Ĵx = j∗(f(t)), s ∈ (0, s0], n ≥ n0,

has no solution x ∈ ∂GR(Y ), where GR(Y ) = j−1(Bq(0)) ∩ BY (0, R). Here, BY (0, R) := {y ∈ Y :

‖y‖Y < R}. By using techniques in the proof of Lemma 1.1 which is given in [5], one can see that
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the set of solutions of (3.4) in j−1(G) is bounded in Y uniformly with respect to large n and small

s, and therefore such a number R > 0 exists. We recall that ∂(j−1(Bq(0))) ⊂ j−1(∂Bq(0)).

Assume that our claim is not true. Then there exist sequences, {tn} ⊂ [0, 1], sn ↓ 0, xn ∈
∂(j−1(Bq(0))), x0 ∈ Y , t0 ∈ [0, 1] with tn → t0 and xn ⇀ x0 in Y such that

(3.5) L̂xn + T̂snxn + Ĉxn + snMxn +
1

n
Ĵxn = j∗(f(tn)).

We are going to show that

(3.6) lim sup
n→∞

〈Cxn, xn − x0〉 ≤ 0.

Suppose that this is not true. Then we may assume that

(3.7) lim
n→∞

〈Cxn, xn − x0〉 > 0.

We observe that

〈Lxn + Tsnxn, xn − x0〉 = (L̂xn + T̂snxn, xn − x0)

= −(Ĉxn, xn − x0)− sn(Mxn, xn − x0)− 1

n
(Ĵxn, xn − x0)

+(j∗(f(tn)), xn − x0)(3.8)

= 〈Cxn, xn − x0〉 − sn〈Lxn − Lx0, J−1(Lxn)〉

− 1

n
〈Jxn, xn − x0〉+ 〈(f(tn)), xn − x0〉,

which implies

lim
n→∞

〈Lxn + Tsnxn, xn − x0〉 < 0.

This is impossible by Lemma 1.8(i), and therefore (3.6) is true. Since C is of type (S+) w.r.t. L,

we get xn → x0 ∈ ∂Bq(0) in X. Since C is demicontinuous, we have Cxn ⇀ Cx0 in X∗. Since,

for each s > 0 and x ∈ D(T ), ‖Tsx‖ ≤ ‖w‖ for all w ∈ Tx and T is bounded, {Tsnxn} is bounded,

and therefore we may assume that Tsnxn ⇀ w ∈ Tx0 for a subsequence of {n} again denoted by

{n}. Then (3.5) implies L̂xn + T̂snxn + Ĉxn ⇀ L̂x0 + j∗w + Ĉx0 = j∗(f(t0)).

For all v ∈ Y , we have

〈Lx0 + w + Cx0, v〉 = (L̂x0 + j∗w + Ĉx0, v) = (j∗(f(t0)), v) = 〈f(t0), v〉.

Since Y is dense in X, we obtain Lx0 + w + Cx0 = f(t0) which implies f(t0) ∈ (L + T +

C)(D(L) ∩ ∂Bq(0)). Since x0 ∈ D(L) ∩ ∂Bq(0) and f(t0) ∈ Br(0), we have a contradiction to

(L+ T + C)(D(L) ∩ ∂Bq(0)) ∩Br(0) = ∅.

We now consider the homotopy function

(3.9) H(s, t, x, n) := t

(
L̂x+ T̂sx+ Ĉx+

1

n
Ĵx

)
+ sMx+ (1− t)Ĵx,

where (t, x) ∈ [0, 1]× j−1(Bq(0)). As pointed out several times previously in other similar situations,

one can use techniques used in the proof of Lemma 1.1 which is given in [5] to prove the existence of

a number s0 > 0 and an integer n0 > 0 such that the solutions of H(s, t, x, n) = 0, s0 ∈ (0, s0], n ≥
n0, are bounded Y uniformly with respect to t ∈ [0, 1].

Let R > 0 be such that BY (0, R) := {y ∈ Y : ‖y‖Y < R} contains all the solutions of the

equation of H(s, t, x, n) = 0 for all s ∈ (0, s0] and n ≥ n0.

Let GR(Y ) = j−1(Bq(0)) ∩BY (0, R). We are going to show that there exist an integer n1 > 0

and a number s1 > 0 such that (3.9) has no solution x ∈ ∂GR(Y ) for any s ∈ (0, s1], n ≥ n1 and
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t ∈ [0, 1]. Assuming that the contrary is true, let there be sequences {xn} ⊂ ∂GR(Y ), {sn} ⊂ (0,∞),

and {tn} ⊂ [0, 1] such that xn ⇀ x0 in Y , sn → 0, tn → t0 and

(3.10) tn

(
L̂xn + T̂snxn + Ĉxn +

1

n
Ĵxn

)
+ snMxn + (1− tn)Ĵxn = 0.

If tn = 0 for all n, then

snMxn + Ĵxn = 0,

which implies xn = 0 for all n, and this is a contradiction to the choice of {xn}. Also, if tn = 1

for all n, we again have a contradiction by the argument as in the previous part with j∗(f(t)) = 0.

Thus, we may assume that tn ∈ (0, 1). Consider the cases: (a) t0 = 0; (b) t0 > 0.

Case (a): Since xn ⇀ x0 in Y , it follows that xn ⇀ x0 in X and Lxn ⇀ Lx0 in X∗. In

particular, {‖xn‖} is bounded. By the boundedness of C, {Cxn} is also bounded. Now,

tnL̂xn + tnT̂snxn + Ĵxn = −tnĈxn − tn
(

1

n
− 1

)
Ĵxn − snMxn

implies

tn(L̂xn, xn) + tn(T̂snxn, xn) + (Ĵxn, xn) = −tn(Ĉxn, xn)− tn
(

1

n
− 1

)
(Ĵxn, xn)

−sn(Mxn, xn).

By the monotonicity of L and Ts, we get

〈Jxn, xn〉 ≤ −tn〈Cxn, xn〉 − tn
(

1

n
− 1

)
〈Jxn, xn〉 − sn〈Lxn, J−1(Lxn)〉 → 0.

This shows that x0 = 0, i.e., a contradiction because {xn} ⊂ ∂Bq(0). This completes Case (a).

Case (b): If t0 = 1, let dn =
1

tn
− 1. Clearly, dn > 0 and dnJxn → 0. Also, from (3.10), we

have

L̂xn + T̂snxn + Ĉxn +

(
1

n
+ dn

)
Ĵxn +

sn
tn
Mxn = 0.

This equation is similar to (3.5) with f(t) ≡ 0. This shows that the case t0 = 1 is also impossible.

Assume now that t0 ∈ (0, 1). Put

en =
1

tn
+

1

n
− 1.

We may assume that en > 0 for all n. From (3.10), we have

(3.11) L̂xn + T̂snxn + Ĉxn + enĴxn +
sn
tn
Mxn = 0.

We are now going to show that (3.6) is true. Assuming the contrary, suppose that (3.7) holds true.

We observe that

〈Lxn + Tsnxn, xn − x0〉 = (L̂xn + T̂snxn, xn − x0)

= −(Ĉxn, xn − x0)− sn
tn

(Mxn, xn − x0)− en(Ĵxn, xn − x0)

= −〈Cxn, xn − x0〉 −
sn
tn
〈Lxn − Lx0, J−1(Lxn)〉(3.12)

−en〈Jxn, xn − x0〉,

which implies

lim
n→∞

〈Lxn + Tsnxn, xn − x0〉 < 0,

and this is impossible by Lemma 1.8(i). Thus (3.6) is true. Since C is of type (S+) w.r.t. L, we get

xn → x0 ∈ ∂Bq(0) in X. Since C is demicontinuous, we have Cxn ⇀ Cx0 in X∗. As previously
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noted, we may assume that Tsnxn ⇀ w ∈ Tx0 for a subsequence of {n} again denoted by {n}. Then

(3.11) implies

L̂xn + T̂snxn + Ĉxn ⇀ L̂x0 + j∗w + Ĉx0 = −1− t0
t0

Ĵx0.

For all v ∈ Y , we have〈
Lx0 + w + Cx0 +

1− t0
t0

Jx0, v

〉
=

(
L̂x0 + j∗w + Ĉx0 +

1− t0
t0

Ĵx0, v

)
= 0.

Since Y is dense in X, we obtain

Lx0 + w + Cx0 +
1− t0
t0

Jx0 = 0

which implies

0 ∈
(
L+ T + C +

1− t0
t0

J

)
(D(L) ∩ ∂Bq(0)).

Since x0 ∈ D(L) ∩ ∂Bq(0) and 0 ∈ Bq(0), we have a contradiction to the injectivity of

L+ T + C +
1− t0
t0

J

on D(L) ∩Bq(0). This concludes Case (b).

Thus the homotopy equation (3.9) has no solution on ∂GR(Y ) for all large n, and for all

s ∈ (0, s0] for some s0 > 0, and for all t ∈ [0, 1]. Since H(s, t, x, n) is an affine homotopy of bounded

demicontinuous operators of type (S+) from j−1(Bq(0)) ⊂ Y to Y ∗, it is a bounded homotopy of

type (S+) from j−1(Bq(0)) ⊂ Y to Y ∗. The homotopy invariance of the degree for (S+) (cf. [15])

implies

dS(H(s, 1, ·, n), GR(Y ), 0) = dS(H(s, 0, ·, n), GY (R), 0)

= dS(Ĵ + sM,GY (R), 0)

= 1.

Next, we consider the homotopy equation

H1(s, t, x, n) := L̂x+ T̂sx+ Ĉx+ sMx+
1

n
Ĵx− j∗(f(t)),

where f(t) = tp∗ with p∗ ∈ Br(0) and t ∈ [0, 1]. We have already seen that the equation

H1(s, t, x, n) = 0 has no solution x ∈ ∂GY (R). We notice that H1(s, t, x, n) is admissible for

the Skrypnik degree for (S+) mappings. By the invariance property of the degree, we obtain

dS(H1(s, t, ·, n), GY (R), 0) = dS(H1(s, 0, ·, n), GY (R), 0)

= dS

(
L̂+ T̂s + Ĉ +

1

n
Ĵ + sM,GY (R), 0

)
= dS(H(s, 1, ·, n), GY (R), 0)

= 1.

Since

dS(H1(s, 1, ·, n), GY (R), 0) = dS(L̂+ T̂s + Ĉ + sM +
1

n
Ĵ − j∗(f(t)), GY (R), 0),

we have that the degree of L+ T + C + 1
nJ as in [1] satisfies

d(L+ T + C +
1

n
J − f(t), Bq(0), 0)

= lim
s→0

dS(L̂+ T̂s + Ĉ + sM +
1

n
Ĵ − j∗(f(t)), GY (R), 0)

= 1,



274 DHRUBA R ADHIKARI

for all t ∈ [0, 1] and for all n ≥ n0. Thus, for all n ≥ n0, we have

Br(0) ⊂
(
L+ T + C +

1

n
J

)
(Bq(0) ∩D(L))

so that, for each n ≥ n0, there exists xn ∈ Bq(0) ∩D(L) such that

(3.13) p∗ = Lxn + wn + Cxn +
1

n
Jxn

for some wn ∈ Txn. Since T and C are bounded, we have that {Lxn} is bounded and hence we may

assume that xn ⇀ x0 in Y . We claim that

(3.14) lim sup
n→∞

〈Cxn, xn − x0〉 ≤ 0.

If (3.14) is not true, then we may assume that

(3.15) lim
n→∞

〈Cxn, xn − x0〉 > 0.

From (3.13) and 3.15), it follows that

lim
n→∞

〈Lxn + wn, xn − x0〉 < 0,

which is impossible by Remark 1.9 after Lemma 1.8, and therefore we conclude that

lim sup
n→∞

〈Cxn, xn − x0〉 ≤ 0.

By the (S+)-property of C with respect to D(L), we get xn → x0 in X and hence by the demiconti-

nuity of C, we get Cxn ⇀ Cx0 in X∗. Therefore wn ⇀ p∗−Lx0−Cx0 in X∗. Since T is demiclosed

by Lemma 1.1, we have p∗−Lx0−Cx0 ∈ Tx0, which means that p∗ ∈ (L+T +C)x0. We note that

x0 ∈ D(L) ∩Bq(0). Since (L+ T + C)(D(L) ∩ ∂Bq(0)) ∩Br(0) = ∅ and p∗ ∈ Br(0), it follows that

p∗ ∈ (L+ T + C)(D(L) ∩Bq(0)).

Since p∗ ∈ Br(0) arbitrary, we have

Br(0) ⊂ (L+ T + C)(D(L) ∩Bq(0)).

This completes the proof.

4. Examples

Addou and Mermri [1] have considered parabolic time-dependent problems that involve the

operators considered in this paper. We now present the operators for the purpose of completeness.

Eigenvalue problems and open mapping theorems in the spirit of the results obtained in this paper

can then be stated in terms of the operators.

Let Ω be a bounded open set in RN with smooth boundary, m ≥ 1 an integer, and a > 0. Set

Q = Ω× [0, a]. We consider the differential operator

∂u(x, t)

∂t
+
∑
|α|≤m

(−1)|α|DαAα(x, t, u(x, t), Du(x, t), ..., Dmu(x, t))

+
∑
|α|≤m

(−1)|α|DαBα(x, t, u(x, t), Du(x, t), ..., Dmu(x, t))
(4.1)

in Q. The coefficients Aα = Aα(x, t, ξ), are defined for (x, t) ∈ Q, ξ = {ξγ , |γ| ≤ m} = (η, ζ) ∈ RN0

with η = {ηγ , |γ| ≤ m− 1} ∈ RN1 , ζ = {ζγ , |γ| = m} ∈ RN2 , and N1 +N2 = N0. We assume that

each coefficient Aα(x, t, ξ) satisfies the usual Carathéodory conditions. Let the following standard

conditions be satisfied.
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(A1) (Continuity) For some p ≥ 2, c1 > 0, g ∈ Lq(Q) with q = p/(p− 1), we have

|Aα(x, t, η, ζ)| ≤ c1(|ζ|p−1 + |η|p−1 + g(x, t)),

(x, t) ∈ Q, ξ = (η, ζ) ∈ RN0 , |a| ≤ m.

(A2) (Monotonicity)∑
|α|≤m

(Aα(x, t, ξ1)−Aα(x, t, ξ2))(ξ1γ − ξ2γ ) ≥ 0, (x, t) ∈ Q, ξ1, ξ2 ∈ RN0 .

(A3) (Leray-Lions) ∑
|α|=m

(Aα(x, t, η, ζ)−Aα(x, t, η, ζ∗))(ζγ − ζ∗γ) > 0,

(x, t) ∈ Q, η ∈ RN1 , ζ, ζ∗ ∈ RN2 .

(A4) (Coercivity) There exist c0 > 0 and h ∈ L1(Q) such that∑
|a|≤m

Aα(x, t, ξ) ≥ c0|ξ|p − h(x, t), (x, t) ∈ Q, ξ ∈ RN0 .

Put V = Wm,p
0 (Ω) and X = Lp(0, a;V ). Then X∗ = Lq(0, a;V ∗). Under the condition (A1), the

second term of (4.1) induces a continuous bounded operator T : X → X∗ given by

〈Tu, v〉 =
∑
|α|≤m

∫
Q

Aα(x, t, u,Du, ...,Dmu)Dαv, u, v ∈ X.

This operator is also maximal monotone under the condition (A2). Under (A1), (A3) and (A4) (with

“A” replaced by “B” and the other necessary changes) the third term of (4.1) induces a continuous,

bounded operator C which satisfies the condition (S+) w.r.t. D(L), where the operator L is defined

below. The operator C is given by

〈Cu, v〉 =
∑
|α|≤m

∫
Q

Bα(x, t, u,Du, ...,Dmu)Dαv, u, v ∈ X.

The operator ∂/∂t induces the operator L : X ⊃ D(L)→ X∗, where

D(L) = {v ∈ X | v′ ∈ X∗, v(0) = 0},

via the equality

〈Lu, v〉 =

∫ a

0

〈u′(t), v(t)〉dt, u ∈ D(L), v ∈ X.

The symbol u′(t) above is the generalized derivative of u(t), i.e.∫ a

0

u′(t)ϕ(t) dt = −
∫ a

0

u(t)ϕ′(t) dt, ϕ ∈ C∞0 (0, a).

One can verify, as in Zeidler [17], that L is a linear, closed, densely defined maximal monotone

operator.
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