
Neural, Parallel, and Scientific Computations 22 (2014) 485-496

ONE MODIFICATION OF EUCLIDIAN ALGORITHM

P. M. BEKAKOS1, M. P. BEKAKOS1, I. Ž. MILOVANOVIĆ2, E. I. MILOVANOVIĆ2,

AND M. K. STOJČEV2

1Democritus University of Thrace, Xanthi, Greece
2Faculty of Electronic Engineering, 18000 Nǐs, Serbia

ABSTRACT. Modular arithmetic lets us carry out algebraic calculations on integers with a sys-

tematic disregard for terms divisible by a certain number (called the modulus). This kind of “reduced

algebra” is essential background for the mathematics of computer science, coding theory, primality

testing, and much more. In this paper we propose a unique approach for calculating “mod” oper-

ation, regardless of the signs of operands by which all ambiguities present in high level languages,

such as C, Java, C++, Mathematica, Matlab, are overcome. Modular arithmetic is quite a useful

tool in number theory. In particular, it can be used to obtain information about the solutions (or

lack thereof) of a specific equation. In order to reduce the number of iteration steps during the

calculation of great common divisor (GCD) and solving linear diophantine equations in two vari-

ables, based on Euclidian and extended Euclidian algorithm, we propose the usage of mod and mod

operations. Several examples which justify usage of the involved operations are given.

Key words Modular arithmetic, Euclidian algorithm, GCD, Diophantine equations, Modular equa-

tions.

1. Introduction

In mathematics, modular arithmetic is a system of arithmetic for integers, where

numbers “wrap around” after they reach a certain value - the modulus. Modular

arithmetic is referenced in number theory, abstract algebra, cryptography, computer

science, etc. For example, in cryptography modular arithmetic is used in a variety

of symmetric key algorithms including AES, IDEA, and RC4. In computer science,

especially in digital signal processing, modular arithmetic is often applied in bitwise

operations and other operations involving fixed-width, cyclic data structures and lin-

ear cyclic addressing (see for example [8], [9]). Modulo operation is implemented in

many programming languages, such as C, C++, Java, Pearl, Python, Basic, SQL,

etc. In essence it is the remainder that is specifically computed in different program-

ming languages. For example, in C++ negative number will be returned if the first

argument is negative, and in Python a negative number will be returned if the second

argument is negative.

Received June 24, 2014 1061-5369 $15.00 c©Dynamic Publishers, Inc.

486 P. BEKAKOS, M. BEKAKOS, I. MILOVANOVIC, E. MILOVANOVIC, AND M. STOJCEV

In this paper, starting from the Euclidian theorem which defines remainder of an

integer division as a positive number, regardless of the sign of operands, we will define

a unique approach for calculating the remainder (i.e. the “mod” operation). In this

way we circumvent all ambiguities during the manipulation with “mod” operation,

such as manipulation with negative addresses, negative values in residue arithmetic.

Besides, we define a mod operation which gives the shortage during division of two

integers, and Mod operation, which is defined as Mod = min{mod, mod}. In many

computations based on the Euclidian algorithm, the usage of Mod can reduce the

number of iteration steps substantially.

The rest of the paper is organized as follows. In Section 2 some common appli-

cations of modular arithmetic are given. In Section 3 we introduce unified definitions

of mod, mod and Mod operations. Based on these definitions, in Section 4 we pro-

pose a modification of Euclidian algorithm for computing GCD aiming to reduce the

number of iteration steps. In Section 5 linear diophantine equations are solved in two

variables using extended Euclidian and modified extended Euclidian algorithm. We

conclude in Section 6.

2. Some Common Applications of Modular Arithmetic

A common application of modular arithmetic includes:

1. Circular addressing - an efficient method for accessing data buffers continuously

without having to reset data pointers. In DSP circular addressing is called

modulo addressing in the sense that the next address larger than the length of

the circular buffer is the first address in the table. Modular addressing with an

arbitrary modulus (not just a power of 2) is desirable enhancement to implement

the pointer wraparound a circular buffer. For example R = B + (R − B +

M) mod L, where R is a content of the data address generator, B is a base

address, M is the computed offset increment, and L is the length of the buffer

(modulus) [8].

2. Random number generator - random numbers are used in many practical ap-

plications for simulating noises. Although we cannot produce perfect random

numbers by using digital hardware, it is possible to generate a sequence of num-

bers that are unrelated to each other. Such numbers are called pseudo-random

numbers. The linear congruential method is widely used by random number

generators, and can be expressed as [8, 6].

3. Dependence testing in programs - a process of determining whether two refer-

ences to the same variable in a given set of loops might access the same memory

location. In the most general case, a dependence testing amounts when deter-

mining whether a system of diophantine equations has a solution within a loop

boundaries [1].

ONE MODIFICATION OF EUCLIDIAN ALGORITHM 487

4. Cryptography - modular arithmetic directly underpins public key system such

as RSA and Diffie -Hellman, symmetric key algorithms such as AES, IDEA, etc

[4].

5. Checksum calculations - calculation of IBANs (International Bank Accounts)

which use modulo 97 arithmetic to trap user input errors in bank account num-

bers, ISBN calculation for published books, etc, [5].

3. Definitions of mod, mod and Mod Operations

Given any two integers a and b, there exist integers q, q1, r and r1, respectively

called quotients, the remainder and the shortage, such that [7] :

(1) a = b × q + r, 0 ≤ r ≤ |b| − 1,

and

(2) a = b × q1 − r1, 0 ≤ r1 ≤ |b| − 1

The shortage, r1, is the amount by which a exceeds b × q1.

In mathematics and computer science, the floor and ceiling functions (Iverson

functions) map a real number to the largest previous or the smallest following integer,

respectively. More precisely,

1. floor(x) = ⌊x⌋is the largest integer not greater than x, and

2. ceiling(x) = ⌈x⌉ is the smallest integer not less than x.

Many programming languages have built in an integer function int(x) = [x],

which is defined as

[x] =



















⌈x⌉ if x < 0

0 if x = 0

⌊x⌋ if x0.

Integer functions mod and mod, which give the remainder, r , and shortage, r1

(see eqns. (1) and (2)), of two integers a and b, are defined as

(3) r = a mod b = a − b
⌊a

b

⌋

, and r1amodb = b
⌈a

b

⌉

− a

The above definitions of the remainder and the shortage suffer from inconsistency.

Namely, depending on the signs of a and b these functions can return negative values.

On the other hand, according to (1) and (2), values r and r1, are always positive. As

a consequence of this inconsistency, in different programming languages (such as C,

C++, Mathematica, Matlab, etc.) different results will be returned when a or b, or

both, are negative.

To circumvent these ambiguities, we propose the following definitions for mod

and mod functions:

488 P. BEKAKOS, M. BEKAKOS, I. MILOVANOVIC, E. MILOVANOVIC, AND M. STOJCEV

Definition 1. For two arbitrary integers a and b, b 6= 0, functions mod : Z × Z 7→

N0, and mod : Z × Z 7→ N0, are defined as

(4) a mod b =







a − b
⌊

a

b

⌋

if b > 0

a − b
⌈

a

b

⌉

if b < 0
and amod b =







b
⌈

a

b

⌉

− a if b > 0

b
⌊

a

b

⌋

− a if b < 0

We also introduce a new function, denoted as Mod, which is defined as

(5) a Mod b = min{a mod b, a mod b}

According to the involved definitions, it is not difficult to conclude that function

mod, mod and Mod, always return positive values, regardless to the sign of a and

b. Table 1 summarizes the results of mod operation for various values of integers a

and b obtained by Mathematica, Matlab, C and according to our Definition 1, i.e.

equation (4).

Table 1. Results of a mod b operation

a b Matlab R2010a Mathematica 7 C Eq. (4)

11 4 3 3 3 3

-11 4 1 1 -3 3

11 -4 -1 -1 3 3

-11 -4 -3 -3 -3 1

As it can be seen, the results obtained according to eq. (4) are always positive,

which is in accordance with eq. (1). On the other hand, the results obtained by

Mathematica, Matlab and C, are not consistent with (1). Moreover, the generation

of the results depends upon the used programming tool.

Apart from giving a unified approach, Definition 1 enables us to reduce a number

of iteration steps in numerous algorithms in number theory. We will illustrate this

on the example of Euclidian algorithm for finding greatest common divisor (GCD),

and extended Euclidian algorithm for finding particular solution of linear diophantine

equations.

4. Modification of Euclidian algorithm

The greatest common divisor (GCD) of two integers is always a nonnegative

integer, i.e. the following is valid GCD(a, b) = GCD(|a|, |b|). Therefore, in the sequel

without lost of generality, we will consider only nonnegative integers, i.e. integers

from the set N0.

ONE MODIFICATION OF EUCLIDIAN ALGORITHM 489

Given two integers a and b, with a ≥ 0, b > 0, for calculating GCD(a, b) the well

known Euclidian algorithm can be used. Standard Euclidian algorithm (Algorithm 1)

and its modification (Algorithm 2) that we proposed, have the following forms:

Algorithm 1 (Euclidian)

r1 := a; ; r2 := b; r := r1modr2;

while (r 6= 0) do

{ r1 := r2; r2 := r;

r := r1modr2 }

GCD := r2.

Algorithm 2 (modified Euclidian)

r1 := a; ; r2 := b; r := r1 Mod r2;

while (r 6= 0) do

{ r1 := r2; r2 := r;

r := r1 Mod r2 }

GCD := r2.

Since r1 Mod r2 ≤ r1 mod r2, for each r1 and r2 from N0, the number of iteration

steps in Algorithm 2 is always less than or equal to the number of iteration steps in

Algorithm 1. Having in mind the definition of Mod operation, it is obvious that the

computational complexity of one iteration step in Algorithm 2 is greater than that

of the Algorithm 1. An example of GCD computation using Algorithm 1 and 2, for

the case of a = 233 and b = 144 is given in Table 2.

Table 2. Computing of GCD(233,144) with Algorithm 1 and Algorithm 2

Algorithm 1 Algorithm 2

step r1 r2 r = r1 mod r2 r1 r2 r = r1 Mod r2

1 233 144 89 233 144 55

2 144 89 55 144 55 21

3 89 55 34 55 21 8

4 55 34 21 21 8 3

5 34 21 13 8 3 1

6 21 13 8 3 1 0

7 13 8 5 GCD=1

8 8 5 3

9 5 3 2

10 3 2 1

11 2 1 0

12 GCD=1

It is well known, see Ref. [2], that the worst possible case for Algorithm 1 is

finding GCD of two consecutive Fibonacci numbers, Fn+1 and Fn. It requires n

490 P. BEKAKOS, M. BEKAKOS, I. MILOVANOVIC, E. MILOVANOVIC, AND M. STOJCEV

iteration steps. On the other hand, since for Fibonacci numbers hold

Fn+1 = Fn + Fn−1 = 2Fn − Fn−2, n ≥ 2

it is easy to show that finding GCD(Fn+1, Fn) by Algorithm 2 requires n+1

2
iteration

steps, only. Let us note, that achieved benefit with respect to the number of iteration

steps, is maximal. When integers a and b do not satisfy a ≥ Fn+1 and b ≥ Fn, the

benefit is smaller.

Very often, in the programming we met the following loop nest

DO i1 = L1, U1

DO i2 = L2, U2

. . .

DO in = Ln, Un

S1: A(f(i1, . . . , in)) = · · ·

S2: · · · = A(g(i1, . . . , in))

endo
...

endo

Determining whether there is a dependence from S1 to S2 (or vice versa) is

equivalent to determining whether there exists an integer solution to the equation

system

(6) f(x1, x2, . . . , xn) = g(y1, y2, . . . , yn)

in the space defined by

Li ≤ xi, yi ≤ Ui, ∀i, 1 ≤ i ≤ n.

If f and g are affine functions, that is they have a form

f(x1, x2, . . . , xn) = a0 + a1x1 + · · ·+ anxn

g(y1, y2, . . . , yn) = b0 + b1y1 + · · · + bnyn,

the dependence problem to be solved is to find solutions in the region R to the linear

diophantine equation

(7) a0 − b0 + a1x1 − b1y1 + · · ·+ anxn − bnyn = 0.

Rearranging terms of Eq. (7) yields the following

(8) a1x1 − b1y1 + · · ·+ anxn − bnyn = a0 − b0

which is standard form for a linear diophantine equation.

ONE MODIFICATION OF EUCLIDIAN ALGORITHM 491

Equation (8) has a solution if and only if GCD(a1, a2, . . . , an, b1, b2, . . . , bn) divides

b0 − a0. Thus, if the GCD of all the coefficients of loop induction variables does not

divide the difference of the constant additive terms, there can be no solution to the

equation anywhere - hence, no dependence can exist.

One obvious approach to find GCD of a sequence of integers, that is GCD(a1, a2, . . .,

an), is to apply Euclidian algorithm n − 1 times, i.e.

(9) r = GCD(a1, a2); r = GCD(r, ai), i = 3, . . . , n.

If n is large, this can be time consuming. One way to speedup the computation is to

involve parallelism in computation. Here we propose the following procedure

1. If ∃ai = 1, then GCD(a1, . . . , an) = 1, go to step 5, else go to step 2.

2. Find index ind such that aind = min(a1, . . . , an) 6= 0

3. If all ai 6= 0 are equal to aind, then GCD(a1, . . . , an) = aind and go to step 5,

else go to step 4.

4. for all i = 1, . . . , n and i 6= ind compute ai = ai Mod aind and go to step 1.

5. end.

If we have p ≤ n processors at a disposal, steps 1 and 4 can be parallelized. Steps

2 and 3 are executed sequentially.

Remark 1. For arbitrary sequence , the following is valid

1 ≤ GCD(a1, a2, . . . , an) ≤ min{a1, a2, . . . , an}.

Therefore, it is useful to consider sequence a1, a2, . . . , an in an increasing order.

Example: Consider the sequence (42, 54, 105, 126).

If we apply the method defined by (9), the computation will be performed in the

following way

d = 42, d = GCD(d, 54) = GCD(42, 54) = 6,

d = GCD(d, 105) = GCD(6, 105) = 3, d = GCD(d, 126) = GCD(3, 126) = 3.

By applying the proposed procedure, we obtain

GCD(42, 54, 105, 126) = GCD(42, 6, 21, 3) = GCD(3, 0, 0, 0) = 3.

5. Solving linear diophantine equations

During data dependence computation in actual programs, it is often required to

find a solution of a linear diophantine equation. Euclidian algorithm which is used

to find GCD of two integers, can be extended to solve linear diophantine equations

in two variables [3]. This algorithm is called extended Euclidian algorithm. Here we

will describe both extended Euclidian algorithm and its modification based on the

usage of Mod operation defined by (4).

492 P. BEKAKOS, M. BEKAKOS, I. MILOVANOVIC, E. MILOVANOVIC, AND M. STOJCEV

Linear diophantine equation in two variables is of the form

(10) a × x + b × y = c, a × b 6= 0.

Without loss of generality, we assume that a, b and c are positive integers. Namely

if some of the integers a, b or c is negative, by involving substitutions x := ±x and

y := ±y, a corresponding equation will meet the requirement in (10).

The main task in solving (10), is finding its particular solution < x0, y0 >. It is

well known (see [3]), that for two arbitrary positive integers a and b, linear diophantine

equation of the form

(11) a × x + b × y = GCD(a, b)

always has a solution. Necessary and sufficient condition for (10) to have a solution,

is that GCD(a, b) divides c. If < X0, Y0 > is an arbitrary particular solution of (11),

then a particular solution of (10) is of the form

x0 =
c

GCD(a, b)
X0 and y0 =

c

GCD(a, b)
Y0.

General solution has the following form

x = x0 −
b · t

GCD(a, b)
and y = y0 +

a · t

GCD(a, b)
, t ∈ Z

The extended Euclidian algorithm consists of two major steps. During the first step

GCD(a, b) and < X0, Y0 > are determined. In the second step it is checked whether

GCD(a, b) divides c. If not, the equation (10) does not have a solution. Otherwise,

particular and general solutions of (10) are determined. The extended Euclidian

algorithm can be described as follows.

Algorithm 3 (Extended Euclidian)

r1 := a; ; r2 := b;

x1 := 1; x2; = 0;

y1 := 0; y2 := 1; r := a



















initialization

while (r 6= 0) do

{ q := ⌈ r1

r2
⌉;

r := r1 − q ∗ r2; r1 := r2; r2 := r;

x := x1 − q ∗ x2; x1 := x2; x2 := x;

y := y1 − q ∗ y2; y1 := y2; y2 := y;

}

GCD := r1; X0 := x1; Y 0 := y1.

Modified extended Euclidian algorithm which is based on the usage of Mod op-

eration, defined by (4) has the following form.

ONE MODIFICATION OF EUCLIDIAN ALGORITHM 493

Algorithm 4 (modified extended Euclidian)

r1 := a; ; r2 := b;

x1 := 1; x2; = 0;

y1 := 0; y2 := 1;

rr := a mod b; rs := b − rr;































initialization

while (rr ∧ rs 6= 0) do

if (rr < rs) then

{q :=
⌊

r1

r2

⌋

;

rr := r1 − q ∗ r2; r1 := r2; r2 := rr;

x := x1 − q ∗ x2; x1 := x2; x2 := x;

y := y1 − q ∗ y2; y1 := y2; y2 := y; }

else

{q :=
⌈

r1

r2

⌉

;

rs := r1 − q ∗ r2; r1 := r2; r2 := rs;

x := q ∗ x2 − x1; x1 := x2; x2 := x;

y := q ∗ y2 − y1; y1 := y2; y2 := y; }

GCD := r1; X0 := x1; Y 0; = y1

For the sake of illustration of running Algorithm 3 and 4, we will take the fol-

lowing diophantine equation in two variables

(12) 233x + 144y = 7

Tables 3 and 4 outline execution steps when Algorithm 3 and Algorithm 4 are

used respectively.

Both algorithms compute GCD(233, 144) and particular solution < X0, Y0 > of

the equation

233x + 144y = GCD(233, 144).

Since c = 7, and GCD(233, 144) = 1, i.e. 1 divides 7, the solution of linear diophantine

equation (12) is

x0 = −55 ∗ 7 = −385, and y0 = 89 ∗ 7 = 623.

As it can be seen from Tables 3 and 4, Algorithm 3 requires 12 computational steps,

while Algorithm 4 requires 7 steps. Algorithm 4 uses one additional testing at the

beginning of the loop. All other computational steps in the loop body of both algo-

rithms are of identical complexity. This obviously justifies the usage of the involved

modification.

494 P. BEKAKOS, M. BEKAKOS, I. MILOVANOVIC, E. MILOVANOVIC, AND M. STOJCEV

Table 3. The results of execution steps for Algorithm 3

Algorithm 3

step q r1 r2 r x1 x2 x y1 y2 y

1 1 233 144 89 1 0 1 0 1 -1

2 1 144 89 55 0 1 -1 1 -1 2

3 1 89 55 34 1 -1 2 -1 2 -3

4 1 55 34 21 -1 2 -3 2 -3 5

5 1 34 21 13 2 -3 5 -3 5 -8

6 1 21 13 8 -3 5 -8 5 -8 13

7 1 13 8 5 5 -8 13 -8 13 -21

8 1 8 5 3 -8 13 -21 13 -21 34

9 1 5 3 2 13 -21 34 -21 34 -55

10 1 3 2 1 -21 34 -55 34 -55 89

11 2 2 1 0 34 -55 149 -55 89 -333

12 1 0 -55 89

GDC(233, 144) = 1 X0 = −55 Y0 = 89

Table 4. The results of execution steps for Algorithm 4

Algorithm 4

step q r1 r2 r x1 x2 x y1 y2 y

1 2 233 144 55 1 0 -1 0 1 2

2 3 144 55 21 0 -1 -3 1 2 5

3 3 55 21 8 -1 -3 -8 2 5 13

4 3 21 8 3 -3 -8 -21 5 13 34

5 3 8 3 1 -8 -21 -55 13 34 89

6 3 3 1 0 -21 -55 -309 34 89 233

7 1 -55 89

GDC(233, 144) = 1 X0 = −55 Y0 = 89

In cryptography, it is often necessary to find out the so called multiplicative

inverse of a given number a, i.e.

z =

(

1

a

)

modb.

ONE MODIFICATION OF EUCLIDIAN ALGORITHM 495

This problem is equivalent to finding out the solution of the modular equation

a × z ≡ 1(modb), GCD(a, b) = 1,

for which extended Euclidian algorithm can be used.

6. Conclusion

Modular arithmetic is frequently used in number theory, group theory, ring the-

ory, abstract algebra, cryptography, computer science, chemistry, e-banking, etc.

Modulo operation is implemented in many programming languages, such as C, C++,

Java, Pearl, Python, Basic, SQL, etc. In essence it is the remainder that is specifi-

cally computed in different programming languages. For example, in C++ a negative

number will be returned if the first argument is negative, and in Python a negative

number will be returned if the second argument is negative. In order to bypass all

ambiguities during manipulation with mod operation, we have introduced a defini-

tion of mod, mod and Mod operations that always return positive values regardless

to the sign of operands. This is in accordance with the Euclid’s definition of the

remainder. According to the involved operations, we have proposed a modification

of Euclid’s and extended Euclid’ s algorithms aiming to reduce the number of itera-

tion steps. We have illustrated the benefits of the introduced modifications through

several examples.

REFERENCES

[1] R. Allen, K. Kennedy, Optimizing compilers for modern architectures: A dependence based

approach, Morgan Kaufmann , 2001.

[2] G. Akritas, Elements of computer algebra with applications, John Wiley and Sons, Inc. placeS-

tateNew York, 1989.

[3] J. M. Anderson, Discrete mathematics with combinatorics, Prentice Hall, StateNew Jersey,

2004.

[4] B. Forouzan, Cryptography & Network Security, McGraw Hill, 2007.

[5] B. Forouzan, F. Mosharraf, Computer Networks: A top down approach, Mc Graw Hill, 2011.

[6] J. Gentle, Random number generation and placeMonte Carlo methods, Springer, 2003.

[7] D. Knuth, The art of computer programming, Vol 2: Seminumerical Algorithms, Reading State

MA: Addison-Wesley, 1981.

[8] Sen M. Kuo, Bob H. Lee, WeNshun Tian, Real-Time digital signal processing: Implementations

and applications, Second Edition, John Wiley & Sons, Inc. 2006.

