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ABSTRACT. Haar wavelet function is considered to be a powerful tool for solving a number of

problems in numerical analysis. We apply Haar wavelet quasi-linearization approach for solving

nonlinear dynamical systems governed through ordinary differential equations such as initial and

boundary value problems, oscillator equations, stiff problems. We also consider nonlinear integral

equations through Haar wavelet approach. The Haar solutions so obtained have been compared with

counter solutions which are available in literature.
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1. Introduction

A number of dynamical systems exhibit nonlinear phenomena in terms of ordinary dif-

ferential equations and integral equations. Modeling and analysis of physical phenom-

ena in applied sciences often generates nonlinear initial and boundary value ODE’s

and nonlinear integral equations. Integral equations are used as mathematical models

for many physical situations and also occur as reformulations of other mathematical

problems. Since many physical problems are modeled by integral equations, the nu-

merical solutions of such differential and integral equations have been highly studied

by many authors. The Bratu model[1] as a nonlinear differential equation appears

in a number of applications such as the fuel ignition of the thermal combustion the-

ory and in the Chandrasekhar model of the expansion of the universe. It simulates a

thermal reaction process in a rigid material where the process depends on the balance

between chemically generated heat and heat transfer by conduction. Several numer-

ical methods such as the finite difference, finite element approximation and weighted

residual methods have been implemented independently to handle the Bratu model

and integral equations numerically.
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Fourier analysis provides the information of composition of a given function in

terms of sinusoidal waves of different frequencies and amplitudes. Whereas though

wavelet analysis we can know how a given function changes from one time period to

the next. Chen and Wang have solved nonlinear stiff differential equation and time

varying system by Haar wavelet approach[2,3]. Bujurke[4] has given the application

of single-term Haar wavelet series in the solution of nonlinear oscillator equations.

Wavelet analysis is also more flexible, in that we can chose a specific wavelet to

match the type of function we are analyzing. We apply quasi-linearization Technique

developed by us to find out solutions to nonlinear ODEs [5,6]. However, we restrict

our efforts to Haar wavelet series approach to deal with nonlinear integral equations.

The article is organized as follows. In section 2, we describe the basic formulation

of Haar wavelets and the numerical scheme. Section 3 describes the solution of Bratu

type initial value problem and section 4 gives the numerical treatment and solution of

integral equation using Haar wavelet approximation. Section 5 contains the conclusion

of the presented work.

2. Fundamentals of Haar Wavelets and Numerical Process

In this section, we summarize the fundamentals of Haar wavelets. The structure

of Haar wavelet family is based on multiresolution analysis[7]. A multiresolution anal-

ysis(MRA) K = {Vj ⊂ L2|j ∈ J ⊂ Z} of X consists of a sequence of nested spaces on

Vj ⊆ Vj+1 at different levels j whose union is dense in L2(R). Let L2(X) be the space

of functions with finite energy defined over a domain X ⊆ Rn and 〈., 〉 be an inner

product on X. Bases of the spaces Vj are formed by the sets of scaling basis functions

{φj,k|k ∈ κ(j)} in complete orthonormal system, where κ(j) is an index set defined

over all basis functions on level j. The strictly nested structure of the Vj implies the

existence of difference spaces Wj such that Vj
⊕

Wj = Vj+1. The Wj are spanned by

sets of Haar wavelet basis functions {hj,k|k ∈ K(j)}. For all levels j, Vj and Wj are

subspaces of Vj+1 implying the existence of refinement relationships.

The basic and simplest form of Haar wavelet is the Haar scaling function that ap-

pears in the form of a square wave over the interval x ∈ [0, 1), denoted with h1(x)

and generally written as [8]

(2.1) h1(x) =

{
1, x ∈ [0, 1)

0, elsewhere 0 6 x 6 1

The above expression, called Haar father wavelet, is the zeroth level wavelet which

has no displacement and preserves dilation of unit magnitude.

According to the concept of MRA, as an example, the space Vj can be defined as
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Vj = span{hj,k}j=0,1,2,....,2j−1 = Wj−1
⊕

Vj−1(2.2)

= Wj−1
⊕

Wj−2
⊕

Vj−2
⊕

.... =
J+1⊕
j=1

Wj

⊕
V0

The Haar mother wavelet is the first level Haar wavelet that can be written as

the linear combination of the Haar scaling function as

(2.3) h2(x) = h1(2x) + h1(2x+ 1)

Each Haar wavelet is composed of a couple of constant steps of opposite sign dur-

ing its subinterval and is zero elsewhere. The term wavelet is used to refer to a set of

orthonormal basis functions generated by dilation and translation of a compactly sup-

ported scaling function h1(x) (father wavelet) and a mother wavelet h2(x) associated

with multiresolution analysis of L2(R). Thus, we can write the Haar wavelet family as

(2.4) hi(x) = hi(2
jx− k) =


1, k

2j
≤ x < k+0.5

2j

−1, k+0.5
2j
≤ x < k+1

2j

0, elsewhere

The Haar wavelet matrix of order 8× 8 is given by

H =



1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 0 0 0 0

0 0 0 0 1 1 −1 −1

1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1


where 0 6 x 6 1 and for i ≥ 2, i = 2j + k + 1, j > 0, 0 6 k 6 2j − 1 and xl =

l− 1
2

2m
, l = 1, 2, ...2m. and m = 2j(j = 0, 1, ...J). Here J indicates the max. level of

resolution. In case of minimal values m = 1, k = 0 then i = 2. For any fixed level m,

there are m series of i to fill the interval corresponding to that level and for a provided

J , the index number i can reach the maximum value M = 2J+1, when including all

levels of wavelets.

The operational matrix Pi,α(x) of order 2m× 2m is derived from integration of Haar

wavelet family with the aid of following formula:
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(2.5) Pi,α(x) =

x∫
A

x∫
A

...

x∫
A

hi(x)dxα =
1

(α− 1)!

t∫
A

(t− x)α−1hi(x)dx

(2.6) Pi,2(x) =



1
2
(x− k

2j
)2, x ∈ [ k

2j
, k+0.5

2j
)

1
4m2 − 1

2
(x− k

2j
)2, x ∈ [k+0.5

2j
, k+1

2j
)

1
4m2 , x ∈ [k+0.5

2j
, 1)

0, elsewhere

The Haar wavelet function y(xl) ∈ L2[0, 1] may be expanded as

(2.7) y(xl) =
∞∑
i=1

aihi(xl), i ∈ N

The orthogonality property puts a strong limitation on the construction of wavelets

and allows us to transform any square integral function on the interval time [0, 1) into

Haar wavelets series as

(2.8) y(xl) = a1h1(xl) +
∞∑
i=2

aihi(xl), xl ∈ [0, 1]

Similarly the highest derivative can be written as wavelet series
∞∑
i=1

aihi(xl). In

applications, Haar series is always truncated to 2m terms[2], that is

(2.9)
2m∑
i=1

aihi(xl) = aTH2m(xl)

then we have used the quasi-linearization process. The quasi-linearization pro-

cess is an application of the Newton Raphson Kantrovich approximation method in

function space given by Bellman and Kalaba [9]. The idea and advantage of the

method is based on the fact that linear equations can often be solved analytically or

numerically while there are no useful techniques for obtaining the general solution of

a nonlinear equation in terms of a finite set of particular solutions. Consider an nth
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order nonlinear ordinary differential equation

(2.10) Lny(x) = f(y(x), y(1)(x), y(2)(x), ...., y(n−1)(x), x)

with the initial conditions

(2.11) y(0) = λ0, y
(1)(0) = λ1, ........, y

(n)(0) = λn

Here Ln is the linear nth order ordinary differential operator, f is nonlinear func-

tion of y(xl) and its derivatives are y(s), s = 0, 1, 2, ...., n− 1.

The quasi-linearization prescription determines the (r + 1)th iterative approximation

to the solution of Eq.(2.10) and its linearized form is given by Eq.(2.12)

Lnyr+1(x) = f(yr(x), y(1)r (x), y(2)r (x), ...., y(n−1)r (x), x)(2.12)

+
n−1∑
s=0

(y
(s)
r+1 − y(s)r )f sy (yr(x), y(1)r (x), y(2)r (x), ..., y(n−1)r (x), x)

where y0r(x) = yr(x). The functions fy(s) = ∂f
∂y(s)

are functional derivatives of the

functions. The zeroth approximation y0(x) is chosen from mathematical or physical

considerations.

Now y(x) at (r + 1)th level can be written in the following form of Haar wavelet

series as [10,11,12].

(2.13) y
(n)
r+1(xl) =

2m∑
i=1

aihi(xl)

Then using the concept of operational matrix and Haar wavelet technique, we

can obtain the derivatives from following equation

y
(0)
r+1(xl) =

2m∑
i=1

Pi,n(xl) + xnl y
(n−1)
r (0) + xn−1l y(n−2)r (0) + ....+ y

(0)
r+1(0)(2.14)
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3. Solutions of Nonlinear Differential Equations

Example 1. Consider the nonlinear boundary value problem

(3.1)
d2y

dx2
=

3

2
y2(x), y(0) = 1, y(1) = 4

Numerical results for this problem are presented in Figure 1.

Figure 1. Plot of Example1 for m = 16
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Example 2. Consider the well known Bratu type boundary value problem in

one-dimensional planar coordinates of the following form [1].

(3.2)
d2y

dx2
− 2ey = 0, y(0) = y

′
(0) = 0

The standard Bratu problem (3.16) was used to model a combustion problem

in a numerical slab. The Bratu model appears in a number of applications such as

the fuel ignition of the thermal combustion theory. Exact solution of this problem is

:y(x) = −2 log(cos(x)) and Haar wavelet solution is shown in Figure 2.

Figure 2. Plot of Example2 for m = 16

4. Solutions of Nonlinear Integral Equations

Consider Fredholm integral equation of the second kind
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(4.1) u(t) =

1∫
0

k(t, x)[u(x)]pdx+ f(t), p > 1, t ∈ [0, 1)

The nonlinear term can be expressed as

(4.2) [u(x)]p = [hT (x)c]p = hT (x)cp

Here in cTp = Column vector whose elements are nonlinear combinations of ele-

ments of vector c. cp may be termed as operational vector of the pth power of function

u(x).

(4.3) k(t, x) = hT (t)Kh(x), K = Ki,j0<i,j<2j−1 , Ki,j =< hi(t), < k(t, x), hj(t) >>

Letf(t) = hT (t)d be known. From given equation

(4.4) hT (t)c = hT (t)Kcp + hT (t)d

Taking inner product with h(t) we find nonlinear system of equations

(4.5) c− kcp = d

which can be solved algebraically.

Example 3. Consider the nonlinear weakly singular Volterra-Hammerstein in-

tegral equation with algebraic nonlinearity and singular point x = 0.

(4.6) u(x) = −x
4

10
+

5

6
x2 +

3

8
+

x∫
0

1

2x
u2(t), x ∈ [0, 1]

Exact solution of this equation is given in [13]. Haar wavelet solution is obtained

by proposed method and is shown in Figure 3.

5. Conclusion

For nonlinear problems the Haar wavelet quasi-linearization approach is adopted.

The cited examples clearly demonstrate that in solving nonlinear differential equations

the Haar wavelet method can successfully compete with the exact solutions. The

Haar wavelet method is also applicable for certain nonlinear integral equations. The

main benefits of the Haar approach are simplicity (as a small number of grid points
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Figure 3. Plot of Example3 for m = 16

guarantee the necessary accuracy) and universality (as almost the same approach is

applicable for a wide class of higher order differential and integral equations).
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