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ABSTRACT. This article studies the quenching phenomena of a semilinear parabolic initial-
boundary value problem in an infinite strip. It proves that there exists a unique number a* (cor-
responding to the strength of the source) such that the solution u exists globally for o < a* and
quenches in a finite time for a > a*. A computational method is devised to find o*. Also, a method
to compute the critical width (corresponding to the number L* such that u exists globally for L < L*

and quenches in a finite time for L > L*) of the infinite strip is given.
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1. Introduction

Let o, T and L be positive real numbers, x = (x1,%2,...,2x_1,2Zy) be a point
in the N-dimensional Euclidean space RY, S = (=L, L) x R¥~! be the infinite strip,
and 0S5 = {x:z; € {—L,L}}. We would like to study the quenching phenomena of

the following semilinear parabolic initial-boundary value problem in an infinite strip:

ur — Au=af (u) in S x (0,77,

1.1 _
(L) u(z,0) =0on S, u(x,t) =0 on S x (0,7,

where S is the closure of S, f is a given function such that lim,_. f(u) = oo for
some positive constant ¢, and f(u) and its derivatives f’(u) and f” (u) are positive
for 0 < u < ¢. A similar problem with a concentrated nonlinear source was studied
by Chan and Tragoonsirisak [1], [2], [3].

A solution u of (1.1) is said to quench in a finite time if there exists a number
t, € (0,00) such that

sup {u(z,t) :z € RV} — ¢ ast —t,.

In Section 2, we prove that there exists a unique number a* (which corresponds to
the critical strength of the nonlinear source) such that u exists globally for a@ < o,

and u quenches in a finite time for a > a*. We also give a computational method for
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finding the critical value o*. Dai and Gu [4] studied the above problem. They showed
that u exists globally for L < L* and u quenches in a finite time for L > L*; they did

not compute L*. In Section 3, we give a method to compute L*.

2. The Critical Value o*

From now on and for the rest of this paper, let (z,%) = (z1,22,...,2y_1,2N)
where x stands for z;, and S = (0,L). Due to symmetry, the problem (1.1) is

equivalent to the following one-dimensional problem:

U — Uz = af (u) in S x (0,77,

2.1
(21) u(z,0) =0on [0,L], u, (0,t) =0=u(L,t) for 0 <t <T.

By using Green’s second identity, the problem (2.1) is converted into the nonlinear

integral equation,

(2.2) w(et) = a / / g (2, 6:6,7) f (u (€, 7)) dédr,

where g (z,t;&,7) is Green’s function corresponding to the problem (2.1) and is given

9o t:6,7) 2
(23) _ %n:1 (COS (2n ;me) (COS (2n ng)wf) o <_(2n - 1)4;2 (t— T))

(cf. Chan and Tragoonsirisak [1]).
Let

(2.4) vz, t) = /0 t /0 ’ g (a,t;€,7) dedr.

Lemma 2.1. For any x € D, v is positive and is a strictly increasing function of t.

Furthermore, lim;_,, v (x,t) exists.
Proof. For any x € D, let
w(z,t) =v(x,t+h) —o(z,t),
where h is any positive number less than T'. Then,
t+h L t L
wwt)= [ [Coernmenaar— [ [ g ngnsar
0 0 0 Jo

Let 0 =7 — h. Then,
t+h L
/ / g(x,t+ h; &, 7)dédr
0 0

hopL t+h L
:/ / g(x,t+h;§,7')d§d7'—|-/ / g(x,t+ h; &, T)dédr
o Jo h 0
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:/Oh/OLg(x,t+h;£,T)d§dT+/Ot/OLg(x,t+h;§,a+h)d§da
:/Oh/OLg(x,t+h;£,T)d§dT+/Ot/OLg(Lt;f,U)dgdU

since g(z,t + h;&,0 4+ h) = g(x,t;&,0). Thus for 0 <t <T — h,

ho L
w(x,t):/o /0 g(xz,t+ h; &, m)dédr > 0

since for x € D and t > 0, g (z,t;&,7) is positive (cf. Chan and Tragoonsirisak [1]).

Thus for any = € D, v(x,t) is a strictly increasing function of t.

From (2.3) and (2.4),

//Looexp< 2n—1)4L (t—7‘)>d€d7_
_L//Looexp< 4(5_7—))0[&%

_ /0 Zexp (—74(;_ T>) dr.

n=1

Since Y > exp [-n?7? (t — 7) / (4L*)] converges uniformly, we have

xt<22/exp< Lt_7>>d¢

Since Y >7 n~? =7%/6 (cf. Stromberg [5, p. 518]), we have
4172
T

Thus, the lemma is proved. O

v(z,t) <

Theorem 2.2. There exists a unique o such that u exists globally for a < o, and

u quenches in a finite time for a > a*.
Proof. For u(x,t) < ¢/2, it follows from (2.2) and f’'(u) > 0 that

u(z,t) <af (g) v(zx,t).
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From Lemma 2.1, v(x,t) is bounded by some positive number M. Then,

u(z,t) < af <§> M.

By choosing

&
a <

S ——Fe o
2/ (5) M
/ 2
we have u (x,t) < ¢/2 for t € (0,00). Thus, the solution u of the problem (2.1) exists
globally for « sufficiently small.

For any fixed x € D, it follows from (2.2) that
u(z,t) = af (0)v(z,t).

From Lemma 2.1, there exists a positive number K such that lim;, . v (z,t) = K.
Thus, there exists £ € (0, 00) such that for ¢ > ¢, v (x,t) > K/2. We have

K
U (x,t) > M
2
By choosing
o>
fO)K

we have u (z,t) > c¢. Thus, the solution u of the problem (2.1) quenches in a finite

time for « sufficiently large.

Let us consider the sequence {u,} given by wg (z,t) =0, and for n =0,1,2,.. .,

t L
tnia(2,1) = a / / g (5, :6,7) f (uy (€, 7)) dédr.

Using mathematical induction, we have 0 < uy < us < ug < -+ < Uy, < Upyq In S X
(0, 7). Since u, is an increasing sequence as n increases, (2.2) follows from the Mono-
tone Convergence Theorem (cf. Stromberg [5, pp. 266-268]) with lim,, o uy, (2, 1) =
u(x,t).

To show that the larger the «, the larger the solution u, let a > 3, and consider
the sequence {v,} given by vy (x,t) =0, and for n =0,1,2,.. .,

t oL
vwnr(et) =8 [ [ g@ti&on) £ wn (6.7) dedr

0o Jo
Similarly,

t oL

oat) =5 [ [ atetien) o) den

0o Jo
where v(z,t) = lim,,_ o v,(z,t). Since for n = 1,2,3,..., u, > v,, we have u > v.
Hence, the solution u is a nondecreasing function of «.

Since u exists globally for « sufficiently small, and quenches in a finite time for a
sufficiently large, there exists a unique value a* such that u exists globally for @ < a*,

and u quenches in a finite time for a > o*. O
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To find the critical value o*, we consider the steady state of the problem (2.1). We
state without proof the following result since its proof is similar to that of Theorem 2.4

of Chan and Tragoonsirisak [2] for a problem with a concentrated nonlinear source.

Lemma 2.3. If u(z,t) < C for some constant C € (0,c), then u(z,t) converges
from below to a solution U (x) = limy_,o u (z,t) of the nonlinear two-point boundary

value problem:

U () = af (U) in (0,L),

(2:5) U (0)=0, U(L)=0.
Furthermore,

2.6) Vi) =a [ G FUE)de
where

(2.7 G(x;o:{ Ly

is Green’s function corresponding to the problem (2.5).

From (2.6) and (2.7),

T L
28  U@=al-a) [ fUEE+a [ L-OFUE)d
0 x
Lemma 2.4. The solution U(z) of the problem (2.5) attains its mazimum at x = 0.

Proof. From (2.8),

U'@)=a(L—z) f(U(x)—a [ fUE)d—a(l-2)fU ()

0

Thus, U (z) is a strictly decreasing function of z, and the lemma is proved. O

To find computationally the critical value a*, let us find its upper bound. From
(2.8),

L
(2.9) U(0) =a i (L—=&) fU(§))dE <c.
Since f(u) and its derivative f’(u) are positive for 0 < u < ¢,
L L 2
e1) o C-9rw©dzao [ @-gia- 10
0 0
From (2.9) and (2.10),
(2.11) oL’ JO) _

2
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Thus, an upper bound & for a* is given by
2c
2.12 = ——.
(212 S0
From Lemma 2.4, it is sufficient to consider (2.8) at x = 0 in order to determine
whether the solution quenches. From (2.8), we construct the sequence {Uy} given by

Uy (z) =0, and for £k =1,2,3,...,

(213)  Up(2)=o(L—a) / F (U (6) dE + a / (L =€) f (Uns (€)) de.

We give below the steps to compute a* by using Mathematica version 9:

Step 1: We input the value L, the function f(u), and the value c.

Step 2: Let a_low™ and a_up®™ be the (n + 1)th estimates of lower and upper
bounds of a* respectively, and o = (a_low(") + a_up(")) /2 be the (n + 1)th ap-
proximation of o*. Initially, we let a lower bound a_low® be zero, and compute
an upper bound a_up® of o* from (2.12).

Step 3: Let h = L/m, where m denotes the number of subdivisions with j =
0,1,2,...,m. From (2.13),

L

Jh
(214)  Up(h) = a (L — jh) / f (Ui (€)dé +a / (L— &) (U (€)) dé

h
with Up(xz) =0 for 0 <z < L.

Step 4: At the kth iteration, if U,(0) > ¢, then we let a_low™V = a_low™,
a_up™t) = o, and go to Steps 2 to 4; otherwise, we compute Uy (jh) for j =
1,2,3,...,m. If max;—g12. m(Uk(jh) — Ux_1(jh)) < 6 for a given tolerance 4,
then the sequence {U,} converges; we let a_low™) = o, a_up®™ = a_up™,
and go to Steps 2 to 4. However, if max;—g 12, m(Uk(jh) — Ux—1(jh)) > 6, then
we use the interpolation to approximate Uy (z) and continue the iterative process
for the (k + 1)th iteration.

Step 5: After n iterations, if ‘oz_up(") — oz_low(")} < ¢ for a given tolerance €, then

(a_low(") + a_up(”)) /2 is accepted as the final estimate of a*.

For illustrations of the above computational scheme, let L = 2 and f(u) =
1/(c — u)P, where ¢ and p are positive numbers such that p > 1. From (2.12),
P+l
a=—
Using Steps 1 to 5 with € = 1074, § = 1075, and m = 20, we obtain the following

tables for a* (to four significant figures). For ¢ = 1, we get the following table:

*

p| «

1] .1251
21.07413
3| .05276
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For p =1, we get the following table:

*

o
5004
1.126
2.002

=W N O

3. The Critical L*

The problem (1.1) was studied by Dai and Gu [4]. They showed that u exists
globally for L < L* and u quenches in a finite time for L > L*. In this section, we
give a method to compute L*. From (2.11),

2c
L* < .
af (0)
Thus, an upper bound L for L* is given by
- 2c
3.1 L= .
(&1 af (0)

We give the following steps to compute L* by using Mathematica version 9:

Step 1: We input the value «, the function f(u), and the value c.

Step 2: Let L_low™ and L_up™ be the (n 4 1)th estimates of lower and upper
bounds of L* respectively, and L = (L_low(”) + L_up(”)) /2 be the (n+ 1)th
approximation of L*. Initially, we let a lower bound L_low® be zero, and
compute an upper bound L_up® of L* from (3.1).

Step 3: Let h = L/m, where m denotes the number of subdivisions with j =
0,1,2,...,m. We use (2.14) with Up(z) =0 for 0 <z < L.

Step 4: At the kth iteration, if U,(0) > ¢, then we let L_low™ ) = L_low™,
Lup™) = L, and go to Steps 2 to 4; otherwise, we compute U (jh) for j =
1,2,3,...,m. If max;—g12 m(Uk(jh) — Up_1(jh)) < 6 for a given tolerance 9,
then the sequence {U;} converges; we let L_low ™) = L, L_up®™*Y = L_up™,
and go to Steps 2 to 4. However, if max;—g 12, m(Ug(jh) — Ux—1(jh)) > 6, then
we use the interpolation to approximate Uy (z) and continue the iterative process
for the (k + 1)th iteration.

Step 5: After n iterations, if }L_up(") — L_low(")} < € for a given tolerance ¢, then
(L_low(") + L_up(")) /2 is accepted as the final estimate of L*.

For illustrations of the above computational scheme, let o = 1 and f(u) =

1/(¢ —w)P, where ¢ and p are positive numbers such that p > 1. From (3.1),

L = V2P,
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Using Steps 1 to 5 with e = 107*, § = 1075, and m = 20, we obtain the following
tables for L* (to four significant figures). For ¢ = 1, we get the following table:

p| L

11].7077
2| .5448
3| .4597

For p =1, we get the following table:

c| L*

211.415
312.122
4 12.830
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