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ABSTRACT. In particle industries, Discrete Element Modeling (DEM) is one of the frequently

used numerical tools to analyze free flow, processing, fracture and fragmentation behavior of parti-

cles and to get insight into the mechanism involved in processing of them. DEM also has wide spread

application in various engineering disciplines and communities to understand the failure behavior of

heterogeneous structures. DEM treats the specimen as constituents of different individual primary

particles which are governed by laws of motion and material constitutive behavior. Compared to

continuum models, the DEM needs to specify micromechanical properties and contact parameters

such as stiffness and bond strength. The paper discusses the applications of DEM in particle process-

ing in various milling operations and shows linkage between micro-dynamic properties obtained from

DEM and grinding performances. Further, the paper also deals with the application of DEM sim-

ulation to investigate fracture and fragmentation mechanism of composite heterogeneous particles

under various loading conditions.
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1. Introduction

In Discrete Element Method (DEM) particles are considered to be distinct ele-

ments. The laws of motion and material constitutive laws are applied to each element.

Two types of discrete element modelling approaches: soft particle and hard particle

are common in particle processing. The soft-sphere method was originally developed

by Cundall and Strack (1979). In this approach, particles are allowed to have an

overlap, and these deformations are used to calculate elastic and frictional forces be-

tween particles. The motion of particles is described by the well established Newton’s

laws of motion. Soft-sphere models are capable of handling multiple particle contacts

which are of importance when modelling quasi-static systems. On the other hand in

hard-particle approach, often the forces between particles are not explicitly consid-

ered. Both methods, particularly the soft-sphere method, have been extensively used
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to study various phenomena, such as particle packing, transport properties, heap-

ing/piling process, hopper flow, mixing granulation, fragment and fragmentation and

recycling of materials (Schubert et al 2005; Zhu et al 2007).

The proposed paper discusses the use of DEM in application to milling of discrete

particles and breakage of a composite particle. The DEM results are compared with

the experimental observations in order to calibrate and validate the models. An

attempt has been made to investigate relationship between micro-dynamic properties

and grinding kinetics. The paper also shows an application of DEM to capture the

fragmentation mechanisms of heterogeneous and anisotropic composite particles.

1.1. Governing Equations and Force Models. A particle in a granular flow can

have two types of motion: translational and rotational. During its movement, the

particle may interact with its neighbouring particles or walls. In DEM approach, it

is generally assumed that this problem can be solved by choosing a numerical time

step less than a critical value so that during a single time step the disturbance cannot

propagate from the particle farther than its immediate neighbouring particles (Cun-

dall and Strack, 1979). Thus, at all times the resultant forces on a particle can be

determined exclusively from its interaction with the contacting particles. For a fine

particle system, non-contact forces such as the van der Waals and electrostatic forces

should also be included. Based on these considerations, Newton’s second law of mo-

tion can be used to describe the motion of individual particles. It calculates the new

velocities and displacements from stresses and forces with an explicit time stepping

scheme. Using suitable material constitutive behaviour, new stresses and displace-

ments are calculated for each element. The governing equations for the translational

and rotational motion of particle i with mass mi and moment of inertia Ii can be

written as

(1.1) mi
dvi

dt
=
∑(

Fn
ij + Fs

ij +mig
)

and

(1.2) Ii
dωi

dt
=
∑(

Ri × Fs
ij − µrRi

∣∣Fn
ij

∣∣ ω̂i

)
where vi, ω, and Ii are, the translational velocity, angular velocity and moment

of inertia of the particle, respectively, while ω̂i represents a unit vector equal to ωi

divided by its magnitude. Ri is a vector running from the centre of the particle to the

contact point with its magnitude equal to particle radius Ri. Fn
ij and Fs

ij represent,

respectively, the normal contact force and the tangential contact force imposed on

particle i by particle j and m ig is the gravitational force. The first part of the right

side in Eq. (1.2) is the torque caused by tangential force Fs
ij and the second part is
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the rolling friction torque caused by normal force F n
ij, where µr is the coefficient of

rolling friction.

1.2. Contact Models. Several methods (linear spring mass, Hertz, Hertz-Mindlin,

JKR) are reported in literatures to model contact dynamics and calculate contact

forces from the neighbouring particles. The selection of the contact model for a

particular analysis depends on the constitutive behaviour of the particles, objective of

the specific simulation, assumptions, accuracy and detail required in analysis. Mostly,

two major types of contact models are widely used in DEM simulations to model free

flow of particles. The first one is a ‘simplified’ approach that uses a conventional

linear spring dashpot slider model to represent particle interactions. The second

one is based on contact mechanics and generic interactions are derived from Hertz–

Mindlin principles, which is a non-linear approach in modelling particle contacts.

Hertz (1881) proposed a theory to describe the elastic contact between two spheres in

the normal direction. He considered that the relationship between the normal force

and normal displacement was nonlinear. Mindlin and Deresiewicz (1953) proposed a

general tangential force model. Recently, some researchers have applied a combination

of both approaches to represent particle interactions.

Linear Contact Model. Figure 1 shows the linear (force/displacement) spring mass

contact model which is the simplest model and widely used in simulating particle

interactions. The linear contact model is defined in terms of the normal and tangential

stiffnesses that exist between two contacting entities. The normal contact force results

from the sum of an elastic spring force and a damping force. The tangential contact

force considers additionally the friction at the contact between the particles. where

k c,ij ,n is the contact stiffness in normal direction; k c,ij ,sthe contact stiffness in shear

direction; sij ,n the overlap between two particles in normal direction, sij ,sthe overlap

in shear direction, a the constant (a = 1, Hooks law and a = 1.5, Hertz contact

law), ηij the damping coefficient, and µij is the dynamic friction coefficient. The unit

vector nij is directed outward from particle i and is normal to the contact surface of

the partners and perpendicular to the unit tangential vector tij.
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Figure 1. Linear Contact laws (linear spring mass model) (Antonyuk et al, 2006).

Normal force

~F (ij)
c,n = (kc,ij,ns

a
ij,n + ηij,nṡij,n)~nij

Shear force

~F (ij)
c,s = min

∣∣∣∣∣ (kc,ij,ss
a
ij,s + ηij,sṡij,s)

⇀
t ij

(µijF
(ij)
c,n )~tij

∣∣∣∣∣
Simplified Hertz–Mindlin and Deresiewicz model. In simplified Hertz–Mindlin and

Deresiewicz model, the contact forces are given by,

(1.3) F n
ij =

[
2

3
E
√
R̄ξ

3
2
n − γnE

√
R̄
√
ξn (vij · n̂ij)

]
n̂ij

and

(1.4) F s
ij = −sgn (ξs)µ

∣∣Fn
ij

∣∣ [1− (1−min (ξs, ξs,max) /ξs,max)
3/2
]
ξ̂s

where E=Y/(1 − σ̃2), and Y and σ̃ are, respectively, Young’s modulus and Poisson

ratio; ξn is the overlap between particles i and j ; n̂ij is a unit vector running

from the centre of particle j to the centre of particle i ; R̄ = R/2 for mono-sized

particle. The normal damping constant, γn, is the material property directly linked

to the coefficient of restitution e. ξs and ξs,max are, the total and maximum tangential

displacements of particles during contact respectively. ξ̂s is the unit vector of ξs.

Solid bridge bonds. Similarly, fragmentation of particles can be studied using solid

bridge bonds, as show in Figure 2. In this case, the neighbouring particles are bonded

with physically strong contact bonds, solid bridge bonds, and are more or less a kind

of a solid state bond between the particles. It describes the constitutive behaviour

of a finite-sized piece of cementitious material deposited between two particles. Both

normal and shear forces as well as moments are transmitted by the solid bridge
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bonds where as only normal and tangential forces are transmitted by linear spring

mass contact model. In simple, solid bridge bonds can be interpreted as a number

of linear spring contacts joined in parallel between pair of particles with constant

normal and shear stiffnesses uniformly distributed over a contact cross section. The

equivalent stiffness of the set of springs in normal direction can be represented by a

right hand side picture of Figure 2 and is evaluated by equation (1.5). The similar

equation can be derived for the shear direction. In equation (1.5), kb,m,n is the stiffness

related to solid bridge bond in normal direction with the cross-section area of Aij.

Equations (1.6) and (1.7) represent the normal and shear forces, respectively, acting

on the particles.

(1.5) kequv,n =

(
1

kc,i,n
+

1

kc,j,n

)−1
+ kb,m,nAij

Normal force

(1.6) ~F
(ij)
b,n = (kb,m,nAijsij,n)~nij

Shear force

(1.7) ~F
(ij)
b,s = (kb,,m,sAijsij,s)~tij

The moment in cross-section area can be expressed as:

(1.8) M
(ij)
b = kb,m,nI

(ij)
b ∆ϕij

Where I b is the moment of inertia of the circular bond cross-section about an

axis of symmetry. The increment of the rotation angle ϕ ij between two particles is

given by:

(1.9) ∆ϕij = (ωi − ωj)∆t

Where ω is the angular velocity of the particle.

The relative motion at the contact (with solid bridge bond) causes a force and

a moment to develop within the bond material as a result of the solid bridge bond

stiffness. This force and moment acting on the two bonded particles (i and j) can be

reduced to the normal (σij) and shear (τij) stresses acting within the cross-section of

a solid bridge bond. If either of these stresses reaches its corresponding bond strength

(σb,max and τb,max) the solid bond breaks (PFC, 2002). Due to this mechanism, the

modelling allows to study the crack simulations of composite particles.
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(1.10) σij =
−F (ij)

b,n

Aij

+

∣∣∣M (ij)
b

∣∣∣
I
(ij)
b

R
(ij)
b = σb,max

(1.11) τij =

∣∣∣F (ij)
b,n

∣∣∣
Aij

= τb,max

Rb is the radius of the bond cross-section

Figure 2. Representation of solid bridge bonds (Antonyuk et al, 2006).

Comparison between linear contact model, and Simplified Hertz–Mindlin and Dere-

siewicz model. The effect of linear and non-linear contact model on normal impact

of particle can be exhibited with the following DEM simulation. A single particle of

diameter 15mm was dropped from a height of 50mm on to a flat surface under grav-

ity. Figure 3 shows the contact force–displacement relationship for linear and Hertz

contact models with the identical particle properties. The linear model is relatively

straight forward, whereas due to the nonlinear Hertz contact model, the particle shows

a nonlinear force displacement behaviour. Nonlinear Hertz model allows the Young’s

modulus to vary according to a second order polynomial function of the inter-particle

overlap because one would expect the contact area between the colliding structures

to increase as the contact force increases, leading to a non-linear stiffness described

by the Hertz coefficient.



APPLICATION OF DISCRETE ELEMENT METHOD 347

Figure 3. Comparison between linear and Simplified Hertz–Mindlin and Deresiewicz

model.

1.3. Time Step. To ensure the stability and accuracy of the numerical simulation

a suitable value for the time step ∆t has to be chosen. The critical time step corre-

sponding to a second order finite difference scheme for the simple mass spring system

of point mass m, and spring stiffness k, and the motion of which is governed by

differential equation ms̈ = −ks is given by

(1.12) tcrit =
T

π

(1.13) T = 2π

√
m

k

Where, T is the period of the system, m is the weighted mass with the same

stiffness. It is determined on the basis of the maximum stiffness and the particle with

smallest mass. The critical time step can be found to be:

(1.14) tcrit = C

√
m

4k
=

√
m

ktran
for translation motion

(1.15) tcrit =

√
I

krot
for rotational motion

Different values have been propsed for the constant C in the literature. For

example 0.1 (Thompson & Grest, 1991; Zhang & Campbell, 1992) and 2 (Yuu et al.,
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1995; Rajamani et al., 2000). Trial runs are normally conducted to evaluate the most

appropriate time step to be used. If the time step is too small several drawbacks

can be identified such as propagation of rounding errors, artificial oscillations, and

unnecessarily long runtimes. In this model, c=2 has been chosen.

1.4. Calibration. One of the challanges in the DEM modelling is to calibrate and

validate the micro-mechanical model. Mostly process parameters associated with

experimental results or time dependent observations are used to calibrate the model.

Due to the micro properties, which are not excatly known from the macro properties,

and to match the known behaviour from the observation is a time consuming and

complicated process, hence it is an iterative process and may take a significant amount

of the modelling time. For the free particles in milling operations, the calibration can

be performed from the experimental data. In this case, in order to calibrate the DEM

model, experiments have been conducted with stirred and ball mills. As an example

power draw has been selected to calibrate the model. Figure 4 shows experimental

and simulation power comparison for a stirred mill operating at mill loading 40% and

different mill speeds. The curves show the increase in power consumption with the

increase in mill speed.

Figure 4. Experimental and simulation power consumption for the stirred mill.

Furthermore, simulations have been carried out in ball mills with identical geome-

try and operating conditions as used in the literature (Malghan, 1976). Mill diameters

are 127mm, 254mm and 508mm where mill length to diameter ratio is 1.15. Each

mill consists of eight lifters which have the same dimensions. Steel balls of 25.4mm

diameter have been used as the grinding media. Figure 5 shows the experimental

and simulation power comparison for different size of ball mills. A good agreement

between experimental and simulated mill power consumptions can be observed. This
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type of close match between the experiments and the DEM shows the confidence in

selected parameters.

Figure 5. Experimental and simulation power consumption for different size of ball

mills.

2. Applications

Grinding is a common process in mineral industry. It is known as a low-efficiency

(<10 %, typically), power-intensive process and may account for up to 40% of the

direct operating cost of a mineral processing plant (Prasher, 1987; Wills, B.A., 1992).

Most commonly used grinding mills can be categorized as ball and stirred mills. Ball

mills are used for coarse grinding whereas stirred mills are used for fine and ultra-fine

grinding.

Despite gaining increasingly industrial importance, most of the grinding mill

studies have been done based on experience and trial and error tests, rather than

the detailed scientific principles. Since the bulk behaviour of flow depends on the

collected outcome of the interactions between particles and between particles and mill,

a better understanding of the flow at an individual particle level would facilitate the

improvement of mill performance. However, obtaining such microscopic information

is a very difficult, if not impossible, task using conventional experimental techniques.

To overcome above mentioned difficulties, numerical models based on the DEM

can be used to study particle flow in grinding mills (Mishra B.K, 2003). The DEM

results can be used to obtain spatial distributions of microdynamic variables related

to flow and force structures such as local porosity and particle interaction forces,

collision velocity and collision frequency in different regions of the mill (Khanal and

Morrison 2008; Jayasundara et al., 2006). Moreover, it was shown that microscopic
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information obtained from DEM can be linked with the grinding performance (Kano

et al, 2000; Jayasundara et al, 2010).

Mill characteristics analysis. Figure 6 shows the particle flow pattern for the stirred

mill. At the low loading J = 40%, most particles stay at the bottom with slow

movement and only a small number of particles are agitated by the rotating discs to

the upper part of the mill.

Figure 6. Particle flows in the radial (section YY′) and axial (section XX′)
directions for J = 40%; and Ω = 1200 rpm.

Grinding rate and impact energy analysis. While DEM modelling is able to simulate

particle flow and provide a significant amount of information at the particle scale,

currently it is still difficult to simulate particle breakage directly in a grinding process

due to the limited computational capability. Therefore, establishing a quantitative

link between the microscopic DEM results and grinding performance can provide a

way of predicting and optimise the grinding processes based on simulation results

(Khanal and Morrison, 2008).

Based on the simulation and experimental results it was observed that the grind-

ing rate has a linear correlation with the impact energy among particles. The results

showed that the change of particle size with grinding time follows the first-order

kinetics, given by

(2.1)
Dt −D∞
D0 −D∞

= exp−Kpt

where D0, Dt, and D∞ are the original particle size, particle size at grinding time

t and the limiting size after an infinite grinding time, respectively; Kp is the grinding

rate constant (Jayasundara et al, 2010).

Figure 7 shows the cumulative size distribution of the ground samples measured

at different times when J = 40% and Ω = 800 rpm. Similar distributions are also

obtained for other mill loadings and speeds. The distribution curves shift continuously
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towards the finer side as the grinding progresses. Consistent with the normal practice,

80% passing particle size D80 was selected to represent the particle size in order

to quantitatively investigate grinding performance under different conditions. The

log-linear plots of (Dt−D∞)
(D0−D∞)

and grinding time t in Fig. 8 show straight lines for all

cases, although different slopes are observed for different mill speeds. This indicates

that the grinding process follows the first-order kinetics, and the particle size decays

exponentially with time as described in Eq. 16. The grinding rate constant Kp (line

slope) obtained from Figure 8 shows an increase with mill speed.

Figure 7. Cumulative particle size distribution at different times when J = 40% and

Ω = 800rpm.

Figure 8. Normalized particle size of the ground sample as a function of grinding

time for different mill speeds (◦, 400rpm; �, 800rpm; and � ,1000rpm) when

J=60%.

Figure 9 represents the relationship between K p and E i obtained at different mill

loadings and speeds using D80 and D50 to represent the particle size. Here, E i is the

total impact energy per unit time. Impact energy is given by 1
2
miv

2
ij, where mi is the
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mass of a particle and vij (= |vi − vj|) is the relative collision velocity between two

particles. Both curves show that K p increases with E i. Notably, all the data falls into

a single curve which can be fitted by a power law. For different ground materials, the

K p˜ E i curves may change depending on their properties. The present results confirm

that impact energy is a very useful parameter to describe the grinding performance

of mills. The results also demonstrate that the DEM based microscopic study can be

linked to macroscopic process performance. Therefore, numerical simulations can be

carried out to understand the actual grinding behaviour in milling processes. With

fast advancement of computing capability, this technique has potential to reduce la-

borious experiments. To achieve this, however, more systematic studies are necessary

in order to generalize this approach.

Figure 9. Correlation between grinding rate constant and total impact energy for

D80 and D50 passing sizes.

Particle position and energy analysis. DEM are widely used to understand and char-

acterize the milling and crusher performances in various industries. Left and right

pictures in Figure 10 shows the snapshot of position of particles at steady state con-

dition inside the mill and the velocity distribution of particles in the rotating mill.

The velocity distribution has been extracted along the XX’ line. At 70% of mill crit-

ical speed the maximum velocity of the particles in the mill is around 5m/s which is

achived by only few particles due to free fall from the top of the mill. Whereas at the

centre of the milling zone, the particle velocities are in the range of less than 1m/s.

As observed in most of the experimental observations, from Figure 10 (left) it can be

inferred that particles grind/fail due to rolling and grinding mechanisms at the centre
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of the milling zone and at the boundary of the milling zone particles fail due to free

fall of particles.

Figure 10. Snapshot of position of particles at steady state condition inside the mill

(left) and velocity distribution of particles along the cross-section XX’ (right).

Similarly, Figure 11 shows the release height of the particles versus time for 1.1

and 0.6m mills with 36 particles (Khanal and Morrison, 2008). The average release

height for 1.1m and 0.6m mills with 36 particles is 0.94m and 0.52m in simulations and

0.97m and 0.54m in experiments (see Khanal and Morrison, 2008) respectively. The

release height was calculated from the difference in position of the particles (along the

height of the mill) in one revolution of the mill. The slight difference in the release

height is due to the selection of particles to trace the height in experiments and

simulations. DEM simulations can also be used to investigate the energy utilization

in the processing equipment. Figure 12 shows the energy utilization during collision

for 1.1 and 0.6m mills with 36 particles of equal masses at the same rpm and lifters.

The larger mill requires more energy to start the mill than the smaller mill. Due to

the equal mass of the particles in each mill, the steady state energy utilization is very

close to each other in both the mills.
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Figure 11. Simulated release heights for different mills (Khanal and Morrison, 2008).

Figure 12. Energy utilization during collision for 1.1 and 0.6m mills with 36

particles of equal masses at the same rpm and lifters.

Composite particle fragmentation analysis. DEM are well suited tool to explore the

fragmentation of composite particles. Depending on the applications, the composite

particles are fragmented to either extract valuable minerals from the cheap matrices
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or for further applications. In DEM composite particles are created by combining

numerous primary particles, as shown in Figure 13. The larger primary particles

represent valuable aggregates present within the cheaper matrices represented by

smaller particles.

Figure 13. Tentative arrangement of aggregates and hardened cement paste

(Schubert et al, 2005).

DEM can be used to analyse energy utilization and failure phenomena of particles

for high speed velocity and high loading rate dependent events, which is very difficult

to capture during experiments (Khanal et al, 2005; Khanal and Tomas, 2009). For

example, Figure 14 shows different impact events during central impact of the ag-

glomerate at a velocity of 7.7 m/s. The specimen undergoes contact deformation as

it touches the target wall and then the crack initiates. It can be noticed from these

different stages that once the cracks have been initiated, they propagate between the

primary particles.
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Figure 14. Impact stages at an impact velocity of 7.7m/s (Khanal and Tomas, 2009).

3. Conclusions

The paper discussed the applications of DEM in grinding mills and composite

particle breakage. It has been shown that the various particle processing parame-

ters can be evaluated using DEM. The results indicate that the total impact energy

obtained from particle scale simulation, can be a useful index to predict grinding

performance. It has also been shown that the micro failure of composite particles can

also be studied using DEM.
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