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ABSTRACT. Type the abstract here The aim of this paper is to investigate and analyze the

transmission dynamics of infectious diseases in human population. We have formulated a non-linear

SIRS model to study the role of awareness programs by mass-media in reducing the transmission of

infectious diseases. The analysis shows that the awareness by mass-media plays a constructive role

in the dissemination of knowledge/information and has positive impact in the reduction of disease

transmission. Numerical simulations are performed to support and verify the analytical results.
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1. Introduction

The primary reason for studying infectious diseases is to analyze the control

measures which would be helpful in control and eradiation of the infection from the

population. Mathematical modeling is the powerful tool in this approach that allow

us to optimize the use of limited resources or specifically to target control measures

more efficiently. Media have a key role to play in informing the public about in-

fectious diseases such as TB, influenza and bringing key issues to the attention of

policymakers. It is would be beneficial to increase the use of new media tools by

government, minority, and other community partners to extend the reach of various

awareness programs to communities at greatest risk. It also have an important role

in informing people in the developed and developing world alike about the nature and

extent of this disease, the shortcomings in current treatments and future possibilities

for improved control.

Sir Ronald Ross, Kermack and McKendrick are considered as the pioneers, who made

use of compartmental mathematical models for the study of epidemics (1-5). Recently

some of the authors have analyzed few epidemic models (6-11) incorporating the effect
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of awareness programs by media. Also in some epidemic compartmental models au-

thors have assumed that the awareness through mass-media will significantly reduce

the contact rate of susceptibles with infectives (10-11). The effect of public health

educational campaigns on HIV/AIDS transmission dynamics has been analyzed in

[15], the study effectively shows that the public health educational campaigns of

HIV/AIDS are useful and can slow down the epidemic. They have concluded that

campaigns affect peoples behavior and can divide the susceptibles class into subclasses

with different infectivity rates. In [16] the authors have shown that the education ef-

forts focused on several key risky behaviours pays a great impact to prevent and

control the spread of an epidemic HIV.

From the analysis it has been observed that an awareness program related to diseases

effectively help in the reduction of disease transmission as it will support one of the

following behaviorial change:

(i) When an individual feels the symptoms of an infection/disease then he/she can

approach to the doctor on early stage and this can help them in fast recovery from

the disease/infection. (ii) Awareness can act as an alert to the susceptible individ-

uals which in result can be useful in reduction of their interaction with infectives.

(iii) Moreover, because of media coverage some fraction of infectives can be iso-

lated/hospitalized and remain under treatment and hence cannot take part in trans-

mission of the disease.

In epidemic models, the transmission of the disease in the population is mod-

elled by incidence terms. Among many possible forms of incidence terms in epidemic

models, simple mass action and standard incidence terms are most commonly used.

We formulate our mathematical model with standard incidence for infectious diseases

keeping the above mentioned facts in focus. Our model follows a previous work by

Misra et al. [12], where they have assumed that the awareness programs based on

media are influenced by the outbreak of diseases and it depends upon the number

of infectives. In [12], authors have incorporated one separate compartment for cu-

mulative density of awareness programs that we have also considered in the present

proposed model. However, we assume a constant input of media related awareness

and educational programs and that increases with the increase in number of infectives

which depends on the infectives but it can never be equal to zero. The diseases like

TB, influenza and dengue etc. are endemic in many parts of the world and some sort

of awareness programs are always being communicated on TV networks, newspapers,

web-sites etc. on time to time. Hence, the assumption that we have considered is more

realistic and close to real world conditions. Also in their formulation of the model, it

is assumed that some of the aware susceptibles are going back to susceptible class as

they interact with the infectives because they may not care for getting affected by the
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disease and even are not afraid of the disease. This particular nature of some of the

human beings is erratic and is independent of time, they might not listen to any of

the mass-media awareness programs and will interact with infectives. Hence, sending

them back to unaware susceptible class is not reasonable as once someone is aware

he/she will remain aware and it is not that after some duration his/her awareness

will vanish. In the present model, this group of individuals are kept in aware class

only and it is assume that they will interact with infective individuals that means

here we have considered that some fraction of total aware susceptible population is

interacting with infectives.

2. The SIRS Model with Standard Incidence

In this paper, an SIRS with standard incidence is formulated and analyzed. The

whole population under consideration is divided into four disjoint classes, namely

susceptible class (S(t)), infective class (I(t)), recovered class (R(t)) and aware sus-

ceptible class (Sm(t)). N(t) is the total population size. Let M(t) be the cumulative

density of the awareness programs driven by media in the region under consideration.

It is assumed that susceptible individuals who come across with media campaign

move to aware susceptible class and in general avoid contact with infectives. So only

a small fraction (say αm) of aware susceptible class interacts with infectives. Also due

to the media awareness programs some of the infectives are identified in their early

stage and they recover fast, so in addition to normal recovery rate we have added one

more recovery rate constant γm which is driven by media awareness programs. As

media also forces isolation/hospitalization of infectives, so let δm fraction of infectives

are isolated and only (1− δm) fraction of infectives are interacting with susceptibles.

So based upon these facts we have formulated following model: So based upon these

facts we have formulated following model:

dS

dt
= A− βS(1− δm)I

N
− λSM − dS + νR

dI

dt
=

βS(1− δm)I

N
+
βαmSm(1− δm)I

N
− (γ + γm + α + d)I

dR

dt
= (γ + γm)I − (ν + d)R (2.1)

dSm
dt

= λSM − βαmSm(1− δm)I

N
− dSm

dM

dt
= µ+ µ1I − µ0M
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Figure 1. Transfer Diagram of the Model (2)

N = S + I +R + Sm, and

Ṅ = A− dN − αI

Here, A is the recruitment rate constant; β is the transmission rate constant; λ

is the dissemination rate of awareness among susceptibles due to media awareness

programs; d is the natural death rate constant; ν is the rate at which individual

from recovered class move to susceptible class again after loosing immunity; γ is the

natural recovery rate constant; α is the disease related death rate constant; µ is

the rate constant corresponding to regular media coverage, µ1 is the rate constant

influenced by number of infectives and µ0 is the natural decay rate constant of media

coverage/awareness programs. In Figure. 1, we describe the flow diagram of the

disease dynamics considered in this paper.

The Basic reproduction number for the model is computed as

R0 =
β(1− δm)(λµαm + dµ0)

(λµ+ dµ0)(γ + γm + α + d)

This gives the number of secondary infectious cases caused by an infectious individual

in a completely susceptible population during his infectious period. For simplification

we are re-writing the model using N = S + I +R + Sm

dN

dt
= A− dN − αI

dI

dt
=

β(N − I −R− Sm)(1− δm)I

N
+
βαmSm(1− δm)I

N
− (γ + γm + α + d)I

dR

dt
= (γ + γm)I − (ν + d)R (2.2)



TRANSMISSION DYNAMICS OF INFECTIOUS DISEASES 379

dSm
dt

= λ(N − I −R− Sm)M − βαmSm(1− δm)I

N
− dSm

dM

dt
= µ+ µ1I − µ0M

3. Equilibrium Analysis

The system (2.1) has two equilibria, namely the disease-free equilibrium point

E0(S0, 0, 0, Sm0 ,M0) and the endemic equilibrium point E1(S
∗, I∗, R∗, S∗

m,M
∗).

For the disease-free equilibrium point, S0, Sm0 and M0 are given by as follows:

N0 = A
d
, Sm0 = Aλµ

d(λµ+dµ0)
, M0 = µ

µ0
,

Whereas, I0 = 0 and R0 = 0 for infection free equilibrium point.

The endemic equilibrium point E1(N
∗, I∗, R∗, S∗

m,M
∗) is obtained by putting the

right hand sides of the system of equations (2.2) to zero i.e.

A− dN − αI = 0
β(N − I −R− Sm)(1− δm)I

N
+
βαmSm(1− δm)I

N
− (γ + γm + α + d)I = 0

(γ + γm)I − (ν + d)R = 0

λ(N − I −R− Sm)M − βαmSm(1− δm)I

N
− dSm = 0

µ+ µ1I − µ0M = 0

The endemic equilibrium points N∗, I∗, R∗, S∗
m and M∗ are obtained by solving the

following algebraic equations, Keeping Y 6= 0, we get following

N∗ = A−αI
d
, M∗ = µ+µ1I

µ0
, R∗ = (γ+γm)I

ν+d
,

Now using equations for İ and Ṡm in the model system (2.2) we have obtained two

equations stating relation between I and Sm from which we have calculated Sm as,

Sm =
−(d+ α + γ + γm)(ν + d)d+ β(1− δm)[(A− αI)− d((γ + γm)− d(ν + d))I]

β(1− δm)(ν + d)(1− αm)d
,

(3.1)

and

Sm =
λ[(A− αI)(ν + d)− (γ + γm)dI − d(ν + d)I](µ+ µ1I)(A− αI)

[λ(µ+ µ1I)(A− αI) + βαm(1− δm)µ0dI + d(A− αI)µ0](ν + d)d
(3.2)
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Comparing eqn (3.1) and (3.2) we get a cubic D1I
3+D2I

2+D3I+D4 = 0, where

D1 = −{αλµ1{(d+ ν)(d+ α + γ + γm)− β(1− δm)[d(d+ ν) + α(d+ ν) + d(γ + γm)]}}

= −αλµ1{[(d+ α + γ + γm)− β(1− δm)(d+ α)]− β(1− δm)d(γ + γm)}

D2 = −α2(d+ ν)(d+ α + γ + γm)(λµ+ dµ0)

−Aαβλ(d+ ν)(1− δm)αmµ1

−[d(d+ ν) + α(d+ ν) + d(γ + γm)]dµ0αmβ
2(1− δm)2

−A[d(d+ ν) + α(d+ ν) + d(γ + γm)]λαmµ1β(1− δm)

+αβ(d+ ν)(d+ α + γ + γm)(1− δm)αmdµ0

+2Aαλ(d+ α + γ + γm)µ1

+[d(d+ ν) + α(d+ ν) + d(γ + γm)](λµαm + dµ0)αβ(1− δm)

D3 = 2Aα(d+ ν)(d+ α + γ + γm)(λµ+ dµ0)

+A2dβ2(d+ ν)(1− δm)2αmµ0

+A2βλ(d+ ν)(1− δm)αmµ1

−Aαβλµαm(d+ ν)(1− δm)

−Aβλµαm[d(d+ ν) + α(d+ ν) + d(γ + γm)](1− δm)

−Adαβ(d+ ν)(1− δm)µ0

−Adβ(d+ ν)αm(d+ α + γ + γm)(1− δm)µ0

−Adβ[d(d+ ν) + α(d+ ν) + d(γ + γm)](1− δm)µ0

−A2λ(d+ ν)(d+ α + γ + γm)µ1

D4 = A2(d+ ν)(d+ α + γ + γm)(dµ0 + λµ)(R0 − 1).

again re-writing the coefficients of above cubic, we get D1 > 0 and D4 < 0

Using Descartes’s rule of sign, following cases have been arose from above result,

Case(i) If D2 > 0 and D3 > 0; or D2 > 0 and D3 < 0; or D2 < 0 and D3 < 0

ensures the existence of atmost one positive real root.

Case(ii) If D2 < 0 and D3 > 0, then the system could have more than one endemic

equilibrium for R0 > 1.

Case(iii) If D2 < 0 and D3 > 0, then the system could have more than one endemic

equilibrium for R0 < 1.

The existence of more than one (multiple) endemic equilibria when R0 < 1 suggests

the possibility of backward bifurcation, where the stable disease-free equilibrium co-

exists with a stable endemic equilibrium, when the R0 < 1. real roots.
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4. Stability Analysis

The local asymptotic stability of the disease-free equilibrium point E0 is estab-

lished using variational matrix method and stated in the following theorem.

Theorem 4.1 If R0 < 1, the disease-free equilibrium E0 is locally asymptotically

stable and is unstable for R0 > 1.

Proof: To study the stability of disease-free equilibrium the variational matrix M1 of

the system corresponding to disease-free equilibrium E0 is obtained as

M1 =


−d −α 0 0 0

0 −(d+ α + γ + γm)(1−R0) 0 0 0

0 γ + γm −(ν + d) 0 0

λM0 −λM0 −
βαm(1−λm)Sm0

N
−λM0 −(λM0 + d) λ(N0 − Sm0)

0 µ1 0 0 −µ0


The eigenvalues of this variational matrix are −d,−(d+α+γ+γm)(1−R0),−(ν+

d),−(λM0 + d) and −µ0. Clearly here one of the eigenvalue is positive for R0 > 1

which implies instability of disease-free equilibrium E0. So the equilibrium is locally

asymptotically stable provided R0 < 1.

The local asymptotic stability of endemic equilibrium point E1 can be established

using variational matrix method and stated in the following theorem.

Theorem 4.2 The endemic equilibrium point E1(N
∗, I∗, R∗, S∗

m,M
∗) is locally asymp-

totically stable provided

(
a4 a2

1 a3

)
> 0,

a4 a2 a0

1 a3 a1

0 a4 a2

 > 0,


a4 a2 a0 0

1 a3 a1 0

0 a4 a2 a0

0 1 a3 a1

 > 0,

where a0, a1, a2, a3, and a4 are given in the proof of this theorem.

Proof: See Appendix A.

Theorem 4.3 If R0 < 1, the disease-free equilibrium E0 is globally asymptotically

stable and unstable if R0 > 1.

Proof: This theorem is proved using comparison theorem. The rate of change of the

variable representing the infected component of the system (2.1) can be rewritten as

dI

dt
=

{
β(1− δm)(S0 + αmSm0)

N0

− (γ + γm + α + d)

}
I

−β(1− δm){( S0

N0

− S

N
) + αm(

Sm0

N0

− Sm
N

)}I,

where N0, S0 and Sm0 are same as in disease-free equilibrium E0 and N = S+I+R+

Sm. SinceN < N0, S ≤ S0 and Sm ≤ Sm0 , gives β(1− δm){( S0

N0

− S

N
) + αm(

Sm0

N0

− Sm
N

)}I
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is positive.

dI

dt
≤

{
β(1− δm)(S0 + αmSm0)

N0

− (γ + γm + α + d)

}
I

dI

dt
≤

{
β(1− δm)(dµ0 + αmλµ)

(γ + γm + α + d)
− 1

}
I,

dI

dt
= {R0 − 1} I,

dI

dt
= −{1−R0} I,

As forR0 < 1 the bracketed term

{
β(1− δm)(S0 + αmSm0)

N0

− (γ + γm + α + d)

}
I

of the inequality (4.1) is negative, thus it follows that I → 0 as t → ∞ by the com-

parison theorem in [13]. Also from the system (2.1) it is found that N → N0, S →
S0, R → 0, Sm → Sm0 and M → M0 whenever I = 0. Thus for R0 < 1, the

disease-free equilibrium point E0(N0, 0, 0, Sm0 ,M0) is globally asymptotically stable.

5. Bifurcation Analysis

Consider the transformed system

Ṅ = f1 = A− dN − αI
İ = f2 =

β(N − I −R− Sm)(1− δm)I

N
+
βαmSm(1− δm)I

N
− (γ + γm + α + d)I

Ṙ = f3 = (γ + γm)I − (ν + d)R (5.1)

Ṡm = f4 = λ(N − I −R− Sm)M − βαmSm(1− δm)I

N
− dSm

Ṁ = f5 = µ+ µ1I − µ0M

The Jacobian of the system (2.1), (E0) is given by

J(E0) =


−d −α 0 0 0

0 0 0 0 0

0 γ + γm −(ν + d) 0 0

λM0 −λM0 −
βαm(1−λm)Sm0

N
−λM0 −(λM0 + d) λ(N0 − Sm0)

0 µ1 0 0 −µ0


The associated reproduction number is given by

R0 =
β(1− δm)(λµαm + dµ0)

(λµ+ dµ0)(γ + γm + α + d)

Consider the case when R0 = 1. Suppose, β be chosen as the bifurcation parameter.

Solving (2.1) for β gives R0 = 1 when β = (λµ+dµ0)(γ+γm+α+d)
(1−δm)(λµαm+dµ0)
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Note that the above linearized system, of transformed system (5.1) with β = β∗, has

a zero eigenvalue which is simple and the other eigenvalues are real and negative.

Hence, The center manifold theory [J Carr.] can be used to analyze the dynamic of

(2.1) near β = β∗.

Eigenvectors of J(E0)|β=β∗

It can be shown that the Jacobian of (2.1) at β = β∗ (denoted by Jβ∗) has a right

eigenvector (associated with the zero eigenvalue) given by w = [w1, w2, w3, w4, w5]
T ,

where

w2 > 0, w1 = −α
d
w2, w3 = (γ+γm)

(ν+d)
w2,

w5 = µ1
µ0
w2,

w4 = 1
λM0+d

[λ(N0 − Sm0)
mu1
µ0
− λM0(γ+γm)

(ν+d)
− (λM0+βαm(1−δm)Sm0 )

N0
− λαM0

d
]w2

Further, Jβ∗ has a left eigenvector v = [v1, v2, v3, v4, v5]
T (associated with the zero

eigenvalue), where

Here −(λM0 + d)v4 = 0 gives v1 = 0 = v3 = v4 = v5 and v2 = v2 > 0(arbitrary). For

convenience, the theorem in [Song] is stated here,

Lemma 5.1 (Castillo-Chavez and Song) Consider the following general system of

ordinary differential equations with a paramere φ
dx
dt

= f(x, φ), f : Rn × R→ R and C2(Rn × R),

where 0 is an equilibrium point of the system (that is, f(0, φ) ≡ 0 for all φ and

assume

A1 : A = Dxf(0, 0) = (
∂fi
∂xj

(0, 0)) is the liberalization matrix of the system (5.1)

around the equilibrium 0 and φ evaluated at 0. Zero is a simple eigenvalue of A and

other eigenvalues of A have negative real parts;

A2 : Matrix A has a right eigenvector w and a left eigenvector v (each corresponding

to the zero eigenvalue);

Let fk be the kth component of f and

a =
n∑

k,j,i=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0), b =
n∑

k,i=1

vkwi
∂2fk
∂xi∂φ

(0, 0)

The local dynamics of the system around 0 is totally determined by the signs of a

and b.

i. a > 0, b > 0. when φ < 0 with |φ| � 1, 0 is locally asymptotically stable and

there exists a positive unstable equilibrium; when 0 < φ� 1, 0 is unstable and there

exists a negative, locally asymptotically stable equilibrium;

ii. a < 0, b < 0. when φ < 0 with |φ| � 1, 0 is unstable; when 0 < φ� 1, 0 is locally

asymptotically stable, and there exists a positive unstable equilibrium;

iii. a > 0, b < 0. when φ < 0 with |φ| � 1, 0 is unstable and there exists a

locally asymptotically stable negative equilibrium; when 0 < φ� 1, 0 is stable, and

a positive unstable equilibrium appears;
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iv. a < 0, b > 0. when φ changes from negative to positive, 0 changes its stability

from stable to unstable. Correspondingly a negative unstable equilibrium becomes

positive and locally asymptotically stable.

Proof : Computations of a and b : For the system (5.1), the associated non-zero

partial derivatives of F (at the DFE) are given by
∂2f2
∂x1∂x2

= β(1−δm)(1−αm)λµd
A(λµ+dµ0)

= ∂2f2
∂x2∂x1

, ∂2f2
∂2x2

= −2β(1−δm)d
A

,
∂2f2
∂x2∂x3

= −β(1−δm)d
A

= ∂2f2
∂x3∂x2

∂2f2
∂x2∂x4

= −dβ(1−δm)(1−αm)
A

= ∂2f2
∂x4∂x2

, ∂2f4
∂x1∂x2

= β(1−δm)αmλµd
A(λµ+dµ0)

= ∂2f4
∂x2∂x1

,
∂2f4
∂x1∂x5

= λ = ∂2f4
∂x5∂x1

, ∂2f4
∂x2∂x4

= −βαm(1−δm)d
A

= ∂2f4
∂x4∂x2

,

∂2f4
∂x3∂x5

= −λ = ∂2f4
∂x5∂x3

, ∂2f4
∂x4∂x5

= −λ = ∂2f4
∂x5∂x4

,

∂2f4
∂x5∂x2

= −λ = ∂2f4
∂x2∂x5

, ∂2f4
∂x2∂β

= −αm(1−δm)λµ
λµ+dµ)

∂2f2
∂x2∂β

= (1−δm)dµ0
(λµ+dµ0)

+ αm(1−δm)λµ
(λµ+dµ0)

= (1−δm)
(λµ+dµ0)

(dµ0 + λµαm).

Thus,

a = −2v2w
2
2β(1− δm)[

α(1− αm)λµ

A(λµ+ dµ0)
+

2d

A
+

(γ + γm)d

(ν + d)A
]

−2β(1− δm)λµ0v2w
2
2

A(λµ+ dµ0)
[

Aλµ1

(λµ+ dµ0)
− λµ(γ + γm)

(ν + d)µ0

− λαµ

dµ0

− λµ[(λµ+ dµ0) + βαm(1− δm)µ0]

µ0(λµ+ dµ0)
]

b =
w2v2[dµ0 + αmλµ](1− δm)

(λµ+ dµ0)
> 0

Here, a < 0 for Aλµ1
(λµ+dµ0)

> λ
µ0

[µ(γ+γm)
(ν+d)

+ αµ
d

+ µ[(λµ+dµ0)+βαm(1−δm)µ0]
(λµ+dµ0)

]

Thus, if a < 0 and b > 0. Here we observe that the coefficient b is always positive

so that, according to Lemma 5.1, it is the sign of the coefficient a which decides the

local dynamics around the disease-free equilibrium for β = β∗. From this analysis we

establish following theorem here.

Theorem 5.1 If a > 0, then the system (2.1) undergoes a backward bifurcation at

R0 = 1, otherwise if a < 0 then the endemic equilibrium is locally asymptotically

stable for R0 > 1 but close to one.

6. Simulation

The system (2.1) is simulated for various set of parameters using XPP [14]. The

stability of disease-free equilibrium point E0 is shown in Figure 2, where the repro-

duction number R0 is equal to 0.409260 which is less than one and parameter values

are as follows:

A = 100, d = 0.023, β = 0.5, α = 0.001, αm = 0.202, δm = 0.001,
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Figure 2. Stability of Disease-Free Equilibrium Point (E0).

Figure 3. Stability of Endemic Equilibrium Point (E1).

λ = 0.1, ν = 0.01, µ = 0.5, µ0 = 0.01, µ1 = 0.02, γm = 0.0001, γ = 0.001

The endemic equilibrium E1 is shown in Figure 3, where reproduction number is equal

to 1.302437, which is greater than one and the parameter values are:

A = 100, d = 0.023, β = 1.2, α = 0.04, αm = 0.102, δm = 0.03,

λ = 0.1, ν = 0.01, µ = 1, µ0 = 0.01, µ1 = 0.02, γm = 0.01, γ = 0.02
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Figure 4. Phase portrait corresponding to stability of endemic equi-

librium point in Sm −N , M −N , N −R and R− I plane.

In Figure 4., the phase portraits corresponding to stability of endemic equilibrium

point in Sm − N , M − N , N − R and R − I plane are plotted, respectively for the

following set of parameter values:

A = 300, d = 0.01666, β = 0.000007, α = 0.0002, αm = 0.002, δm = 0.2,

λ = 0.0002, ν = 0.03, µ = 0.001, µ0 = 0.03, µ1 = 0.001, γm = 0.01, γ = 0.002

7. Conclusion

In the present paper, we have formulated a nonlinear SIRS mathematical model

to study the role of awareness in the transmission of infectious diseases. The model

is analyzed using the stability theory of differential equations and it has been ob-

served that the awareness has significant impact in the reduction of transmission of

diseases. Hence, the use of preventative measures, effective medical treatment and

awareness through education programmes should be promoted to reduce the spread

of the disease. Numerical simulations are performed to support the analytical results.
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Appendix: A

M1 =


m11 m12 0 0 0

m21 m22 0 m24 0

0 m32 m33 0 0

m41 m42 m43 m44 m45

0 m52 0 0 m55


where,

m11 = −d, m12 = −α, m21 = β(1− δm)

(
(I∗ +R∗)I∗ − (1− αm)S∗

mI
∗

N∗2

)
,

m22 = β(1− δm)

(
(N∗ −R∗)− 2I∗ − (1− αm)S∗

m

N∗2

)
− (γ + γm + α + αm),

m23 = −β(1− δm)I∗

N∗ , m24 = −β(1− δm)(1− αm)I∗

N∗ , m32 = (γ + γm),

m33 = −(ν + d), m41 =
β(1− δm)αmI

∗

N∗ + λM∗, m42 = −β(1− δm)αmI
∗

N∗ − λM∗,

m43 = −λM∗, m44 = −β(1− δm)αmI
∗

N∗ − λM∗ − d,

m45 = λ(N − I −R− Sm), m52 = µ1, m55 = −µ0.

The above defined variational matrix gives a fifth degree polynomial given by:

λ5 + a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0 = 0, here,

a4 = −(m11 +m22 +m33 +m44 +m55)

a3 = −(m12m21−m11m22+m23m32−m11m33−m22m33+m24m42−m11m44−m22m44−
m33m44 −m11m55 −m22m55 −m33m55 −m44m55)

a2 = −(−m11m23m32−m12m21m33+m11m22m33+m12m24m41−m11m24m42−m24m33m42+

m24m32m43 −m12m21m44 + m11m22m44 −m23m32m44 + m11m33m44 + m22m33m44 +

m24m45m52 −m12m21m55 + m11m22m55 −m23m32m55 + m11m33m55 + m22m33m55 −
m24m42m55 +m11m44m55 +m22m44m55 +m33m44m55)

a1 = −(−m12m24m33m41 + m11m24m33m42 − m11m24m32m43 + m11m23m32m44 +

m12m21m33m44−m11m22m33m44−m11m24m45m52−m24m33m45m52+m11m23m32m55+

m12m21m33m55−m11m22m33m55−m12m24m41m55+m11m24m42m55+m24m33m42m55−
m24m32m43m55+m12m21m44m55−m11m22m44m55+m23m32m44m55−m11m33m44m55−
m22m33m44m55)

a0 = −[m11m24m33m45m52+m12m24m33m41m55−m11m24m33m42m55+m11m24m32m43m55−
(m11m23m32 +m12m21m33 −m11m22m33)m44m55].

Using mathematica we have analyzed that the coefficient of above fifth degree poly-

nomial satisfies stability conditions of Routh-Hurwitz criteria.


