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ABSTRACT. This article studies the quenching phenomena of a semilinear parabolic initial-

boundary value problem in an infinite strip. It proves that there exists a unique number α
∗ (cor-

responding to the strength of the source) such that the solution u exists globally for α < α∗ and

quenches in a finite time for α > α∗. A computational method is devised to find α∗. Also, a method

to compute the critical width (corresponding to the number L∗ such that u exists globally for L < L∗

and quenches in a finite time for L > L∗) of the infinite strip is given.
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1. Introduction

Let α, T and L be positive real numbers, x = (x1, x2, . . . , xN−1, xN) be a point

in the N -dimensional Euclidean space R
N , S = (−L, L) ×R

N−1 be the infinite strip,

and ∂S = {x : x1 ∈ {−L, L}}. We would like to study the quenching phenomena of

the following semilinear parabolic initial-boundary value problem in an infinite strip:

(1.1)
ut −△u = αf (u) in S × (0, T ],

u(x, 0) = 0 on S̄, u(x, t) = 0 on ∂S × (0, T ],

where S̄ is the closure of S, f is a given function such that limu→c− f(u) = ∞ for

some positive constant c, and f(u) and its derivatives f ′(u) and f ′′ (u) are positive

for 0 ≤ u < c. A similar problem with a concentrated nonlinear source was studied

by Chan and Tragoonsirisak [1], [2], [3].

A solution u of (1.1) is said to quench in a finite time if there exists a number

tq ∈ (0,∞) such that

sup
{

u(x, t) : x ∈ R
N
}

→ c− as t → tq.

In Section 2, we prove that there exists a unique number α∗ (which corresponds to

the critical strength of the nonlinear source) such that u exists globally for α < α∗,

and u quenches in a finite time for α > α∗. We also give a computational method for
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finding the critical value α∗. Dai and Gu [4] studied the above problem. They showed

that u exists globally for L < L∗ and u quenches in a finite time for L > L∗; they did

not compute L∗. In Section 3, we give a method to compute L∗.

2. The Critical Value α
∗

From now on and for the rest of this paper, let (x, x̃) = (x1, x2, . . . , xN−1, xN)

where x stands for x1, and S = (0, L). Due to symmetry, the problem (1.1) is

equivalent to the following one-dimensional problem:

(2.1)
ut − uxx = αf(u) in S × (0, T ],

u(x, 0) = 0 on [0, L] , ux (0, t) = 0 = u (L, t) for 0 < t ≤ T.

By using Green’s second identity, the problem (2.1) is converted into the nonlinear

integral equation,

(2.2) u (x, t) = α

∫ t

0

∫ L

0

g (x, t; ξ, τ) f (u (ξ, τ)) dξdτ,

where g (x, t; ξ, τ) is Green’s function corresponding to the problem (2.1) and is given

by

(2.3)

g (x, t; ξ, τ)

=
2

L

∞
∑

n=1

(

cos
(2n − 1)πx

2L

)(

cos
(2n − 1)πξ

2L

)

exp

(

−(2n − 1)2 π2 (t − τ)

4L2

)

(cf. Chan and Tragoonsirisak [1]).

Let

(2.4) v(x, t) =

∫ t

0

∫ L

0

g (x, t; ξ, τ) dξdτ.

Lemma 2.1. For any x ∈ D, v is positive and is a strictly increasing function of t.

Furthermore, limt→∞ v (x, t) exists.

Proof. For any x ∈ D, let

w(x, t) = v(x, t + h) − v(x, t),

where h is any positive number less than T . Then,

w(x, t) =

∫ t+h

0

∫ L

0

g(x, t + h; ξ, τ)dξdτ −
∫ t

0

∫ L

0

g(x, t; ξ, τ)dξdτ.

Let σ = τ − h. Then,
∫ t+h

0

∫ L

0

g(x, t + h; ξ, τ)dξdτ

=

∫ h

0

∫ L

0

g(x, t + h; ξ, τ)dξdτ +

∫ t+h

h

∫ L

0

g(x, t + h; ξ, τ)dξdτ
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=

∫ h

0

∫ L

0

g(x, t + h; ξ, τ)dξdτ +

∫ t

0

∫ L

0

g(x, t + h; ξ, σ + h)dξdσ

=

∫ h

0

∫ L

0

g(x, t + h; ξ, τ)dξdτ +

∫ t

0

∫ L

0

g(x, t; ξ, σ)dξdσ

since g(x, t + h; ξ, σ + h) = g(x, t; ξ, σ). Thus for 0 < t ≤ T − h,

w(x, t) =

∫ h

0

∫ L

0

g(x, t + h; ξ, τ)dξdτ > 0

since for x ∈ D and t > 0, g (x, t; ξ, τ) is positive (cf. Chan and Tragoonsirisak [1]).

Thus for any x ∈ D, v(x, t) is a strictly increasing function of t.

From (2.3) and (2.4),

v(x, t) ≤ 2

L

∫ t

0

∫ L

0

∞
∑

n=1

exp

(

−(2n − 1)2 π2 (t − τ)

4L2

)

dξdτ

≤ 2

L

∫ t

0

∫ L

0

∞
∑

n=1

exp

(

−n2π2 (t − τ)

4L2

)

dξdτ

= 2

∫ t

0

∞
∑

n=1

exp

(

−n2π2 (t − τ)

4L2

)

dτ.

Since
∑

∞

n=1 exp [−n2π2 (t − τ) / (4L2)] converges uniformly, we have

v(x, t) ≤ 2

∞
∑

n=1

∫ t

0

exp

(

−n2π2 (t − τ)

4L2

)

dτ

= 2
∞
∑

n=1

4L2

n2π2

(

1 − exp

(

−n2π2t

4L2

))

≤ 2
∞
∑

n=1

4L2

n2π2

=
8L2

π2

∞
∑

n=1

1

n2
.

Since
∑

∞

n=1 n−2 = π2/6 (cf. Stromberg [5, p. 518]), we have

v(x, t) ≤ 4L2

3
.

Thus, the lemma is proved.

Theorem 2.2. There exists a unique α∗ such that u exists globally for α < α∗, and

u quenches in a finite time for α > α∗.

Proof. For u(x, t) ≤ c/2, it follows from (2.2) and f ′(u) > 0 that

u (x, t) ≤ αf
( c

2

)

v(x, t).
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From Lemma 2.1, v(x, t) is bounded by some positive number M . Then,

u (x, t) ≤ αf
( c

2

)

M.

By choosing

α ≤ c

2f
( c

2

)

M
,

we have u (x, t) ≤ c/2 for t ∈ (0,∞). Thus, the solution u of the problem (2.1) exists

globally for α sufficiently small.

For any fixed x ∈ D, it follows from (2.2) that

u (x, t) ≥ αf (0) v (x, t) .

From Lemma 2.1, there exists a positive number K such that limt→∞ v (x, t) = K.

Thus, there exists t̃ ∈ (0,∞) such that for t ≥ t̃, v (x, t) ≥ K/2. We have

u (x, t) ≥ αf (0) K

2
.

By choosing

α ≥ 2c

f (0)K
,

we have u (x, t) ≥ c. Thus, the solution u of the problem (2.1) quenches in a finite

time for α sufficiently large.

Let us consider the sequence {un} given by u0 (x, t) = 0, and for n = 0, 1, 2, . . .,

un+1(x, t) = α

∫ t

0

∫ L

0

g (x, t; ξ, τ) f (un (ξ, τ)) dξdτ .

Using mathematical induction, we have 0 < u1 < u2 < u3 < · · · < un < un+1 in S ×
(0, T ]. Since un is an increasing sequence as n increases, (2.2) follows from the Mono-

tone Convergence Theorem (cf. Stromberg [5, pp. 266–268]) with limn→∞ un(x, t) =

u(x, t).

To show that the larger the α, the larger the solution u, let α > β, and consider

the sequence {vn} given by v0 (x, t) = 0, and for n = 0, 1, 2, . . .,

vn+1(x, t) = β

∫ t

0

∫ L

0

g (x, t; ξ, τ) f (vn (ξ, τ)) dξdτ .

Similarly,

v(x, t) = β

∫ t

0

∫ L

0

g (x, t; ξ, τ) f (v (ξ, τ)) dξdτ,

where v(x, t) = limn→∞ vn(x, t). Since for n = 1, 2, 3, . . ., un > vn, we have u ≥ v.

Hence, the solution u is a nondecreasing function of α.

Since u exists globally for α sufficiently small, and quenches in a finite time for α

sufficiently large, there exists a unique value α∗ such that u exists globally for α < α∗,

and u quenches in a finite time for α > α∗.
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To find the critical value α∗, we consider the steady state of the problem (2.1). We

state without proof the following result since its proof is similar to that of Theorem 2.4

of Chan and Tragoonsirisak [2] for a problem with a concentrated nonlinear source.

Lemma 2.3. If u (x, t) ≤ C for some constant C ∈ (0, c), then u (x, t) converges

from below to a solution U (x) = limt→∞ u (x, t) of the nonlinear two-point boundary

value problem:

(2.5)
−U ′′ (x) = αf (U) in (0, L) ,

U ′ (0) = 0, U (L) = 0.

Furthermore,

(2.6) U (x) = α

∫ L

0

G (x; ξ) f (U (ξ)) dξ

where

(2.7) G(x; ξ) =

{

L − ξ, x ≤ ξ,

L − x, x > ξ.

is Green’s function corresponding to the problem (2.5).

From (2.6) and (2.7),

(2.8) U (x) = α (L − x)

∫ x

0

f (U (ξ)) dξ + α

∫ L

x

(L − ξ) f (U (ξ)) dξ.

Lemma 2.4. The solution U(x) of the problem (2.5) attains its maximum at x = 0.

Proof. From (2.8),

U ′ (x) = α (L − x) f (U (x)) − α

∫ x

0

f (U (ξ)) dξ − α (L − x) f (U (x))

= −α

∫ x

0

f (U (ξ)) dξ < 0.

Thus, U (x) is a strictly decreasing function of x, and the lemma is proved.

To find computationally the critical value α∗, let us find its upper bound. From

(2.8),

(2.9) U (0) = α

∫ L

0

(L − ξ) f (U (ξ)) dξ < c.

Since f(u) and its derivative f ′(u) are positive for 0 ≤ u < c,

(2.10) α

∫ L

0

(L − ξ) f (U (ξ)) dξ ≥ αf (0)

∫ L

0

(L − ξ) dξ =
αL2f (0)

2
.

From (2.9) and (2.10),

(2.11)
αL2f (0)

2
< c.
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Thus, an upper bound ᾱ for α∗ is given by

(2.12) ᾱ =
2c

L2f (0)
.

From Lemma 2.4, it is sufficient to consider (2.8) at x = 0 in order to determine

whether the solution quenches. From (2.8), we construct the sequence {Uk} given by

U0 (x) = 0, and for k = 1, 2, 3, . . .,

(2.13) Uk (x) = α (L − x)

∫ x

0

f (Uk−1 (ξ)) dξ + α

∫ L

x

(L − ξ) f (Uk−1 (ξ)) dξ.

We give below the steps to compute α∗ by using Mathematica version 9:

Step 1: We input the value L, the function f(u), and the value c.

Step 2: Let α low(n) and α up(n) be the (n + 1)th estimates of lower and upper

bounds of α∗ respectively, and α =
(

α low(n) + α up(n)
)

/2 be the (n + 1)th ap-

proximation of α∗. Initially, we let a lower bound α low(0) be zero, and compute

an upper bound α up(0) of α∗ from (2.12).

Step 3: Let h = L/m, where m denotes the number of subdivisions with j =

0, 1, 2, . . . , m. From (2.13),

(2.14) Uk(jh) = α (L − jh)

∫ jh

0

f (Uk−1 (ξ)) dξ + α

∫ L

jh

(L − ξ) f (Uk−1 (ξ)) dξ

with U0(x) = 0 for 0 ≤ x ≤ L.

Step 4: At the kth iteration, if Uk(0) ≥ c, then we let α low(n+1) = α low(n),

α up(n+1) = α, and go to Steps 2 to 4; otherwise, we compute Uk(jh) for j =

1, 2, 3, . . . , m. If maxj=0,1,2,...,m(Uk(jh) − Uk−1(jh)) < δ for a given tolerance δ,

then the sequence {Uk} converges; we let α low(n+1) = α, α up(n+1) = α up(n),

and go to Steps 2 to 4. However, if maxj=0,1,2,...,m(Uk(jh)−Uk−1(jh)) ≥ δ, then

we use the interpolation to approximate Uk(x) and continue the iterative process

for the (k + 1)th iteration.

Step 5: After n iterations, if
∣

∣α up(n) − α low(n)
∣

∣ < ǫ for a given tolerance ǫ, then
(

α low(n) + α up(n)
)

/2 is accepted as the final estimate of α∗.

For illustrations of the above computational scheme, let L = 2 and f(u) =

1/(c − u)p, where c and p are positive numbers such that p ≥ 1. From (2.12),

ᾱ =
cp+1

2
.

Using Steps 1 to 5 with ǫ = 10−4, δ = 10−6, and m = 20, we obtain the following

tables for α∗ (to four significant figures). For c = 1, we get the following table:

p α∗

1 .1251

2 .07413

3 .05276
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For p = 1, we get the following table:

c α∗

2 .5004

3 1.126

4 2.002

3. The Critical L
∗

The problem (1.1) was studied by Dai and Gu [4]. They showed that u exists

globally for L < L∗ and u quenches in a finite time for L > L∗. In this section, we

give a method to compute L∗. From (2.11),

L2 <
2c

αf (0)
.

Thus, an upper bound L̄ for L∗ is given by

(3.1) L̄ =

√

2c

αf (0)
.

We give the following steps to compute L∗ by using Mathematica version 9:

Step 1: We input the value α, the function f(u), and the value c.

Step 2: Let L low(n) and L up(n) be the (n + 1)th estimates of lower and upper

bounds of L∗ respectively, and L =
(

L low(n) + L up(n)
)

/2 be the (n + 1)th

approximation of L∗. Initially, we let a lower bound L low(0) be zero, and

compute an upper bound L up(0) of L∗ from (3.1).

Step 3: Let h = L/m, where m denotes the number of subdivisions with j =

0, 1, 2, . . . , m. We use (2.14) with U0(x) = 0 for 0 ≤ x ≤ L.

Step 4: At the kth iteration, if Uk(0) ≥ c, then we let L low(n+1) = L low(n),

L up(n+1) = L, and go to Steps 2 to 4; otherwise, we compute Uk(jh) for j =

1, 2, 3, . . . , m. If maxj=0,1,2,...,m(Uk(jh) − Uk−1(jh)) < δ for a given tolerance δ,

then the sequence {Uk} converges; we let L low(n+1) = L, L up(n+1) = L up(n),

and go to Steps 2 to 4. However, if maxj=0,1,2,...,m(Uk(jh)−Uk−1(jh)) ≥ δ, then

we use the interpolation to approximate Uk(x) and continue the iterative process

for the (k + 1)th iteration.

Step 5: After n iterations, if
∣

∣L up(n) − L low(n)
∣

∣ < ǫ for a given tolerance ǫ, then
(

L low(n) + L up(n)
)

/2 is accepted as the final estimate of L∗.

For illustrations of the above computational scheme, let α = 1 and f(u) =

1/(c − u)p, where c and p are positive numbers such that p ≥ 1. From (3.1),

L̄ =
√

2cp+1.
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Using Steps 1 to 5 with ǫ = 10−4, δ = 10−6, and m = 20, we obtain the following

tables for L∗ (to four significant figures). For c = 1, we get the following table:

p L∗

1 .7077

2 .5448

3 .4597

For p = 1, we get the following table:

c L∗

2 1.415

3 2.122

4 2.830
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