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ABSTRACT. In this paper we study that the second kind Euler numbers En and Euler polynomials

En(x) are analytic continued to E(s) and E(s, w). We investigate the new concept of dynamics of

the zeros of analytic continued polynomials. Finally, we observe an interesting phenomenon of

‘scattering’ of the zeros of E(s, w).
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1. Introduction

Throughout this paper, we always make use of the following notations:N =

{1, 2, 3, . . .} denotes the set of natural numbers, N0 = {0, 1, 2, 3, . . .} denotes the

set of nonnegative integers, Z denotes the set of integers, R denotes the set of real

numbers, C denotes the set of complex numbers. Recently, many mathematicians

have studies different kinds of the Euler, Bernoulli and Genocchi numbers and poly-

nomials (see [1–20]). Using computer, a realistic study for the second kind Euler

polynomials En(x) is very interesting. It is the aim of this paper to observe an inter-

esting phenomenon of ‘scattering’ of the zeros of the second kind Euler polynomials

En(x) in complex plane. First, we introduce the second kind Euler numbers and

Euler polynomials. As well known definition, the second kind Euler numbers En are

defined by

F (t) =
2et

e2t + 1
=

∞
∑

n=0

En

tn

n!
, |t| <

π

2
, see [14]. (1)

For n ∈ N0, numbers En meet E2n+1 = 0. By using computer, the numbers En can

be determined explicitly. The first few En are listed in Table 1.

Table 1. The first few numbers En

degree n 0 1 2 3 4 5 6 7 8 9 10

En 1 0 −1 0 5 0 −61 0 1385 0 −50521
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The second kind Euler polynomials En(x) are defined by the generating function:

F (x, t) =
∞
∑

n=0

En(x)
tn

n!
=

(

2et

e2t + 1

)

ext, |t| <
π

2
, see [14], (2)

where we use the technique method notation by replacing E(x)n by En(x) symboli-

cally.

By the above definition (2) and Cauchy product, we obtain

∞
∑

l=0

El(x)
tl

l!
=

(

2et

e2t + 1

)

ext =
∞
∑

n=0

En

tn

n!

∞
∑

m=0

xm tm

m!

=

∞
∑

l=0

(

l
∑

n=0

En

tn

n!
xl−n tl−n

(l − n)!

)

=

∞
∑

l=0

(

l
∑

n=0

(

l

n

)

Enxl−n

)

tl

l!
.

By using comparing coefficients
tl

l!
, we have the following theorem.

Theorem 1. For n ∈ N0, one has

En(x) =

n
∑

k=0

(

n

k

)

Ekx
n−k.

By Theorem 1 and some elementary calculations, we have

∫ b

a

En(x)dx =
n
∑

l=0

(

n

l

)

El

∫ b

a

xn−ldx

=

n
∑

l=0

(

n

l

)

El

xn−l+1

n − l + 1

∣

∣

∣

∣

b

a

=
1

n + 1

n+1
∑

l=0

(

n + 1

l

)

El xn−l+1
∣

∣

b

a
.

By Theorem 1, we get

∫ b

a

En(x)dx =
En+1(b) − En+1(a)

n + 1
. (3)

Since En(0) = En, by (3), we have the following theorem.

Theorem 2. For n ∈ N, one has

En(x) = En + n

∫ x

0

En−1(t)dt.

Then, it is easy to deduce that Ek(x) are polynomials of degree k. Here is

the list of the first Euler’s polynomials. By using computer, the second kind Euler
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polynomials En(x) can be determined explicitly. A few of them are

E0(x) = 1,

E1(x) = x,

E2(x) = x2 − 1,

E3(x) = x3 − 3x,

E4(x) = x4 − 6x2 + 5,

E5(x) = x5 − 10x3 + 25x,

E6(x) = x6 − 15x4 + 75x2 − 61,

E7(x) = x7 − 21x5 + 175x3 − 427x,

E8(x) = x8 − 28x6 + 350x4 − 1708x2 + 1385,

E9(x) = x9 − 36x7 + 630x5 − 5124x3 + 12465x,

E10(x) = x10 − 45x8 + 1050x6 − 12810x4 + 62325x2 − 50521,

· · ·

2. Analytic Continuation of the second kind Euler numbers

By using the second kind Euler numbers and polynomials, the second kind Euler

zeta function and Hurwitz Euler zeta functions are defined. From (1.1), we note that

dk

dtk
F (t)

∣

∣

∣

∣

t=0

= 2
∞
∑

n=0

(−1)n(2n + 1)k, k ∈ N.

By using the above equation, we are now ready to define the second kind Euler zeta

functions.

Definition 3. For s ∈ C with Re(s) > 0, define the second kind Euler zeta function

by

ζE(s) = 2

∞
∑

n=0

(−1)n

(2n + 1)s
.

Notice that the Euler zeta function can be analytically continued to the whole

complex plane, and these zeta function have the values of the Euler numbers at

negative integers. That is, the second kind Euler numbers are related to the second

kind Euler zeta function as

ζE(−k) = Ek.

By using (2), we note that

dk

dtk
F (x, t)

∣

∣

∣

∣

t=0

= 2
∞
∑

n=0

(−1)n(2n + x + 1)k, k ∈ N, (4)
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and
(

d

dt

)k
(

∞
∑

n=0

En(x)
tn

n!

)
∣

∣

∣

∣

∣

t=0

= Ek(x), for k ∈ N. (5)

By (4) and (5), we are now ready to define the Hurwitz Euler zeta functions.

Definition 4. We define the Hurwitz zeta function ζE(s, x) for s ∈ C with Re(s) > 0

by

ζE(s, x) = 2

∞
∑

n=0

(−1)n

(2n + x + 1)s
.

Note that ζE(s, x) is a meromorphic function on C. Relation between ζE(s, x) and

Ek(x) is given by the following theorem.

Theorem 5. For k ∈ N, we have

ζE(−k, x) = Ek(x). (6)

We now consider the function E(s) as the analytic continuation of the second

kind Euler numbers. From the above analytic continuation of the second kind Euler

numbers, we consider

En 7→ E(s),

ζE(−n) = En 7→ ζE(−s) = E(s).
(7)

0 1 2 3 4 5 6 7

s

-80

-60

-40

-20

0

EHsL

Figure 1. The curve E(s) runs through the points of all En

All the Euler number En agree with E(n), the analytic continuation of the second

kind Euler numbers evaluated at n (see Figure 1),

En = E(n) for n ≥ 0. (8)
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In fact, we can express E ′(s) in terms of ζ ′

E(s), the derivative of ζE(s).

E(s) = ζE(−s),

E ′(s) = −ζ ′

E(−s)

E ′(2n + 1) = −ζ ′

E(−2n − 1) for n ∈ N0.

(9)

From the relation (9), we can define the other analytic continued half of the

second kind Euler numbers

E(s) = ζE(−s), E(−s) = ζE(s)

⇒ E(−n) = ζE(n), n ∈ N.
(10)

By (10), we have

lim
n→∞

E−n = ζE(n) = 2.

The curve E(s) runs through the points E−n = E(−n) and grows ∼ 2 asymptot-

ically as −n → ∞ (see Figure 2).

-12 -10 -8 -6 -4 -2 0

s

1.2

1.4

1.6

1.8

2

EHsL

Figure 2. The curve E(s) runs through the points E−n

3. Zeros of analytic continued polynomials of the second kind Euler

polynomials

Our main purpose in this section is to investigate the new concept of dynamics of

the zeros of analytic continued polynomials. The analytic continuation can be then
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obtained as

n 7→ s ∈ R, x 7→ w ∈ C,

Ek 7→ E(k + s − [s]) = ζE(−(k + (s − [s]))),
(

n

k

)

7→
Γ(1 + s)

Γ(1 + k + (s − [s]))Γ(1 + [s] − k)

⇒ En(x) 7→ E(s, w) =

[s]
∑

k=−1

Γ(1 + s)E(k + s − [s])w[s]−k

Γ(1 + k + (s − [s]))Γ(1 + [s] − k)

=

[s]+1
∑

k=0

Γ(1 + s)E((k − 1) + s − [s])w[s]+1−k

Γ(k + (s − [s]))Γ(2 + [s] − k)
,

(11)

where [s] gives the integer part of s, and so s − [s] gives the fractional part.

By (11), we obtain analytic continuation of the second kind Euler polynomials.

E0(w) = 1,

E1(w) = E(1, w) = w,

E2(w) = E(2, w) = −1 + w2,

E(2.2, w) ≈ −1.05935 − 0.51637w + 1.10088w2 + 0.13087w3,

E(2.4, w) ≈ −1.01747 − 1.11835w + 1.09099w2 + 0.31130w3,

E(2.6, w) ≈ −0.84541 − 1.772532w + 0.92996w2 + 0.53121w3,

E(2.8, w) ≈ −0.514468 − 2.42561w + 0.577882w2 + 0.77106w3,

E3(w) = E(3, w) = −3w + w3.

(12)

By using (12), we plot the deformation of the curve E(2, w) into the curve of

E(3, w) via the real analytic continuation E(s, w), 2 ≤ s ≤ 3, w ∈ R (see Figure 3).

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2

w

-1

-0.5

0

0.5

1

1.5

2

EHs,wL

EH2,wL

EH3,wL

Figure 3. The curve of E(s, w), 2 ≤ s ≤ 3, −0.8 ≤ w ≤ −0.2

Stacks of zeros of E(n, w) for 1 ≤ n ≤ 50, forming a 3D structure are presented

(Figure 4).
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Figure 4. Stacks of zeros of E(n, x) for 1 ≤ n ≤ 50

In Figure 4 (top-right), we draw x and y axes but no z axis in three dimensions.

In Figure 4 (bottom-left), we draw y and z axes but no x axis in three dimensions.

In Figure 4 (bottom-right), we draw x and z axes but no y axis in three dimensions.

In Figure 4, we observe that En(x), x ∈ C, has Re(x) = 0 reflection symmetry in

addition to the usual Im(x) = 0 reflection symmetry analytic complex functions (see

Figure 4). The obvious corollary is that the zeros of E(n, w) will also inherit these

symmetries.

If E(n, w0) = 0, then E(n,−w0) = E(n, w∗

0) = E(n,−w∗

0) = 0,

where ∗ denotes complex conjugation.

For n ∈ N0, it is easy to deduce that the second kind Euler polynomials En(x)

satisfy
∞
∑

n=0

En(−x)
(−t)n

n!
=

2e−t

e−2t + 1
e(−x)(−t)

=
2et

e2t + 1
ext

=
∞
∑

n=0

En(x)
tn

n!
.
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By using comparing coefficients tn

n!
in the above equation, we have the following the-

orem.

Theorem 6. For n ∈ N0, we have

En(x) = (−1)nEn(−x). (13)

Hence we have the following theorem.

Theorem 7. If n ≡ 1 (mod 2), then En(0) = 0, for n ∈ N.

Next, we investigate the beautiful zeros of the E(s, w) by using a computer. We

plot the zeros of E(s, w) for s = 9, 9.5, 9.8, 10 and w ∈ C (Figure 5).
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Figure 5. Zeros of E(s, w) for s = 9, 9.5, 9.8, 10

In Figure 5 (top-left), we choose s = 9. In Figure 5 (top-right), we choose s = 9.5.

In Figure 5 (bottom-left), we choose s = 9.8. In Figure 5 (bottom-right), we choose

s = 10.

Stacks of zeros of Eq(s, w) for s = n + 1/2, 1 ≤ n ≤ 50, forming a 3D structure

are presented (Figure 6).

In Figure 6 (top-right), we draw y and z axes but no x axis in three dimensions.

In Figure 6 (bottom-left), we draw x and y axes but no z axis in three dimensions.

In Figure 6 (bottom-right), we draw x and z axes but no y axis in three dimensions.



ANALYTIC CONTINUATION OF THE SECOND KIND EULER POLYNOMIALS 517

-400
-200

0

200

400
ReHwL

-400

-200

0

200

400
ImHwL

0

20

40

n

-400
-200

0

200

400
ReHwL

-400

-200

0

200

400
ImHwL

-400-2000200400

ImHwL

0

20

40

s

-400 -200 0 200 400

ReHwL

-400

-200

0

200

400

ImHwLL

-400 -200 0 200 400

ReHwL

0

20

40

s

-400 -200 200 400

H L

Figure 6. Stacks of zeros of Eq(s, w) for 1 ≤ n ≤ 50

However, we observe that E(s, w), w ∈ C, has not Re(w) = 0 reflection symmetry

analytic complex functions (see Figure 5 and Figure 6).

Table 1. Numbers of real and complex zeros of E(s, w)

s real zeros complex zeros

4.5 5 0

5.5 4 2

6.5 3 4

7.5 4 4

8.5 5 4

9 5 4

9.3 6 4

9.5 6 4

9.8 6 4

10 6 4
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Our numerical results for approximate solutions of real zeros of E(s, w) are displayed.

We observe a remarkably regular structure of the complex roots of Euler polynomi-

als. We hope to verify a remarkably regular structure of the complex roots of Eu-

ler polynomials (Table 1). Next, we calculated an approximate solution satisfying

E(s, w), w ∈ R. The results are given in Table 2.

Table 2. Approximate solutions of E(s, w) = 0, w ∈ R

s w

6 −1.0000, 1.0000

6.5 −7.21395, −0.500166, 1.49742

7 −1.99547, 0.00000, 1.99546

7.5 −8.15937, −1.49886, 0.500067, 2.42679

8 −2.86463, −1.0000, 1.0000, 2.86461

8.5 −9.10419, −2.45462, −0.500361, 1.50051, 3.09031

9 −3.44019, −1.99828, −0.0020349, 2.00238, 3.43849

9.3 −18.4239, −3.26444, −1.69509, 0.294429, 2.30993, 3.46266

9.5 −10.0489, −3.19923, −1.49042, 0.489325, 2.52446, 3.47029

9.8 −4.88359, −3.12755, −1.17558, 0.772477, 2.87402, 3.52148

10 −3.70784, −3.07603, −0.95533, 0.949222, 3.10087, 3.69157

In Figure 7, we plot the real zeros of the the second kind Euler polynomials

E(s, w) for s = n + 1
2
, 1 ≤ n ≤ 50 and w ∈ C (Figure 7). In Figure 7 (right), we

choose E(s, w) for s = n + 1
2
, 1 ≤ n ≤ 50. In Figure 7 (left), we choose E(n, w) for

1 ≤ n ≤ 50.

The second kind Euler polynomials En(w) is a polynomials of degree n. Thus,

En(w) has n zeros and En+1(w) has n+1 zeros. When discrete n is analytic continued

to continuous parameter s, it naturally leads to the question: How does E(s, w), the

analytic continuation of En(w), pick up an additional zero as s increases continuously

by one?

This introduces the exciting concept of the dynamics of the zeros of analytic

continued polynomials – the idea of looking at how the zeros move about in the w

complex plane as we vary the parameter s. More studies and results in this subject

we may see references [9], [12]–[17].
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Figure 7. Real zeros of E(s, w)
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