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ABSTRACT. In this article, we presented an exponential finite difference scheme, a numerical

method for solution of two point boundary value problems with variable mesh and Dirichlet boundary

conditions. The idea in exponential difference schemes is to discretize the differential equation using

an exponential function. Under appropriate condition, we have discussed the local truncation error

and the convergence of the proposed method. The accuracy of the proposed method has been

tested through the numerical experiments and the numerical result for considered model problems

demonstrate computational efficiency of the method. We conclude from numerical experiments that

method is convergent and has at least second order accuracy which is in good agreement with the

theoretically established order of the method.
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1. Introduction

Two point boundary value problems are of common occurrence in many areas of

sciences and engineering. These problems are characterised by the necessity to find

a solution from an equation with given coefficients and given boundary conditions.

This class of problems has gained importance in the literature for the variety of their

applications. In most cases it is impossible to obtain solutions of these problems using

analytical methods which satisfy the given specified boundary conditions. In these

cases we resort to approximate solution of the problems and is presently well studied

matter. In the literature, there are many different methods and approaches in solving

these boundary value problems. The last few decades have seen substantial progress

in the development of one of the widely used method known as finite difference method

in solving these boundary value problems [1, 2, 3].
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In this article we proposed a method for the numerical solution of the boundary

value problems of the form

(1) y′′(x) = f(x, y), a < x < b,

subject to the boundary conditions

y(a) = η and y(b) = δ,

where η and δ are real constants and f is continuous on (x, y) for all x ∈ [a, b], y ∈ ℜ.

The existence and uniqueness of the solution to problem (1) is assumed. Further

we assumed that problem (1) is well posed with continuous derivatives and that the

solution depends differentially on the boundary conditions. The specific assumption

on f(x, y) to ensure existence and uniqueness will not be considered [4, 5, 6].

Over the last few decades, finite difference methods [7, 8, 9] have generated re-

newed interest and in recent years, variety of specialized techniques [10, 11, 12] for the

numerical solution of boundary value problems in ODEs have been reported in the

literature. Recently, an exponential finite difference method with uniform step size

was proposed in [13] for the numerical solution of linear two point boundary value

problem. This method generated impressive numerical results for the problem (1).

Hence, the purpose of this article is to propose an exponential finite difference method

with variable step length for problem (1). In this case we have difference equations

with variable coefficients. The development of this accurate numerical method for

two-point boundary-value problems plays a paramount role in the approximate solu-

tion of boundary value problems with a small parameter affecting highest derivative

of the differential equation. The behavior of the solution changes very rapidly near to

this coefficient. The occurrence of this coefficient creates difficulty for most standard

numerical schemes with uniform mesh in solving these problems. A variable mesh

method concept overcomes this difficulty because mesh size changes rapidly and so

this method well suit for solving these problems[9, 14].

In other words if we know that there is some cause which affect solution of the

problem and approximate solution of the problem is known. If permissible error

in solution is known in advance. Consider a problem to determine this cause which

changes the behavior of this approximate solution with the given boundary conditions

and permissible error in solution. Such problems are occurred in many real-world

situations and this may be considered as an inverse problem [1]. The propose variable

exponential finite difference method takes this fact into account. We hope that others

may find the proposed method as an improvement and accurate to those existing finite

difference method for two-point boundary value problems.

Our idea is to apply the exponential finite difference method to discretize equa-

tion (1) in order to get a system of algebraic equations. In addition, if we apply
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a linearization technique, the method results in a tridiagonal matrix for the nodal

values. A method of at least quadratic order for the numerical solution of problem

(1) is proposed. To the best of our knowledge, no similar method for the numerical

solution of problem (1) has been discussed in literature so far.

We have presented our work in this article as follows. In the next section we

derived our exponential finite difference method. In section 3, local truncation error

and convergence of the method are discussed in Section 4. The application of the

developed method to the problems (1) has been presented and illustrative numerical

results have been produced to show the efficiency of the new method in Section

5. Discussion and conclusion on the performance of the method are presented in

Section 6.

2. The Exponential Difference Method

We defined N finite numbers of mesh points of the domain [a,b], in which the

solution of the problem (1) is desired, as a = x0 < x1 < x2 < · · · < xN < xN+1 = b,

using nonuniform step length h such that xi+1 = xi +hi+1, i = 0, 1, 2, . . . , N and di =

hi+1 − hi, i = 1, 2, . . . , N . Suppose we wish to determine numerical approximation of

the theoretical solution y(x) of the problem (1) at the nodal point xi, i = 1, 2, . . . , N .

We denote numerical approximation of y(x) at node x = xi as yi . Let us denote fi

the approximation of the theoretical value of the source function f(x, y(x)) at mesh

x = xi, i = 0, 1, 2, . . . , N + 1. We can define other notations fi±1, yi±1, in the similar

way used in this article. Following the ideas in [12, 13], we propose an approximation

to the theoretical solution y(xi) of the problem (1) by the exponential difference

scheme as,

(2) a2yi+1 + a0yi + a1yi−1 = b0h
2
i fi exp(φ(xi)), i = 1, 2, . . . , N

where a0, a1, a2 and b0 are unknown function and its argument is ri and φ(xi), is an

unknown sufficiently differentiable function of x. Let us define a function Fi(h, y) and

associate it with (2) as,

(3) Fi(h, y) ≡ a2yi+1 + a0yi + a1yi−1 − b0h
2
i fi exp(φ(xi)) = 0,

Assume that φ(xi) can be expand in Taylor series about point x = xi−1. Hence we

write φ(xi) in Taylor series,

(4) φ(xi) = φ(xi−1) + hiφ
′(xi−1) + O(h2

i ),

The application of (4) in the expansion of exp(φ(xi)) will provide an O(h2
i ) approxi-

mation of the form as,

(5) exp(φ(xi)) = exp(φ(xi−1))(1 + hiφ
′(xi−1)) + O(h2

i )
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Expand Fi(h, y) in Taylor series about mesh point x = xi and using (5) in it, we have

(6)

Fi(h, y) ≡
{

(a0+a1+a2)yi+hi

((

1 +
di

hi

)

a2 − a0

)

y′
i+

h2
i

2

(

(

1 +
di

hi

)2

a2 + a0

)

y′′
i

+
h3

i

6

(

(

1 +
di

hi

)3

a2 − a0

)

y
(3)
i

}

− b0h
2
i fi exp(φ(xi−1))(1 + hiφ

′(xi−1)) = 0

On comparing the coefficients of h
p
i , p = 0, 1, 2, 3 both side in (6), we get the following

system of nonlinear equations

a0 + a1 + a2 = 0,
(

1 +
di

hi

)

a2 − a0 = 0,

(

(

1 +
di

hi

)2

a2 + a0

)

y′′
i − 2b0fi exp(φ(xi−1)) = 0,

(7)

(

(

1 +
di

hi

)3

a2 − a1

)

y
(3)
i − 6b0fi exp(φ(xi−1))φ

′(xi−1)) = 0,

To determine the unknown a0, b0, φ(xi−1) and φ′(xi−1) in (7), we have to assign

arbitrary value to some unknown. To simplify the system of equations in (7), we

have considered the following assumption:

(8) φ(xi−1) = 0.

Using (8) in (7) and solved the reduced system of equations, we obtained

a0 =

(

1 +
di

hi

)

a2,

b0 =
(1 + di

hi

)(2 + di

hi

)a2

2
,

(9) φ′(xi−1) =
diy

(3)
i

3hifi

.

Write f ′ for y(3) in (9) and substituting the values of φ(xi) and φ′(xi) from (8) and

(9) in (4), we have

(10) φ(xi) =
dif

′
i

3fi

.

Finally substitute the values of a0, b0, φ(xi) from (9) and (10) in (2), we obtain our

proposed exponential difference method as

(11) yi+1 −
(

2 +
di

hi

)

yi +

(

1 +
di

hi

)

yi−1 = h2
i

(

1 +
di

hi

)(

2 +
di

hi

)

fi exp

(

dif
′
i

3fi

)

.
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For each nodal point, we will obtain the nonlinear system of equations given by (11)

or a linear system of equations if the source function is f(x). In the derived numerical

method (11) exponential function exp(
dif

′
i

3fi

) has argument
dif

′
i

3fi

. If fi in denominator

of the fraction become zero in the domain of the solution, we take exponential series

expansion of the function exp(
dif

′
i

3fi

) and neglecting the term of second and higher

order. So we have following method.

yi+1 −
(

2 +
di

hi

)

yi +

(

1 +
di

hi

)

yi−1 = h2
i

(

1 +
di

hi

)(

2 +
di

hi

)(

fi +
di

3
f ′

i

)

.

For computational purpose reported in Section 4, we have used following second order

finite difference approximation in place of f ′
i in (11):

(12) hif
′
i =

fi+1 + di

hi

(2 + di

hi

)fi − (1 + di

hi

)2fi−1

(1 + di

hi

)(2 + di

hi

)
.

3. Local Truncation Error

We can write following expression for the term in (11) with the help of (12):

exp

(

dif
′
i

3fi

)

= exp

(

di

hi

(fi+1 + di

hi

(2 + di

hi

)fi − (1 + di

hi

)2fi−1)

3(1 + di

hi

)(2 + di

hi

)fi

)

Write the expansion of exponential function by neglecting the second and higher order

terms, so we will obtain,

(13) exp

(

dif
′
i

3fi

)

≡ 1 +
di

hi

(fi+1 + di

hi

(2 + di

hi

)fi − (1 + di

hi

)2fi−1)

3(1 + di

hi

)(2 + di

hi

)fi

From (11) and (13), the truncation error Ti at the nodal point x = xi may be written

as [9, 15, 16],

Ti = yi+1 −
(

2 +
di

hi

)

yi +

(

1 +
di

hi

)

yi−1

− h2
i

2

(

2 +
di

hi

)(

2 +
di

hi

)

fi

(

1 +
di

hi

(fi+1 + (2 + di

hi

) di

hi

fi − (1 + di

hi

)2fi−1)

3(2 + di

hi

)(1 + di

hi

)fi

)

.

By the Taylor series expansion of y at nodal point x = xi and using y′′
i = fi, y

(3)
i = f ′

i ,

etc. we have

Ti =

(

h4
i+1

24
+

(1 + di

hi

)h4
i

24

)

y
(4)
i −

(1 + di

hi

)(2 + di

hi

)

36

(dihiy
(3)
i )2

fi

+ O(h5
i )

=
(1 + di

hi

)(2 + di

hi

)h4
i

72







3

(

(

di

hi

)2

+
di

hi

+ 1

)

y
(4)
i − 2

(

diy
(3)
i

hi

)2






+ O(h5
i ).(14)

Thus we have obtained a truncation error at each node of O(h4
i ).
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4. Convergence of the Method

Let us substitute the value of f ′
i from (12) in the second order expansion of the

exponential function in (11) then simplify expression, we have

yi+1 −
(

2 +
di

hi

)

yi +

(

1 +
di

hi

)

yi−1

=
h2

i fi

2

(

2 +
di

hi

)(

1 +
di

hi

)

(

1 +

di

hi

(fi+1 + (2 + di

hi

) di

hi

fi − (1 + di

hi

)2
i fi−1)

3(2 + di

hi

)(1 + di

hi

)fi

)

=
h2

i

6

{

3

(

1 +
di

hi

)(

2 +
di

hi

)

fi +
di

hi

(

fi+1 +

(

2 +
di

hi

)

di

hi

fi −
(

1 +
di

hi

)2

fi−1

)}

Thus

(15) −yi+1 +

(

2 +
di

hi

)

yi −
(

1 +
di

hi

)

yi−1 +
h2

i

6
(αifi + γifi+1 + βifi−1) = 0

where αi = (2 + di

hi

)(( di

hi

)2 + 3 di

hi

+ 3), βi = −(1 + di

hi

)2 di

hi

and γi = di

hi

.

Let us define

φ1 =
h2

1

6
(α1f(x1, y1) + γ1f(x2, y2)) +

h2
1

6
β1f(x0, y0) +

(

1 +
d1

h1

)

y0, i = 1

φi =
h2

i

6
(αif(xi, yi) + γif(xi+1, yi+1) + βif(xi−1, yi−1)), 2 ≤ i ≤ N − 1

φN =
h2

N

6
(αNf(xN , yN) + βNf(xN−1, yN−1)) +

h2
N

6
γNf(xN+1, yN+1)) + yN+1, i = N

Let us define column matrix φN×1 and yN×1as

φ = [φ1, φ2, . . . , φN ]′1×N , y = [y1, y2, . . . , yN ]′1×N

where [· · · ]′ is transpose of column matrix. The difference method (11) represents a

system of nonlinear equations in unknown yi, i = 1, 2, . . . , N . Let us write (11) in

matrix form as,

(16) Dy + φ(y) = 0,

where

D =





















(2 + d1

h1
) −1 0

−(1 + d2

h2
) (2 + d2

h2
) −1

−(1 + d3

h3
) (2 + d3

h3
) −1

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
0 −(1 + dN

hN

) (2 + dN

hN

)





















N×N

is tridiagonal matrix. Let Y be the exact solution of (11), so it will satisfy matrix

equation

(17) DY + φ(Y) + T = 0,
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where Y is column matrix of order N × 1 which can be obtained replacing y by Y in

matrix y and T is truncation error matrix in which each element has O(h4
i ). Let us

define

Fi+1 = f(xi+1, Yi+1), fi+1 = f(xi+1, yi+1), Fi−1 = f(xi−1, Yi−1),

fi−1 = f(xi−1, yi−1), Fi = f(xi, Yi), fi = f(xi, yi),

After linearization of fi+1, we have

fi+1 = Fi+1 + (yi+1 − Yi+1)Gi+1,

where Gi+1 = ( ∂f

∂Y
)i+1 . Thus

(18) fi+1 − Fi+1 = (yi+1 − Yi+1)Gi+1.

Similarly, we can linearize fi−1, fi, and obtained the following results :

(19) fi−1 − Fi−1 = (yi−1 − Yi−1)Gi−1,

(20) fi − Fi = (yi − Yi)Gi,

By Taylor series expansion of Gi±1 about x = xi, and from (16)–(17), we can

write

(21) φ(y) − φ(Y) = PE,

where P = (Plm)N×N is a tri-diagonal matrix defined as

Plm =
h2

i

6
(αiGi), i = l = m, l = 1, 2, . . . , N,

Plm =
h2

i

6
γi(Gi + hi+1(

∂G

∂x
)i), m = l + 1, i = l = 1, 2, . . . , N − 1,

Plm =
h2

i

6
βi(Gi − hi(

∂G

∂x
)i), i = l = m + 1, m = 1, 2, . . . , N − 2,

and E = [E1, E2, . . . , EN ]′1×N , where Ei = (yi − Yi), i = 1, 2, . . . , N .

Let assume that the solution of difference equation (15) has no roundoff error.

So from (16),(17) and (21) we have

(22) (D + P)E = JE = T.

Let us define G0 = {Gi : i = 1, 2, . . . , N}

G∗ = min
x∈[a,b]

∂f

∂Y
, G∗ = max

x∈[a,b]

∂f

∂Y
,

then

0 ≤ G∗ ≤ t ≤ G∗, ∀t ∈ G0.
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We further define H0 = {(∂G
∂x

)i, i = 1, 2, . . . , N}. Let there exist some positive

constant W such that |t0| ≤ W , ∀ t0 ∈ H0. So it is possible for very small hi,

∀ i = 1, 2, . . . , N ,

|Plm| ≤
(

2 +
di

hi

)

, ∀ i = l = m l = 1, 2, . . . , N,

|Plm| ≤ 1, ∀ m = l + 1, i = l = 1, 2, . . . , N − 1,

|Plm| ≤
(

1 +
di

hi

)

, ∀ i = l = m + 1, m = 1, 2, . . . , N − 2.

Let R = [R1, R2, . . . , RN ]′1×N , denotes the row sum of the matrix J = (Jlm)N×N where

R1 =

(

1 +
d1

h1

)

+
h2

1

6
(α1 + γ1)G1 +

(

1 +
d1

h1

)

γ1
h3

1

6

(

∂G

∂x

)

i

, l = i = 1,

Rl =
h2

i

6
(αi + γi + βi)Gi +

h3
i

6

((

1 +
di

hi

)

γi − βi

)(

∂G

∂x

)

i

, 2 ≤ l = i ≤ N − 1,

RN = 1 +
h2

N

6
(αN + βN)GN − h3

N

6
βN

(

∂G

∂x

)

N

, l = i = N.

Neglecting the higher order terms i.e. O(h3
i ) in Ri then it is easy to see that J is

irreducible [15]. By row sum criterion and for sufficiently small hi, ∀ i = 1, 2, . . . , N ,

J is monotone [17]. Thus J−1 exist and J−1 ≥ 0. For the bound of J, we define

[18, 19]

dl(J) = |Jll| −
N
∑

l 6=m

|Jlm| , l = 1, 2, . . . , N,

where

d1(J) =

(

1 +
d1

h1

)

+
h2

1

6

(

1 +
d1

h1

)

(

(

d1

h1

)2

+ 4
d1

h1
+ 6

)

G1−
h3

1

6

(

1 +
d1

h1

)

d1

h1

(

∂G

∂x

)

1

,

dl(J) =
h2

i

6

(

1 +
di

hi

)(

2(
di

hi

)2 + 5
di

hi

+ 5

)

Gi −
h3

i

6

(

1 +
di

hi

)(

di

hi

)2(
∂G

∂x

)

i

,

2 ≤ l = i ≤ N − 1,

dN(J) = 1 +
h2

N

6

(

3

(

dN

hN

)2

+ 8
dN

hN

+ 6

)

GN +
h3

N

6

(

1 +
dN

hN

)2
dN

hN

(

∂G

∂x

)

N

,

l = i = N.

Neglecting the higher order terms i.e. O(h3
i ) in above expressions. Let dl(J) ≥ 0, ∀ l

and

d∗(J) = min
1≤l≤N

dl(J).

Then

(23) ‖J−1‖ ≤ 1

d∗(J)
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Thus from (22) and (23), we have

(24) ‖E‖ ≤ 1

d∗(J)
‖T‖.

It follows from (14) and (24) that ‖E‖ → 0 as hi → 0. Thus we conclude that method

(11) converges and the order of the convergence of method (11) is at least quadratic.

5. Numerical Results

To illustrate our method and demonstrate its computationally efficiency, we con-

sider some model problems. In each case, we took non uniform step size h. In Table

1–Table 5, we have shown the maximum absolute error (MAY) and root mean square

error (RMS), computed for different values of N and is defined as

MAY = max
1≤i≤N

|y(xi) − yi|.

RMS =

√

(y(xi) − yi)2

N
.

The given interval [a, b] is divided into (N + 1) parts such that a = x0 < x1 <

x2 · · · < xN < xN+1 = b where hi+1 = xi+1 − xi, i = 0, 1, . . . , N and di = hi+1 − hi,

i = 1, 2, . . . , N . We can write

b − a = xN+1 − x0 = (xN+1 − xN) + (xN − xN−1) + · · ·+ (x1 − x0)

b − a = hN+1 + hN + hN−1 + · · · + h2 + h1

b − a = (dN + dN−1 + · · ·+ d2 + d1 + h1) + (dN−1 + · · · + h1) + · · · + (d1 + h1) + h1

b − a = (N + 1)h1 + Nd1 + (N − 1)d2 + · · · + 2dN−1 + dN .

Thus, from this we can determine first step length h1 and subsequent step lengths

are given as h1 + d1, h1 + d1 + d2, . . . and so on. For simplicity we assumed that

d = di, ∀ i = 1, 2, . . . , N and so we have obtained following formula to determine h1

h1 =
b − a

N + 1
− Nd

2
.

In case of uniform mesh d = 0, so above formula for computation of step length

becomes h1 = b−a
N+1

. Also the upper bound in selection of d is given by

d ≤ 2(b − a)

N(N + 1)

The order of the convergence (ON) of the method (11) estimated by the formula

(ON) = logm(
MAYN

MAYmN

).

We have used Newton-Raphson iteration method to solve the system of nonlinear

equations arised from equation (23). All computations were performed on a MS

Window 2007 professional operating system in the GNU FORTRAN environment

version 99 compiler (2.95 of gcc) on Intel Duo Core 2.20 Ghz PC. The solutions are
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computed on N nodes and iteration is continued until either the maximum difference

between two successive iterates is less than 10(−10) or the number of iteration reached

103.

Problem 1. The first model problem is a linear problem [20] given by

y′′(x) =
−3ǫ

(ǫ + x)2
y, y(−0.1) =

−0.1
√

(ǫ + 0.01)
, y(0.1) =

0.1
√

(ǫ + 0.01)
,

x ∈ [−0.1, 0.1].

The analytical solution is y(x) = x√
(ǫ+x2)

. The MAY computed by method (11) for

different values of N and ǫ are presented in Table 1-3.

Problem 2. The second model problem is a nonlinear problem

ǫy′′(x) =
3

2
y2, y(0) = 4, y(1) = 1 x ∈ [0, 1].

The analytical solution is y(x) = 4
(1+ x√

(ε)
)2

. The MAY computed by method (11) for

different values of N are presented in Table 4.

Problem 3. The third model problem is a linear problem [21] given by

ǫy′′(x) =
4

(x + 1)4
(1 +

√
ǫ(x + 1))y − f(x), y(0) = 2, y(1) = −1, x ∈ [0, 1].

where f(x) is calculated so that y(x) = − cos( 4πx
x+1

)+
3[exp( −2ǫ√

ǫ(x+1)
)−exp(−1√

ǫ
)]

1−exp(−1√
ǫ
)

is analytical

solution. The MAY and RMS computed by method (11)for different values of N, ǫ

and d are presented in Table 5.

Problem 4. The fourth model problem is a linear problem [22] given by

ǫy′′(x) = (1 + x(1 − x))y − f(x), y(0) = 0, y(1) = 0, x ∈ [0, 1].

where f(x) is calculated so that y(x) = 1+(x−1) exp(−x√
ǫ
)−x exp(−(1−x)√

ǫ
) is analytical

solution. The MAY and RMS computed by method (11) for different values of N, ǫ

and d are presented in Tables 6 & 7.

Problem 5. The fifth model problem is a linear problem [23] given by

ǫy′′(x) = y − f(x), y(0) = 0, y(1) = 1, x ∈ [0, 1].

where f(x) is calculated so that y(x) = exp(x) + exp(−x√
ǫ
) − x(exp(1) + exp(−1√

ǫ
)) −

2(1 − x) is analytical solution. The MAY and RMS computed by method (11)for

different values of N, ǫ as there in [24] and d are presented in Table 8.
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Table 1. Maximum absolute errors in y(x) = x√
(ǫ+x2)

for problem 1.

ǫ = 10−5

N h d MAY

200 .50000002(-3) .50251256(-5) .12177229(-3)

400 .25000001(-3) .12531328(-5) .30279160(-4)

800 .12500000(-3) .31289113(-6) .11801720(-4)

1600 .62500000(-4) .78173862(-7) .79870224(-5)

Table 2.

ǫ = 10−7

N h d MAY

200 .47500004(-3) .52763817(-5) .83470345(-3)

400 .23750002(-3) .13157894(-5) .21815300(-4)

800 .11875001(-3) .32853566(-6) .23245811(-5)

1600 .59375003(-4) .82082551(-7) .10192394(-4)

Table 3.

ǫ = 2 × 10−9

N h d MAY

200 .27500005(-3) .72864318(-5) .15497208(-5)

.12625001(-3) .18734336(-5) .21457672(-5)

400 .12650002(-3) .18721804(-5) .75101852(-5)

.12637500(-3) .18728070(-5) .58412552(-5)

800 .68750006(-4) .45369211(-6) .10728836(-4)

1600 .34375003(-4) .11335209(-6) .21040440(-4)
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Table 4. Maximum absolute errors in y(x) = 4
(1+ x√

(ε)
)2

for problem 2.

Maximum absolute error

N h d ǫ = 1.0 ǫ = 10.0 ǫ = 100.0

4 .23500 .10(-1) .25690079(-1) .12538433(-2) .23126608(-4)

8 .10750 .50(-2) .65517426(-2) .31304359(-3) .52452087(-5)

16 .04375 .25(-2) .15363693(-2) .77962875(-4) .47683716(-6)

32 .01188 .125(-2).40102005(-3) .13351440(-4) .23841858(-6)

Table 5. Maximum absolute and root mean square errors in y(x) =

− cos( 4πx
x+1

) +
3[exp( −2ǫ√

ǫ(x+1)
)−exp(−1√

ǫ
)]

1−exp(−1√
ǫ
)

for problem 3.

ǫ = 10−2 ǫ = 1.0

N h d MAY RMS MAY RMS

4 .24250 .5000(-2) .30282277(0) .17568053(0) .93566823(0) .59396017(0)

8 .11625 .2500(-2) .19129242(0) .79953931(-1) .20843291(0) .12492458(0)

16 .5313(-1) .1250(-2) .66353500(-1) .24727164(-1).45094490(-1) .25948962(-1)

32 .2156(-1) .6250(-3) .12697011(-1) .52606389(-2).91903210(-2) .51786867(-2)

64 .5780(-2) .3125(-3) .16708672(-2) .84878172(-3).18413067(-2) .10121076(-2)

Table 6. Maximum absolute and root mean square errors in y(x) =

1 + (x − 1) exp(−x√
ǫ
) − x exp(−(1−x)√

ǫ
) for Problem 4.

ǫ = 10−4 ǫ = 10−6

N h d MAY RMS MAY RMS

4 .24250 .5000(-2) .13921738(-1) .10614859(-1).36870301(-1) .22434477(-1)

8 .11625 .2500(-2) .35239458(-2) .25695723(-2).12767732(-1) .67855748(-2)

16 .5313(-1) .1250(-2) .83976984(-3) .60213194(-3).29334426(-2) .15995282(-2)

32 .2156(-1) .6250(-3) .19204617(-3) .13964981(-3).60218573(-3) .34017002(-3)

64 .5780(-2) .3125(-3) .46372414(-4) .32933302(-4).11366606(-3) .69415473(-4)
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Table 7.

ǫ = 10−8

N h d MAY RMS

4 .24250 .5000(-2) .40731430(-1) .23592696(-1)

8 .11625 .2500(-2) .35499215(-1) .14240717(-1)

16 .5313(-1) .1250(-2) .10709703(-1) .41285311(-2)

32 .2156(-1) .6250(-3) .20778785(-2) .85051166(-3)

64 .5780(-2) .3125(-3) .28914213(-3) .13981863(-3)

Table 8. Maximum absolute errors in y(x) = exp(x) + exp(−x√
ǫ
) −

x(exp(1) + exp(−1√
ǫ
)) − 2(1 − x) for problem 5.

ǫ = 1
N

N h d MAY RMS

4 .24250 .5000(-2) .13634264(-1) .11896761(-1)

8 .11625 .2500(-2) .57421327(-2) .48838542(-2)

16 .5313(-1) .1250(-2) .22060275(-2) .17996266(-2)

32 .2156(-1) .6250(-3) .10864139(-2) .64855750(-3)

64 .5780(-2) .3125(-3) .74291229(-3) .28846785(-3)

ǫ = 1
N-1

MAY RMS

64 .5780(-2) .3125(-3) .73188543(-3) .28589202(-3)

ǫ = 1
N+1

MAY RMS

64 .5780(-2) .3125(-3) .75399876(-3) .29125056(-3)

We have described a method for numerically solving two-point boundary value

problems and several model problems considered to demonstrate the computational

efficiency of the proposed method. We know that there are causes ǫ, h, and d which

affect approximate solution of the problem. The proposed method efficiently and

accurately simulated these physically small features / causes in computation of con-

sequences such as MAY and RMS. Numerical result for examples 1 which is presented
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in table 1, for different values of d and N show as ǫ and d are decreases and N increase,

with variable step size maximum absolute errors in our method decreases i.e accuracy

increase in numerical solution. The numerical results for examples 2 and 4 are good

for non-uniform mesh sizes. The results for examples 3 as N increases and both d and

ǫ are decrease, accuracy in numerical solution increases but if ǫ and N are increases

and d decrease maximum absolute error also increase. The results for examples 5 as

N increases and both d and ǫ are decrease, accuracy in numerical solution increases.

If N and d are fixed and ǫ varies then accuracy varies in direct proportion to ǫ. Over

all method (11) is convergent and accuracy of the numerical solution of the problem

using method (11) depends on choice of causes d, N and ǫ.

6. Conclusion

In this article, an order variable mesh size method to find the numerical solution

of two point boundary value problems has been derived. Our method based on

exponential approximation, if the source function is f(x) then the system of equations

from (11) is linear otherwise we will obtain nonlinear system of equations, which is

always difficult to be solved. In general, the finite difference method or any other

numerical method can, in principle, be applied but it is obvious that special method

required for some special problem where the solution is not regular and varies rapidly.

The decision to use a certain difference method in solving these problems depend

on computational efficiency of the method and this is entirely a numerical issue.

The method presented in this article is efficient in solving such problem without

any difficulty and produces good numerical approximate solutions. Thus we can

conclude from the numerical results of the model problems that the proposed method

is computationally efficient and accurate. The idea presented in this article leads to

the possibility to develop methods of higher order and more accurate finite-difference

approximations to solve boundary value problems in ODEs and PDEs. Works in this

direction is in progress.
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