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ABSTRACT. This paper presents a survey of multiple pattern matching algorithms and exper-

imental results of the well-known Aho-Corasick, Set Horspool, Set Backward Oracle Matching,

Wu-Manber and SOG algorithms. The performance of the algorithms is evaluated in terms of pre-

processing and searching time for randomly generated data, the genome of Escherichia coli, the

FASTA Nucleic Acid (FNA) of the A-thaliana genome, the FASTA Amino Acid (FAA) of the A-

thaliana genome, the Swiss Prot. Amino Acid sequence database and English language data for sets

of 100 to 100.000 patterns.
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1. Introduction

Multiple pattern matching is a variant of string matching that involves the lo-

cation of all the positions of an input string where one or more patterns from a

finite pattern set occur. It is the computationally intensive kernel of many secu-

rity and network applications including information retrieval, web filtering, intrusion

detection systems, virus scanners and spam filters. Moreover, in recent years there

is an increased interest in string matching problems as a powerful tool in locating

nucleotide or Amino Acid sequence patterns in biological sequence databases. The

multiple pattern matching problem can be defined as:

Definition. Given an input string T = t0t1 . . . tn−1 of length n and a finite set of

d patterns P = p0, p1, . . . , pd−1, where each pr is a string pr = pr
0p

r
1 . . . pr

m−1 of length

m over a finite character set Σ, the alphabet size is denoted as |Σ| and the total size

of all patterns as |P |, the task is to find all occurrences of any of the patterns in the

input string.

This paper presents a short survey on multiple pattern matching algorithms,

details the Aho-Corasick [1], Set Horspool [24], Set Backward Oracle Matching [2],

Wu-Manber [33] and the SOG [26] algorithms and presents experimental results in

terms of preprocessing and searching time for different types of data. The algorithms
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were chosen since they are efficient and are frequently encountered in other research

papers. Aho-Corasick is a classic multiple pattern matching algorithm with a linear

in n search phase in the worst and average case. Set Horspool has a sublinear search

phase in the average case. Commentz-Walter [6], the algorithm upon Set Horspool is

based, is substantially faster in practice than the Aho-Corasick algorithm, particularly

when long patterns are involved [33, 31]. Set Backward Oracle Matching also has a

sublinear search phase in the average case. It appears to be very efficient when used

on large pattern sets and has the same worst case complexity as Set Backward Dawg

Matching but uses a much simpler automaton and is faster in all cases [24]. The

Wu-Manber algorithm was chosen as it is considered a very fast algorithm in practice

[24]. Finally, Salmela-Tarhio-Kytöjoki is a recently introduced family of algorithms

that has a reportedly good performance on specific types of data [17]. SOG has a

linear search phase in the average case.

The lack of previously published work with extensive experimental analysis on

multiple pattern matching algorithms motivated us to compare the performance of the

Aho-Corasick, Set Horspool, Set Backward Oracle Matching, Wu-Manber and SOG

algorithms in terms of preprocessing and searching time and to identify a suitable

and preferably fast algorithm for randomly generated data with a binary alphabet,

biological sequence databases containing the building blocks of nucleotides and Amino

Acids and natural language data of the English alphabet and for several problem

parameters such as the total size of the pattern set, the alphabet size and the length

of the input string and the patterns. To the best of our knowledge, this is the first

time that the cost of the preprocessing phase is studied based on experimental results

and is compared to the searching time of the specific algorithms.

2. Related Work

Experimental results on multiple pattern matching algorithms have been reported

in the past. The performance of a number of algorithms including Aho-Corasick, Set

Horspool, Set Backward Oracle Matching and Wu-Manber was evaluated in [24] for

a randomly generated data set. The input string had a size of approximately 10 MB

while the pattern set consisted of 5 to 1.000 patterns where each pattern had a length

m = 5 to 100 characters. There, it was concluded that for relatively small pattern

set sizes, Aho-Corasick had the best performance when patterns of size m = 5 to

15 characters and an alphabet of size |Σ| = 2 to 4 were used, Set Backward Oracle

Matching was the fastest algorithm for patterns of size m = 15 to 100 characters and

an alphabet of size |Σ| = 2 to 8 while Wu-Manber outperformed the other algorithms

when the alphabet of the data set used had a size |Σ| = 8 to 64. For larger pattern

sets, the Set Backward Oracle Matching algorithm was more attractive; it was the

fastest algorithm when patterns of a size m = 20 to 100 were used and for all alphabet
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sizes while the Aho-Corasick and Wu-Manber algorithms were faster for patterns of

a length m = 5 to 20 characters.

A variant of the Wu-Manber algorithm called QWM was presented in [10] and its

performance was compared to the Aho-Corasick, Commentz-Walter and the original

Wu-Manber algorithm for randomly generated data with a binary alphabet and an

alphabet of size |Σ| = 4 as well as for data with an English and a Chinese language

alphabet. The pattern sets used for the experiments of that paper consisted of 100

to 2.000 patterns. It was shown that Aho-Corasick was the fastest algorithm for

data with a binary alphabet while Wu-Manber outperformed the Aho-Corasick and

Commentz-Walter algorithms on randomly generated data with an alphabet of size

|Σ| = 4 and on data with an English and a Chinese language alphabet. HMA,

a hierarchical multiple pattern matching algorithm was introduced in [28] and its

performance was compared among others to the performance of a compressed version

of the Aho-Corasick algorithm on data for Intrusion Detection Systems.

The Aho-Corasick, Set Horspool, Set Backward Oracle Matching and Wu-Manber

algorithms were compared in [25] in terms of searching time for biological sequence

databases and random input strings for sets consisting of 100 to 100.000 patterns.

Each pattern had a length of m = 8 and 32 characters while the input string had

a size of approximately 32 MB. It was shown that for the specific problem param-

eters, Wu-Manber outperformed the Aho-Corasick, Set Horspool and Set Backward

Oracle Matching algorithms. Moreover, the performance of the search phase of the

Aho-Corasick, Set Horspool, Set Backward Oracle Matching, Wu-Manber and SOG

algorithms was evaluated. For m = 8 and |Σ| = 256, Wu-Manber was the fastest

algorithm when up to 5.000 patterns were used while SOG outperformed the rest of

the algorithms for more than 5.000 patterns. When m = 32 and |Σ| = 4 on the other

hand, the Set Backward Oracle Matching algorithm had the best performance when

up to 1.000 patterns were used while SOG was the fastest for larger pattern set sizes.

Finally, a performance study of the Commentz-Walter, Wu-Manber, Set Back-

ward Oracle Matching and the Salmela-Tarhio-Kytöjoki algorithms for biological se-

quence databases was presented in [18].

3. Multiple Pattern Matching Algorithms

A naive solution to the multiple pattern matching problem is to perform d sep-

arate searches in the input string with a string matching algorithm leading to a

worst-case complexity of O(|P |) for the preprocessing phase and O(n|P |) for the

search phase. While frequently used in the past, this technique is not efficient, espe-

cially when a large pattern set is involved. The modern multiple pattern matching

algorithms can scan the input string in a single pass to locate all occurrences of the

patterns. These algorithms are often based on string matching algorithms with some
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of their functions generalized to process multiple patterns simultaneously during the

preprocessing phase. Based on the way the multiple patterns are represented and the

search is performed, the algorithms can generally be classified in to one of the four

following approaches.

• Prefix algorithms The prefix searching algorithms use a trie to store the pat-

terns, a data structure where each node represents a prefix u of one of the

patterns. At a given position i of the input string, the algorithms traverse the

trie looking for the longest possible suffix u of t0...ti that is a prefix of one of the

patterns. One of the most well known prefix multiple pattern matching algo-

rithms is Aho-Corasick, an efficient algorithm based on Knuth-Morris-Pratt [16]

that preprocesses the pattern in time linear in |P | and searches the input string

in time linear in n in the worst case. Multiple Shift-And, a bit-parallel algo-

rithm generalization of the Shift-And algorithm for multiple pattern matching

was introduced in [24] but is only useful for a small size of |P | since the pattern

set must fit in a few computer words.

• Suffix algorithms The suffix algorithms store the patterns backwards in a

suffix trie, a rooted directed tree that represents the suffixes of all patterns. At

each position i of the input string the algorithms compute the longest suffix u

of the input string that is a suffix of one of the patterns. Commentz-Walter [6]

combines a suffix trie with the good suffix and bad character shift functions of

the Boyer-Moore [4] algorithm. A simpler variant of Commentz-Walter is Set

Horspool [24], an extension of the Horspool [13] algorithm that uses only the

bad character shift function. Suffix searching is generally considered to be more

efficient than prefix searching since on average more input string positions are

skipped following each mismatch.

• Factor algorithms The factor searching algorithms build a factor oracle, a

trie with additional transitions that can recognize any substring (or factor)

of the patterns. Dawg-Match [8] and MultiBDM [9] were the first two factor

algorithms, algorithms complicated and with a poor performance in practice

[24]. The Set Backward Oracle Matching and the Set Backward Dawg Matching

algorithms [24] are natural extensions of the Backward Oracle Matching and

the Backward Dawg Matching [7] algorithms respectively for multiple pattern

matching.

• Hashing algorithms The algorithms following this approach use hashing to

reduce their memory footprint, usually in conjunction with other techniques.

Wu-Manber is based on the Horspool algorithm. It reads the input string in

blocks to effectively increase the size of the alphabet and then applies a hashing

technique to reduce the necessary memory space. Zhou et al. [34] proposed

an algorithm called MDH, a variant of Wu-Manber for large-scale pattern sets.
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Figure 1. The automaton of the Aho-Corasick algorithm for the pat-

tern set “AAC”, “AGT” and “GTA”

Kim and Kim introduced in [15] a multiple pattern matching algorithm that

also takes the hashing approach. The Salmela-Tarhio-Kytöjoki variants of the

Horspool, Shift-Or [3] and BNDM [23] algorithms can locate candidate matches

by excluding positions of the input string that do not match any of the patterns.

They combine hashing and a technique called q-grams to increase the alphabet

size, similar to the method used by Wu-Manber.

Many well known tools utilize multiple pattern matching algorithms: Snort [29]

uses a variant of the Aho-Corasick algorithm to perform intrusion detection, the Wu-

Manber algorithm is utilized by Agrep [32] to perform approximate string searching

while Commentz-Walter is used in GNU Grep [12] when searching for the occurrences

of multiple patterns in an input string.

3.1. Aho-Corasick. Aho-Corasick is an extension of the Knuth-Morris-Pratt algo-

rithm for a set of patterns P . It uses a deterministic finite state pattern matching

machine; a rooted directed tree or trie of P with a goto function g and an additional

supply function Supply. The goto function maps a pair consisting of an existing state

q and a symbol character into the next state. It is a generalization of the next table

or the success link of the Knuth-Morris-Pratt algorithm for a set of patterns where

a parent state can lead to one or more child states by σ where σ is a matching char-

acter. Each state of the trie is labeled after a single character of a pattern pr ∈ P .

Then L(q) is a prefix of one of the patterns. For each pattern pr there is a state q

such that L(q) = pr. This state is marked as terminal and when visited during the

search phase indicates that a complete match of pr was found. The supply function of

Aho-Corasick is based on the supply function of the Knuth-Morris-Pratt algorithm.

It is used to visit a previous state of the automaton when there is no transition from

the current state to a child state via the goto function.
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ALGORITHM 1: The construction of the goto function g of the Aho-Corasick

automaton
Function AC Preproc Goto ( p, m, d, Σ )

create state q0

forall the α ∈ Σ do

g(q0, α) := fail

end

newState := 0

for i := 0; i < d; i := i + 1 do
j := 0; state := q0

while newState := g(state, pi
j) 6= fail do

state := newState; j := j + 1

end

for l := j; l < m; l := l + 1 do
create state qcurrent

forall the α ∈ Σ do

g(qcurrent, α) := fail

end

newState := qcurrent

g(state, pi
l) := newState

state := newState
end

Output(qcurrent) := {pi
0 . . . pi

m−1}

Add terminal state on qcurrent

end

The goto function and the supply function are constructed during the preprocess-

ing phase. To build the goto function, the trie is depth-first traversed and extended

for each character of the patterns from a finite pattern set P while at the same time

the outgoing transitions to each state are created. The supply function is built in

transversal order from the trie until it has been computed for all states. For each

state q, the supply link can be determined based on the longest suffix of L(q) that

is also a prefix of any pattern from P . Assume that for the parent state qparent of q,

g(qparent, σ) = q. If Supply(qparent) also has an outgoing transition to a state h by σ

then the supply state of q can be set to h. In any other case, Supply(Supply(qparent))

must be checked for a transition to a state by σ and so on, until one such state is

found or is determined that no such state exists; in that case the supply state of q is

set to the initial state.

Let u be the longest suffix of the input string t0 . . . ti−1 that is also a prefix of

any pattern ∈ P . The character σ located at position i of the input string is scanned
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next. If there is an outgoing transition from the current state q to another state f

as indicated by the goto function then L(f) = uσ is the new longest suffix of the

input string at position i that is a prefix of one of the patterns. A match of a pattern

exists in the input string if |uσ| = m. If on the other hand g(q, σ) = fail then

g(Supply(q), σ) is checked for an outgoing transition by σ. If g(Supply(q), σ) leads to

a state f ′ then u = L(f ′). If g(Supply(q), σ) = fail then g(Supply(Supply(q)), σ) is

considered and so on, until an outgoing transition by σ is found or is determined that

no such transition exists. The construction of the goto function of the Aho-Corasick

automaton is given in Algorithm listing 1, the computation of the supply function is

presented in Algorithm listing 2 while the search phase of the Aho-Corasick algorithm

is detailed in Algorithm listing 3. The output function returns L(q) for each terminal

state q and is denoted as Output(). An external transition that does not point to

a state is denoted as fail. An in-depth analysis of the Aho-Corasick algorithm is

presented in [24].

ALGORITHM 2: The construction of the supply function Supply of the

Aho-Corasick automaton
Function AC Preproc Supply ( Σ )

forall the α ∈ Σ do

if g(q0, α) = fail then

g(q0, α) := q0

else

Supply(g(q0, α)) := q0

end

end

forall the currentState ∈ trie states in transversal order do

forall the α ∈ Σ do

s := g(currentState, α)

if s 6= fail then

state := Supply(currentState)

while g(state, α) = fail do

state := Supply(state)

end

Supply(s) := g(state, α)

end

end

end

The goto function can be implemented using any of the following data structures;

an array of size |Σ| where each state has an outgoing transition for every character

of the alphabet by precomputing all the transitions simulated by the supply function
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[24]; a link list that is space efficient but not time efficient; or a balanced search

tree that is considered as a heavy-duty compromise and often not practical [11]. The

implementation used for the experiments of this paper was based on code from the

Streamline system I/O software layer [30]. It uses an array of size |Σ| for each state of

the automaton and a linked list to represent the transitions of the goto function and

the supply function. The trie of P can then be built for all d patterns in O(|Σ||P |)

time, with a total size of O(|Σ||P |). The time to pass through a transition of the goto

function is O(|Σ|) in the worst and average case while the search phase has a cost of

O(n) in the worst and average case.

ALGORITHM 3: The search phase of the Aho-Corasick automaton

Function AC Search ( t, m, n )

state := q0

for i := 0; i < n; i := i + 1 do

while newState := g(state, ti) = fail do

state := Supply(state)

end

state := newState

if Output(state) is not empty then

report match at i − m + 1

end

end

An example of a complete Aho-Corasick automaton for the pattern set “AAC”,

“AGT” and “GTA” is presented in Figure 1. Assume that the goto function of the

trie is already constructed and that the supply function for states 0 − 4 has been

computed. The supply state of state 5 is determined next. State 4 is the parent state

of state 5 since g(4, “T”) = 5 and Supply(4) = 6, therefore the goto function of state

6 is considered next. Since g(6, “T”) = 7 then Supply(5) can be set to 7. If there was

no outgoing transition from state 6 by “T” then Supply(6) would be checked next

for an outgoing transition to another state by “T” and so on, until one such state is

found or is determined that no such state exists.

3.2. Set Horspool. The Set Horspool algorithm combines a deterministic finite state

pattern matching machine with the shift function of the Horspool algorithm to search

for the occurrence of multiple patterns in the input string in sublinear time on average.

The pattern matching machine used is a trie with a goto function g, created from

each pattern pr ∈ P in reverse. The search for the occurrences of the patterns is then

performed backwards similar to Horspool. When a mismatch or a complete match

occurs, a number of input string positions can be safely skipped based on the bad

character shift of the Horspool algorithm generalized for a set of patterns.
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Figure 2. The automaton of the Set Horspool algorithm for the re-

versed pattern set “AAC”, “AGT” and “GTA”

The goto function and the shift function are computed during the preprocessing

phase. To build the goto function, the trie is depth-first traversed and extended for

each character of the patterns ∈ P while at the same time the outgoing transitions

to each state q of the trie are created. The bad character shift is denoted as bc(σ)

and is computed for each different character σ ∈ Σ as the maximum |L(q)| where q

is a state labeled by σ. If no such character exists in any pattern, the bad character

shift for σ is set to m.

ALGORITHM 4: The construction of the bad character shift of the Set

Horspool algorithm

Function SH Bad Character Shift ( p, m, d, |Σ| )

for i := 0; i < |Σ|; i := i + 1 do

bc[i] := m

end

for i := 0; i < d; i := i + 1 do

for j := 0; j < m − 1; j := j + 1 do

bc[pi
j ] := MIN(m − j − 1, bc[pi

j])

end

end

Scanning the input string for the occurrences of the patterns is performed back-

wards, starting from character tm−1. For each position i of the input string, the

algorithm computes the longest suffix u of t0 . . . ti that is also a suffix of any pattern.

When a complete match is found or a mismatch occurs between character σ of the

input string and α of the trie, the trie is shifted to the right according to character

β at position i of the input string until β is aligned with the next state of the trie

that is labeled after β. If no such β exists, the trie is shifted to the right by m

positions. The computation of the bad character shift function of the Set Horspool
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algorithm is depicted in Algorithm listing 4 while the search phase is detailed in Al-

gorithm listing 5. The computation of the goto function is identical to that of the

Aho-Corasick algorithm as already given in Algorithm listing 1. An example of a

complete Set Horspool automaton for the reversed pattern set “AAC”, “AGT” and

“GTA” is presented in Figure 2.

ALGORITHM 5: The search phase of the Set Horspool algorithm

Function SH Search ( t, n )

i := m − 1

while i < n do
j := 0; state = q0

while j < m AND (newState := g(state, ti−j) 6= fail) do
state := newState; j := j + 1

if Output(state) is not empty then

report match at i

end

end

i := i + bc(ti)

end

The implementation of Set Horspool uses an array of size |Σ| for each state of

the automaton and a linked list to represent the transitions of the goto function. The

construction of the trie and the shift function requires O(|Σ||P |) time and space while

the search phase of the algorithm is O(nm) worst case time or sublinear on average.

3.3. Set Backward Oracle Matching. The Set Backward Oracle Matching algo-

rithm extends the Backward Oracle Matching string matching algorithm to search for

the occurrence of multiple patterns in the input string in sublinear time on average.

It uses a factor oracle, a deterministic acyclic automaton created from each pattern

pr ∈ P in reverse. The automaton consists of a goto function that uses at most |P |

external transitions. The transitions map a state q and a pattern character into the

next state. The oracle is based on the notion of weak factor recognition; each state of

the Set Backward Oracle Matching automaton can have several incoming links such

that at least any factor of a pattern can be recognized.

The goto function of the Set Backward Oracle Matching algorithm is constructed

during the preprocessing phase from the set of the reversed patterns, similar to the

automaton of the Set Horspool algorithm. For each character σ at position i of

a pattern pr, the trie is depth-first traversed. If u is the suffix pr
i+1 . . . pr

m−1 of a

pattern pr and σu does not exist as a label L(q) of a path of the trie, then the trie

is extended; a new state q is created and is labeled by σ and at the same time the

outgoing transitions to q are constructed from the states at all levels between the
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initial and q. To build the goto function, a supply function is used that associates

each state q with a supply state Supply(q). Initially, Supply(q0) is set to fail. Assume

that the goto and supply functions for all states up to the parent state qparent of q were

already computed and that state q is created and labeled by σ. A pointer k points

to Supply(qparent). If k = fail, then Supply(q) = q0. As long as k is defined and

g(k, σ) = fail then a transition from state k by σ to the current state is created and

k is updated to point to Supply(k). If k is defined and an external transition from

state k by σ exists, Supply(q) is set to g(k, σ) and the construction of the external

transitions for q ends.

Figure 3. The automaton of the Set Backward Oracle Matching al-

gorithm for the reversed pattern set “AAC”, “AGT” and “GTA”
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ALGORITHM 6: The construction of the factor oracle of the Set Backward

Oracle Matching algorithm

Function SBOM Preproc ( p, m, d, Σ )

create state q0

set Supply(q0) := fail

forall the α ∈ Σ do

g(q0, α) := fail

end

newState := 0

for i := 0; i < d; i := i + 1 do
j := m − 1; state := q0

while newState := g(state, pi
j) 6= fail do

state := newState; j := j − 1

end

for l := j; l ≥ 0; l := l − 1 do
create state qcurrent

forall the α ∈ Σ do

g(qcurrent, α) := fail

end

newState := qcurrent

g(state, pi
l) := newState

k := Supply(state)

while k 6= fail AND g(k, pi
l) = fail do

g(k, pi
l) := newState

k := Supply(k)

end

if k 6= fail then

Supply(newState) := g(k, pi
l)

else

Supply(newState) := q0

end

state := newState
end

if terminal state on qcurrent does not exist then

F (q) := 0

Add terminal state on qcurrent

else

F (qcurrent) := F (qcurrent) ∪ {i}

end

end
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During the search phase, the algorithm reads backwards the longest suffix u of

the input string that is also a suffix of any pattern. Assume that a mismatch occurs

at position i of the input string when reading character σ. The factor oracle can not

determine with certainty that a substring is a factor of one of the patterns but can

recognize if a substring is not, therefore σu is not a factor of any pr ∈ P . The oracle

can then be safely shifted past i. If a terminal state is reached, a match of some

pattern in the input string has potentially been found since there could be terminal

states in the oracle that do not correspond to any pattern. Additionally, terminal

states could exist that correspond to more than one pattern. For this reason, each

terminal state q holds a set of indices F (q) to the patterns they correspond. Then,

all the patterns in F (q) are compared directly with the input string to determine if a

complete match is found and the factor oracle is shifted by one position to the right.

The preprocessing phase of the Set Backward Oracle Matching algorithm is detailed

in Algorithm listing 6 while the search phase is presented in Algorithm listing 7. An

example of a complete Set Backward Oracle Matching oracle for the reversed pattern

set “AAC”, “AGT” and “GTA” is depicted in Figure 3. The substring “CAT” would

be recognized by the oracle although it is not a factor of any pattern.

ALGORITHM 7: The search phase of the Set Backward Oracle Matching

algorithm

Function SBOM Search ( p, t, m, n )

i := m − 1

while i < n do
state := q0, j := 0

while j < m AND (newState := g(state, ti−j) 6= fail) do
state := newState; j := j + 1

end

if F (state) is not empty AND j = m then

if Verify all patterns in F(state) against the input string then

report match at i − m + 1

end

i := i + 1
else

i := i + m − j

end

end

The implementation of Set Backward Oracle Matching uses an array of size |Σ|

for each state of the oracle and a linked list to represent the transitions of the goto

and supply functions. The set of indices F is stored on each terminal state using an

array of size d. n auxiliary table of size d is also maintained to map the patterns to
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their corresponding indices The oracle is created during the preprocessing phase in

O(|Σ||P |) for all d patterns of the pattern set using a size of O(|Σ||P |). The search

phase complexity of the algorithm is O(n|P |) worst case time or sublinear on average.

3.4. Wu-Manber. Wu-Manber is a generalization of the Horspool algorithm for

multiple pattern matching. It scans the characters of the input string backwards

for the occurrences of the patterns, shifting the search window to the right when a

mismatch or a complete match occurs. To perform the shift, the bad character shift

function of the Horspool algorithm is used. As previously detailed, the bad character

shift for a character σ determines the safe number of shifts based on the position of

the rightmost occurrence of σ in any pattern. The probability of σ existing in one of

the patterns increases with the size of the pattern set and thus the maximum possible

shift is decreased. To improve the efficiency of the algorithm, Wu-Manber considers

the characters of the patterns and the input string as blocks of size B instead of single

characters, essentially enlarging the alphabet size to |Σ|B.

Figure 4. Comparing the suffix and prefix of the search window of

the Wu-Manber algorithm

During the preprocessing phase, three tables are built from the patterns, the

SHIFT, HASH and PREFIX tables. SHIFT is the equivalent of the bad character

shift of the Horspool algorithm for blocks of characters, generalized for multiple pat-

terns. If B does not appear in any pattern, the search window can be safely shifted

by m−B+1 positions to the right. Let h be the hash value of a block of B characters

as determined by a hash function h1(). Then, SHIFT[h] is the distance of the right-

most occurrence of B to the end of any pattern. Since two or more blocks can have

the same hash value, the search window can be safely skipped by the minimum shift

between them. The HASH and PREFIX tables are only used when the shift value

stored in SHIFT[h] is equal to 0. HASH[h] contains an ordered list of pattern indices

whose B-character suffix has a hash value of h. For each of these patterns, let h′

be the hash value of their B′-character prefix as determined by a hash function h2().

The hash value h′ for each pattern p is stored in PREFIX[p]. That way, a potential

match of the B-character suffix of a pattern can be verified first with the B′-character
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prefix of the pattern before comparing the patterns directly with the input string. As

recommended in [33], a good value for B is log|Σ| 2|P | although usually B could be

set as equal to 2 for a small pattern set size or to 3 otherwise. The original paper

also recommends setting B′ = 2.

ALGORITHM 8: The preprocessing phase of the Wu-Manber algorithm

Function WM Preproc ( p, m, d, B, B′ )

Initialize all elements of SHIFT to m − B + 1

for i := 0; i < d; i := i + 1 do

for q := m; q ≥ B; q := q − 1 do

h := h1(p
i
q−B−1 . . . pi

q−1)

shiftlen := m − q

SHIFT [h] := MIN(SHIFT [h], shiftlen)

if shiftlen = 0 then

h′ := h2(p
i
0 . . . pi

B′−1)

HASH [h] := HASH [h] ∪ {i}

PREFIX[i] := h′

end

end

end

Assume that the search window is aligned with the input string at position i and

that h is the hash value of the B-character suffix of t0 . . . ti. Then the SHIFT table

is used to determine the number of safe shift positions. If SHIFT[h] > 0 then the

search window is shifted by SHIFT[h] positions. If, on the other hand, SHIFT[h]

= 0, the suffix of the input string potentially matches the suffix of some patterns of

the pattern set and thus it must be determined if a complete match occurs at that

position. The hash value h′ of the B′-character prefix of the input string starting at

position i−m+1 is then computed. For each pattern pr with the same hash value h of

its B-character suffix, it is checked if PREFIX[p] matches with h′. If both the prefix

and the suffix of the search window match with the prefix and suffix of some pr ∈ P ,

then the corresponding patterns are compared directly with the input string. The

preprocessing phase of the Wu-Manber algorithm is detailed in Algorithm listing 8

while the search phase is presented in Algorithm listing 9.

The complexity of Wu-Manber was not given in the original paper, since hash

functions h1() and h2() were not specified and the size of the SHIFT, HASH and

PREFIX tables was not given [24]. For the experiments of this paper, the algorithm

was implemented with a block size of B = 3 and B′ = 2 while hash values h and h′

were calculated by bit-shifting the ASCII values of the characters of the patterns and

the input string to the left by bitshift positions. The value of bitshift was set to 2.
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ALGORITHM 9: The search phase of the Wu-Manber algorithm

Function WM Search ( p, t, m, n, B, B′ )

i = m − 1

while i < n do

h := h1(ti−B . . . ti)

if SHIFT [h] > 0 then

i := i + SHIFT [h]

else

h′ := h2(ti−m+1 . . . ti−m+1+B′−1)

forall the pattern indices r stored in HASH [h] do

if PREFIX[r] = h′ then

Verify the pattern corresponding to r directly against the input

string

end

end

i := i + 1
end

end

Finally, the verification of the patterns to the input string was performed using the

memcmp() function of string.h. The cost of the implementation is as follows. To cal-

culate the values of the SHIFT, HASH and PREFIX tables during the preprocessing

phase, the algorithm requires an O(|P |) time. The space of Wu-Manber depends on

the size of SHIFT, HASH and PREFIX. The space needed for the SHIFT table is
B−1∑

i=0

|Σ| × (2bitshift)i. In the worst case there could be d patterns with the same hash

value h or h′ for their B-character suffix or B′-character prefix respectively, therefore

HASH and PREFIX require a d ×

B−1∑

i=0

|Σ| × (2bitshift)i space for a space complexity

of O(d ×
B−1∑

i=0

|Σ| × (2bitshift)i).

In the worst case for the searching phase of the Wu-Manber algorithm, the input

string and m − 1 characters of all d patterns consist of the same repeating char-

acter σ with the character at position m − B − 1 of each pattern being different.

The algorithm will then encounter a potential match on every position of the input

string since SHIFT[h] will constantly be 0. Therefore, as hash values h and h′ of

the patterns will be identical, the m − B characters of all d patterns will be com-

pared directly with the input string using the memcmp() function. The worst case

searching time of Wu-Manber is given in [5] as O(n log|Σ|(|P |)d(m − 1)). In [22]
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the lower bound for the average time complexity of exact multiple pattern match-

ing algorithm is given as Ω(n log|Σ|(|P |)/m) and according to [5] the searching phase

of the Wu-Manber algorithm is optimal in the average case for a time complexity

of O(n log|Σ|(|P |)/m). In [20] the average time complexity of Wu-Manber was also

estimated as O( n

(m−B+1)×(1−
(m−B+1)×d

2×|Σ|B
)
).

3.5. SOG. The SOG algorithm extends the Shift-Or [3] string matching algorithm

to perform multiple pattern matching in linear time on average. SOG is a bit-parallel

algorithm simulating a non-deterministic automaton that acts as a character class

filter; it constructs a generalized pattern that can simultaneously match all patterns

from a finite set. The generalized pattern accepts classes of characters based on the

actual position of the characters in the patterns. When a candidate match is found

at a given position of the input string, the patterns are verified using a combination

of hashing and binary search to determine if a complete match of a pattern occurs.

When the pattern set has a relatively big size, every position of the generalized pattern

will accept most characters of the alphabet. In that case, false candidate matches will

occur in most positions if the input string. To overcome this problem, SOG increases

the alphabet size to |Σ|B by processing the characters in blocks of size B, similar to

the methodology used by the Wu-Manber algorithm.

ALGORITHM 10: The preprocessing phase of the SOG algorithm

Function SOG Preproc ( p, m, d, B )

for i := 0; i < d; i := i + 1 do
sv := 0

Create hs′ for pattern pr

for j := 0; j < m − B; j := j + 1 do

h := h1(p
i
j . . . pi

j+B−1)

V [h] := V [h] ∧ (2m − (1 ≪ sv))

sv := sv + 1
end

end

During the preprocessing phase, a hash value h is assigned to each different B-

character block of the patterns using a hash function h1() by bit-shifting the ASCII

values of the characters. For each different h, a bit vector V [h] is initialized by setting

the ith bit of V [h] to 0 if the B-character block corresponding to h is found in the

ith position of any pattern or to 1 otherwise. For the verification phase, a hash value

hs is computed for each pattern by forming a 32-bit integer of every four bytes of

the pattern and then using the XOR logical operation between the integers. For a

pattern pr of length m = 8, its hash value hs will be:
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hs = pr
0p

r
1p

r
2p

r
3 ⊻ pr

4p
r
5p

r
6p

r
7

To improve the efficiency of the hashing method described above, a two-level hashing

technique [21] is used. This technique involves creating a 16-bit hash value hs′ by

using the XOR logical operation between the lower and the upper 16 bits of hs that

is stored in an ordered table. In [25] is stated that the use of two-level hashing signif-

icantly improves the performance of the algorithm when less than 100.000 patterns

are involved.

ALGORITHM 11: The search phase of the SOG algorithm

Function SOG Search ( text, n, B )

E := 2m

for i := 0; i < n − B + 1; i := i + 1 do

E = (E ≪ 1) ∨ V [h1(ti . . . ti+B−1)]

if E ∧ 2m−B then
continue

end

Verify the patterns using two-level hashing

end

To search for the occurrence of the patterns in the input string, an m-bit variable

E is used where each bit is initialized to 1. For each position 0 ≤ i < n − B + 1 of

the input string, a hash value h is assigned to the character block ti . . . ti+B−1 using

function h1() again. E is then updated with the following formula:

E = (E ≪ 1) ∨ V [h]

If the (m−B)th bit of E is equal to 0, then a candidate match of one of the patterns in

the pattern set occurs starting from position i−m + B of the input string. To verify

the candidate match, the ordered table is examined using binary search for the hash

value hs′ of the input string characters ti−m+B . . . ti+B−1. For the experiments of this

paper, SOG was implemented using a block size of B = 3. The preprocessing phase

of the SOG algorithm is presented in Algorithm listing 10 while the search phase is

given in Algorithm listing 11.

The preprocessing time of the SOG algorithm is O(|P |) with an O(|Σ|B + |P |)

space. For the verification of the patterns using two-level hashing and binary search,

no checking of candidate matches is needed in the best case. In the worst case and

assuming that all pattern rows and input string positions have the same hash value,

the verification time is O(n|P |). If the pattern rows have a different hash value, the

verification time is O(n(log m + m)) in the worst case. The filtering phase is linear

in n in the worst and average case. The combined filtering and verification phase is

then O(n|P |) when all pattern rows have the same hash value and O(nm) otherwise

in the worst case and linear in n in the average case.
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Table 1. Known theoretical space, preprocessing and worst and aver-

age searching time complexity of the presented multiple pattern match-

ing algorithms

Algorithm Extra space Preprocessing Worst case Average case

Aho-Corasick |Σ||P | |Σ||P | n n

Set Horspool |Σ||P | |Σ||P | nm sub-linear

Set Backward Oracle Matching |Σ||P | |Σ||P | n|P | sub-linear

Wu-Manber m ×

B−1∑

i=0

|Σ| × (2bitshift)i |P | n|P | log|Σ| |P |
n log|Σ| |P |

m

SOG |Σ|B + |P | |P | n|P | n

Table 1 summarizes the theoretical space, preprocessing and searching time com-

plexity of the presented multiple pattern matching algorithms.

4. Experimental Methodology

The parameters that describe the performance of multiple pattern matching al-

gorithms are the size of input string n, the size of the pattern set d, the length of the

patterns m and the size |Σ| of the alphabet used.

To evaluate the performance of the multiple pattern matching algorithms, the

preprocessing and the searching time were used as a measure. Preprocessing time is

the time in seconds an algorithm uses to preprocess the pattern set while the searching

time is the total time in seconds an algorithm uses to locate all occurrences of any

pattern from the pattern set in the input string. Both times were measured using the

MPI Wtime function of the Message Passing Interface since it has a better resolution

than the standard clock() function of time.h.

The data set was similar to the sets used in [14, 19, 27]. It consisted of randomly

generated input strings of a binary alphabet, the genome of Escherichia coli from

the Large Canterbury Corpus, the Swiss Prot. Amino Acid sequence database, the

FASTA Amino Acid (FAA) and FASTA Nucleic Acid (FNA) sequences of the A-

thaliana genome and natural language input strings of the English alphabet:

• Randomly generated input strings of size n = 4.000.000 with a binary alphabet.

The alphabet used was Σ = {0, 1} .

• The genome of Escherichia coli from the Large Canterbury Corpus with a size of

n = 4.638.690 characters and the FASTA Nucleic Acid (FNA) of the A-thaliana

genome with a size of n = 116.237.486 characters. The alphabet Σ = {a, c, g, t}

of both genomes consisted of the four nucleotides used to encode DNA.

• The FASTA Amino Acid (FAA) of the A-thaliana genome with a size of n =

10.830.882 characters and the Swiss Prot. Amino Acid sequence database with a
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size of n = 177.660.096 characters. The alphabet Σ = {a, c, d, e, f, g, h, i, k, l, m, n,

p, q, r, s, t, v, w, y} used by the databases consisted of 20 different characters.

• The CIA World Fact Book from the Large Canterbury Corpus. The input string

had a size of n = 1.914.500 characters and an alphabet of size |Σ| = 128 charac-

ters.

The pattern set was created from subsequences of the corresponding input string,

consisting of 100 to 100.000 patterns with each pattern having a length of m = 8 and

m = 32 characters. The subsequences were chosen for at least min{d, ⌊ n
m
⌋} matches.

The experiments were executed locally on an Intel Core 2 Duo CPU with a

3.00GHz clock speed and 2 Gb of memory, 64 KB L1 cache and 6 MB L2 cache. The

Ubuntu Linux operating system was used and during the experiments only the typ-

ical background processes ran. To decrease random variation, the time results were

averages of 100 runs. All algorithms were implemented using the ANSI C program-

ming language and were compiled using the GCC 4.4.3 compiler with the “-O2” and

“-funroll-loops” optimization flags.

5. Analysis

In the previous Sections, the Aho-Corasick, Set Horspool, Set Backward Oracle

Matching, Wu-Manber and SOG multiple pattern matching algorithms were presented

and the experimental methodology was discussed. In this Section, the performance of

the algorithms is evaluated in terms of preprocessing and searching time for different

sets of data.

Figures 5 to 8 present the time used by the algorithms to preprocess the available

pattern sets. Each pattern had a length of m = 8 and m = 32 characters and an

alphabet size |Σ| of 2, 4, 20 and 128 characters while the sets consisted of 100 to

100.000 distinct patterns. When a pattern length of m = 8 and a binary alphabet were

used, there were only 28 = 256 different patterns while for a pattern length of m = 8

and an alphabet of |Σ| = 4 there was a maximum of 48 = 65536 different patterns.

The time of the algorithms to preprocess the pattern set of the FASTA Nucleic Acid

and the FASTA Amino Acid database was similar to that of the E.coli genome and the

Swiss Prot. Amino Acid database respectively and thus the corresponding Figures

were omitted.

The time of the multiple pattern matching algorithms to locate all the occurrences

of any pattern from the pattern set in randomly generated binary alphabet input

strings, the E.coli genome, the FASTA Nucleic Acid of the A-thaliana genome, the

Swiss Prot. Amino Acid sequence database, the FASTA Amino Acid of the A-thaliana

genome as well as in input strings with an English alphabet is depicted in Figures 9

to 14. All Figures have a logarithmic horizontal axis and a linear vertical. As can
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be seen from the Figures, varying parameters such as the size of the pattern set, the

length of the patterns and the input string as well as the alphabet size can affect the

performance of the preprocessing and the searching phase and the overall performance

of the presented algorithms in different ways. The experimental study proved that

no algorithm is the best for all values of the problem parameters.

The presented multiple pattern matching algorithms can generally be classified

into two categories based on their performance, as depicted in Figures 5 to 14 and on

their theoretical time complexity as reported in the original papers and summarized in

Table 1; the trie-based category of the Aho-Corasick, Set Horspool and Set Backward

Oracle Matching algorithms and the hash-based category of the Wu-Manber and SOG

algorithms. All algorithms within the same category share common characteristics,

as detailed below.

5.1. Preprocessing. The time of the Aho-Corasick, Set Horspool and Set Backward

Oracle Matching algorithms to preprocess the pattern set was expected theoretically

to increase linearly in the size d of the pattern set, the length m of each pattern and

the alphabet size |Σ|. As can be seen in Figures 5 to 8, all three algorithms had

a similar behavior in terms of preprocessing time, albeit Aho-Corasick was slower

than the Set Horspool and Set Backward Oracle Matching algorithms to preprocess

the available pattern sets. The experimental results also confirmed that the time to

preprocess the pattern set increased linearly in d for patterns of a length m = 8 and

32 characters with an alphabet of size |Σ| of 2, 4, 20 and 128 characters. It is worth

noting the significant increase in the time to construct the supply function Supply of

Aho-Corasick when sets of more than 2.000 patterns were used for all alphabet sizes

and pattern lengths, that resulted in a proportional increase of the preprocessing time

of the algorithm.

The same Figures also depict the dependent relationship between the prepro-

cessing time of the Aho-Corasick, Set Horspool and Set Backward Oracle Matching

algorithms and the length m of the patterns. Quadrupling m from 8 to 32 characters

resulted in a proportional increase in the time to preprocess the pattern set. The

highest increase rate of the preprocessing time of the algorithms was observed when

Aho-Corasick, Set Horspool and Set Backward Oracle Matching were used on patterns

with a small alphabet size, including randomly generated sets with a binary alphabet

and sets constructed from the genome of E.coli. Generally it can be concluded that

for all types of pattern sets, the preprocessing time of Aho-Corasick increased in m

with a higher rate comparing to the Set Horspool and Set Backward Oracle Matching

algorithms.

The time of the Aho-Corasick, Set Horspool and Set Backward Oracle Matching

algorithms to preprocess the pattern set also increased linearly in |Σ| for most types of
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pattern sets. It is worth noting that the preprocessing time of Aho-Corasick actually

decreased when used on sets with an English alphabet, contradicting the theoretical

preprocessing time of the algorithm.
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Figure 5. Preprocessing time of the algorithms for randomly gener-

ated data with |Σ| = 2
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Figure 6. Preprocessing time of the algorithms for the E.coli genome

with |Σ| = 4

Wu-Manber had the fastest preprocessing phase between the presented algo-

rithms, as depicted in Figures 5 to 8. The time spent during the preprocessing

phase of the Wu-Manber and SOG algorithms was expected to increase linearly in

the size d of the pattern set and the length m of the patterns, since both have a

theoretical preprocessing time of O(|P |). The experimental results confirmed that

the time of the Wu-Manber algorithm to preprocess the pattern set increased linearly

in d for all types of data. The preprocessing phase of SOG appears in the Figures to

be roughly constant in d when used on sets of up to 2.000 patterns and linear in d for

larger pattern set sizes. This can be explained by the relatively high cost in terms of

preprocessing time to setup the necessary data structures of the algorithm.
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Figure 7. Preprocessing time of the algorithms for the Swiss Prot.

Amino Acid database with |Σ| = 20
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Figure 8. Preprocessing time of the algorithms for English alphabet

data with |Σ| = 128

The performance of the preprocessing phase of the hash-based algorithms was

also affected by the length m of the patterns used. The preprocessing time of both

Wu-Manber and SOG algorithms increased linearly in m for all types of data. Finally,

the time of Wu-Manber and SOG to preprocess the pattern set was generally constant

in |Σ|, confirming in practice the theoretical preprocessing time of the algorithms.

5.2. Searching. Table 1 summarizes the theoretical time of the presented multiple

pattern matching algorithms to scan the input string; O(n) in the worst and average

case for Aho-Corasick, O(nm) and sublinear in the worst and average case respectively

for Set Horspool and O(n|P |) and sublinear for Set Backward Oracle Matching. As

depicted in Figures 9 to 14, the time spent during the search phase of the three

presented trie-based algorithms to scan the input string increased linearly in the size

of the pattern set, although for Aho-Corasick and Set Horspool was expected to be

constant in d.
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The time spent during the search phase of Aho-Corasick and Set Horspool in-

creased linearly in m. The higher increase rate for both algorithms was observed for

data with a binary alphabet and an alphabet of size |Σ| = 4 as well as for English

alphabet data, especially when sets of more than 10.000 patterns were used. The per-

formance in terms of searching time of the Set Backward Oracle Matching algorithm

on the other hand improved when used on patterns with a size m = 32 as opposed

to m = 8 for most types of data. It is interesting that on English alphabet data and

similar to the Aho-Corasick and Set Horspool algorithms, the searching time of Set

Backward Oracle Matching actually increased linearly in m.

The time of the Aho-Corasick algorithm to search the input string for all oc-

currences of any pattern from the pattern set was roughly constant in the size |Σ|

of the alphabet for most types of data. The performance of Set Horspool and Set

Backward Oracle Matching actually improved when used to search data sets with a

larger alphabet size, while not expected by their theoretical average searching time

complexity. This is clearly shown in Figures 11 and 12; although the input string of

the Swiss Prot. Amino Acid database was significantly larger than the input string of

the FASTA Nucleic Acid database, the searching time of the Set Horspool algorithm

decreased for a set of 20.000 patterns with m = 32 from over 12 to 7 seconds while the

searching time of the Set Backward Oracle Matching decreased for the same pattern

set from 1.14 to 0.58 seconds.
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Figure 9. Searching time of the algorithms for randomly generated

input strings with |Σ| = 2

The theoretical time complexity of the Wu-Manber algorithm to locate all the

occurrences of the patterns in the input string is O(n|P | log|Σ| |P |) in the worst and

O(
n log|Σ| |P |

m
) in the average case while the theoretical searching time of SOG is O(n|P |)

in the worst and O(n) in the average case. Based on the theoretical time of Wu-

Manber, it was expected that the time of the algorithm to scan the input string

would increase linearly in the size n of the input string and the size d of the pattern
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Figure 10. Searching time of the algorithms for the E.coli genome

with |Σ| = 4
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Figure 11. Searching time of the algorithms for the FASTA Nucleic

Acid database with |Σ| = 4

 0

 1

 2

 3

 4

 5

 6

 7

 8

 100  1000  10000  100000

S
ea

rc
hi

ng
 ti

m
e 

(s
ec

)

Pattern set size (m=8)

AC
SH

SBOM
WM

SOG

 0

 1

 2

 3

 4

 5

 6

 7

 8

 100  1000  10000  100000

S
ea

rc
hi

ng
 ti

m
e 

(s
ec

)

Pattern set size (m=32)

AC
SH

SBOM
WM

SOG

Figure 12. Searching time of the algorithms for the Swiss Prot.

Amino Acid database with |Σ| = 20
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Figure 13. Searching time of the algorithms for the FASTA Amino

Acid database with |Σ| = 20
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Figure 14. Searching time of the algorithms for English alphabet in-

put strings with |Σ| = 128

set and decrease exponentially in the size m of the patterns and the size |Σ| of the

alphabet in the average case. The searching time of the SOG algorithm on the other

hand was expected to increase linearly in n and be constant in d and |Σ| in the average

case.

Figures 9 to 14 confirm that the searching time of the Wu-Manber algorithm

increased linearly in the size d of the pattern set for all alphabet and pattern sizes

used. The searching time of the SOG algorithm also increased linearly in d, close to

the worst case searching complexity of the algorithm. As a general remark, it can be

observed that the rate of increase of the searching time of the hash-based algorithms

in the size d of the pattern set was slightly higher than the corresponding rate of

increase of the trie-based algorithms for all types of data.

Although not expected by the theoretical average time of the Wu-Manber algo-

rithm, its searching time was roughly constant in the size m of the patterns when

data with an alphabet of size |Σ| = 20 and 128 were used while actually increased
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when used on randomly generated binary alphabet data, the E.coli genome and the

FASTA Nucleic Acid database. The time of the SOG algorithm to search the input

string for all occurrences of any pattern from the pattern set increased significantly

when patterns of a size m = 32 were used as opposed to patterns of a size m = 8, also

close to its worst case theoretical searching complexity. The increase in the searching

time was higher when data with a larger alphabet size were used, including the Swiss

Prot. Amino Acid database, the FASTA Amino Acid database as well as English

alphabet data.

Finally, similar to Set Horspool and Set Backward Oracle Matching, the searching

time of the Wu-Manber and SOG algorithms decreased in the alphabet size |Σ|.

This observation confirms the theoretical average time complexity of the Wu-Manber

algorithm but was not expected from the theoretical complexity of the SOG algorithm.

5.3. Overall Comparison. Aho-Corasick was the fastest algorithm to scan the in-

put string when data sets with an alphabet of a size |Σ| = 2 and 4 and patterns of a

length m = 8 were used; randomly generated input strings with a binary alphabet, the

E.coli genome and the FASTA Nucleic Acid database. The inadequate performance

of Aho-Corasick on data with a large alphabet size or on patterns with a length of

m = 32 characters was generally due to the slow preprocessing phase of the algorithm

on these types of data, as already discussed. The fast running time of Aho-Corasick

on the other hand on data sets with a small alphabet size and a pattern length of

m = 8 was expected by the experimental maps presented in [24] where Aho-Corasick

was faster than the Wu-Manber and the Set Backward Oracle Matching algorithms

when data with a binary alphabet size were used. Similar results for multiple pattern

matching were reported in [10], where for a binary alphabet data set the Aho-Corasick

outperformed the Commentz-Walter and Wu-Manber algorithms.

The Set Horspool algorithm had a moderate performance on most types of data.

It had a similar searching time to Aho-Corasick albeit was slightly slower on each

type of data. Set Backward Oracle Matching on the other hand was one of the

fastest algorithms in terms of searching time. It outperformed the Aho-Corasick, Set

Horspool, Wu-Manber and SOG algorithms on most types of data where patterns of

a length m = 32 were used. It was also the fastest algorithm when patterns of a

length m = 8 were used on the Swiss Prot. and FASTA Amino Acid databases for

sets of more than 5.000 patterns. In the experiments presented in [24], Set Backward

Oracle Matching was the fastest algorithm for 1.000 patterns and for a pattern size

m of more than 20 characters which also holds true for the experiments presented in

this paper.

Although Wu-Manber had the fastest preprocessing phase, it was one of the

slowest algorithms to search the input string for the occurrences of any pattern from
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the pattern set on most types of data. It was faster than the rest of the algorithms

in terms of searching time only when English alphabet data sets were used together

with patterns of a length m = 32. Based on the average searching time complexity

of the algorithms as given in Table 1, it was expected for Wu-Manber to outperform

the SOG algorithm on most types of data, with SOG being faster only when patterns

of a length m = 8 and an alphabet size of |Σ| = 2 and 4 were used. In practice

though, Wu-Manber was faster than SOG for data with an alphabet of size |Σ| = 2

and 4 or when patterns of a length m = 32 were used. Finally, SOG outperformed

the Aho-Corasick, Set Horspool, Set Backward Oracle Matching and the Wu-Manber

algorithms on the Swiss Prot. and FASTA Amino Acid databases and on data sets

with an English alphabet when sets of up to 2.000 patterns were used with a length

of m = 8 characters.

6. Conclusions

This paper presented a survey of multiple pattern matching algorithms and exper-

imental results of the well-known Aho-Corasick, Set Horspool, Set Backward Oracle

Matching, Wu-Manber and SOG algorithms. The performance of the algorithms was

evaluated in terms of preprocessing and searching time for randomly generated data,

the genome of Escherichia coli, the FASTA Nucleic Acid (FNA) of the A-thaliana

genome, the FASTA Amino Acid (FAA) of the A-thaliana genome, the Swiss Prot.

Amino Acid sequence database and English language data for sets of 100 to 100.000

patterns.

In the previous Sections it was confirmed that the performance of the prepro-

cessing phase of the Aho-Corasick, Set Horspool and Set Backward Oracle Matching

algorithms depended on the total size |P | of the pattern set and the size |Σ| of the al-

phabet used while the performance of the preprocessing phase of the Wu-Manber and

SOG algorithms depended on |P |, as expected by their theoretical time complexity.

Based on the experimental results it was also concluded that the searching time

of the trie-based algorithms increased linearly in the size d of the pattern set. The

searching time of Aho-Corasick and Set Horspool also increased linearly in m while

that of Set Backward Oracle Matching decreased when used on patterns with a length

m = 32 as opposed to m = 8 for most types of data. When used on English alphabet

pattern sets and input strings, the searching time of Set Backward Oracle Matching

actually increased in m. Moreover it was shown that the time of the Aho-Corasick

algorithm to search the input string for all occurrences of any pattern from the pattern

set was roughly constant in the size of the alphabet while the performance of Set

Horspool and Set Backward Oracle Matching improved when used to search data sets

with a larger alphabet size |Σ|.
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The searching time of the hash-based algorithms increased linearly in the size d

of the pattern set. For Wu-Manber and based on the average theoretical complexity

of the algorithm as presented in Table 1, it was expected for the searching time to

decrease exponentially in m. In practice though it was observed that the searching

time of the algorithm increased in the length m of the patterns when data with a small

alphabet size |Σ| were used and was constant for data with an alphabet size of at

least 20 characters. While not expected by its theoretical average searching time and

similar to its preprocessing phase, the time of the SOG algorithm to search the input

string for all occurrences of any pattern from the pattern set increased significantly

in m. Finally, the time of the hash-based algorithms to scan the input string for the

occurrences of all patterns decreased as the alphabet size |Σ| increased, although for

the SOG algorithm it was expected by its theoretical time to be constant in |Σ|.

It was generally discussed that for randomly generated data with a binary al-

phabet, the E.coli genome and the FASTA Nucleic Acid database, the trie-based

algorithms outperformed the hash-based algorithms in terms of searching time for all

pattern set sizes and pattern lengths. For these types of data, Aho-Corasick was the

fastest algorithm when patterns of a length m = 8 were used while Set Backward

Oracle Matching outperformed the rest of the algorithms for patterns of a length

m = 32. For the Swiss Prot. and the FASTA Amino Acid databases, SOG was

the fastest algorithm when sets of up to 2.000 patterns were used, with the patterns

having a length of m = 8 characters. For the same data and for sets of more than

2.000 patterns or when patterns with a length of m = 32 characters were used, Set

Backward Oracle Matching was the fastest among the presented algorithms. Finally,

when English alphabet data were used, the performance in terms of searching time of

the algorithms converged, with the SOG algorithm being slightly faster when patterns

of a length m = 8 were used and the Set Backward Oracle Matching, Wu-Manber and

the Aho-Corasick algorithms outperforming the rest of the algorithms when patterns

of a length m = 32 were used.
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