
Neural, Parallel, and Scientific Computations 22 (2014)  623-638 

 

 

PERFORMANCE SCALABILITY AND ENERGY 

CONSUMPTION ON A SHARED MEMORY PLATFORM 
 

E. M. KARANIKOLAOU AND M. P. BEKAKOS 

Dept. of Electrical & Computer Engineering, Democritus university of Thrace, 

67100 Xanthi, Greece 

 

Abstract. Herein, the performance evaluation of a shared memory computer complex, in 

conjunction with the total consumed energy, is investigated. The shared platform under 

investigation is evaluated for the power its processors/cores demand at the idle and fully utilized 

state. In proportion to the parallelized percentage each time, the estimations of the theoretical 

model were compared to the experimental results achieved on the basis of the performance/power 

and performance/energy ratio metrics. An analytical formula for evaluating the experimental 

energy consumption has been developed, while the experimental vehicle was a widely known 

algorithm with different parallelization percentages. 

Keywords - performance evaluation, power/energy consumption, shared memory platform, 

superlinear speedup 

 

1. INTRODUCTION 

 

According to Amdahl’s law [1], an algorithm’s sequential computation considerably 

limits the maximum potentially achievable speedup. This implies that any sequential 

execution will severely diminish the overall performance scalability for parallel 

implementations regardless the amount of additional computing resources.  

Amdahl’s law was used as an argument against massively parallel processing (MPP). 

On the other hand, Gustafson’s law, proposed in 1988 [5], was used to justify MPP. 

However, a careful analysis reveals that these two laws are identical. 

Nowadays, computer architects face a new significant challenge, beyond 

performance, there is need for energy efficiency. Power/energy becomes an apparent 

obstacle to realize performance scaling; thus, low power techniques and algorithms for 

multicore systems, such as DVS (Dynamic Voltage Scaling) have been a major design 

trend over the last years [8, 9]. Moreover, in an era where energy is a very valuable 

resource, there is a crucial need to define the tradeoffs between performance and energy 

consumption on shared memory platforms. Computer engineers into their forthcoming 

multiprocessor designs should, very carefully, take into account that architecture’s power 

consumption does not exceed its power capability [2]. In other words, the level of 

consumption required by each processor would limit the maximum number to be utilized; 

this would force the designer to strive for maximizing each processor’s power efficiency. 

While Amdahl’s law mainly focuses on performance scalability, current interest lies on 

the power scalability/energy efficiency of multiprocessor designs. Hence, an 

augmentation of Amdahl’s law is required to cope with the new architectural challenges 

taking into account the implication of energy scalability. 

 

_____________ 

Received   October 15,   2014                1061-5369 $15.00 © Dynamic Publishers, Inc 

 



624            E. M. KARANIKOLAOU AND M. P. BEKAKOS 

 

A formula which describes the performance of a multiprocessor platform in 

conjunction with the consumed power was introduced by Woo and Lee [6]. Therein, the 

estimation of performance/power was based upon the Amdahl’s law assuming an ideal 

system without overheads. Herein, an analytical formula for a shared memory platform 

has been developed in order to experimentally evaluate the consumed power; the 

experimental results achieved were compared to the estimations of the theoretical model 

[6] on the basis of the performance/power and performance/energy ratio metrics 

 

2. AMDAHL’S AND GUSTAFSON’S LAWS COMPARISON 

 

Amdahl’s law has been widely applied for the performance estimation of parallel 

programs, initially as an argument against MPP. The parallel processing reputation was 

consolidated by Gustafson’s law and various experimental results which justified MPP. 

The essential difference of two laws lies on the serial percentages implied, which by 

many researchers were considered as identical. A careful analysis of both laws reveals 

that these two serial percentages are related with a simple equation [4]. By altering the 

serial percentage depended on the number of processors in Gustafson’s law, to an 

independent serial percentage, the resulting formula proves to be identical to Amdahl’s 

formula. In other words, there is only one law with two slightly varying formulations.   

Another important issue often bypassed is the prerequisite to applying Amdahl’s 

law. For the correct application of this law, the serial algorithm should retain its structure, 

so that the same number of instructions to be processed in both serial/parallel 

implementations for the same input. It is quite common the parallel implementation to be 

straightforward formed out of the serial one of the same algorithm. It has been proved 

that there is a class of non-structure persistent serial algorithms, namely algorithms which 

lose their structure when are been partitioned. In this class parallel implementations 

formed out from serial ones can exhibit quite peculiar performance. For such cases the 

law is open to abuse. 

 

2.1. Equivalence of Laws 

Let us consider both laws formulas for the theoretical speedup and the respective serial 

percentages they refer to, as well as the formula linearly connecting these two 

percentages. The following parameters have been defined, 

 eqS n
T    Uniprocessor execution time complexity of a 

program’s serial segment. 

 arP n  
T   Uniprocessor execution time complexity of a 

program’s parallel segment. 

 arP n
T

p

 
 
 

  
p-processor execution time complexity of a 

program’s parallel segment. 

   eq arS n P n  
T T   Uniprocessor total execution time complexity of a 

program including both serial/parallel segments. 

 

 
eq

ar

S n

 

P n
T T  

p

 
  

 
  p-processor total execution time complexity of a 

program including both serial/parallel segments. 

 

 

 

 

 



                             SHARED 

 

 

 

 
eq

eq

S n

G Seq n  

ar

S n

T  

P n
T T  

p

f
  


 

  
 

   

MEMORY PLATFORM                                              625 

 

 

The scaled percentage of a program’s serial segment 

 

 

 

 
eq

ar

G Seq n  

ar

S n

P n
T  

p
1

P n
T T  

p

f
  

 
 
  

 
  

 

   
The scaled percentage of a program’s parallel 

segment 

 

 

   

eq

eq

eq ar

S n

S n

S n P n  

T  

T T  
f 


 

The non-scaled percentage of a program’s serial 

segment 

 

 

   

ar

eq

eq ar

P n  

S n

S n P n  

T  
1

T T  
f 


 The non-scaled percentage of a program’s parallel 

segment 

 

Note that, p appears in both percentages of the scaled percentage of program’s 

serial/parallel segment, while it is not in the non-scaled percentage case. 

According to Amdahl’s law the formula estimating the maximum theoretical 

speedup is: 

 
   

 
 

eq ar

ar

eq

S n P n  

pth

P n  

S n

T T  
S n,p

T
T  

p






                   (2.1) 

which using the non-scaled percentages is transformed to:  

        

 
   eq eq

pth

S n S n

1 
S n,p

1 / p f f


  
                             (2.2) 

hence,                     

   

 
 

   

eq

eq ar

pth p

S n

S n P n  

1 
 S n,p

T

(T T )




                         (2.3) 

which, when fSeq(n) is taking values close to zero, the results achieved justify the argument 

against massively parallel processing. 

On the other hand, Gustafson proposed a formula calculating the total parallel time 

complexity using p processors, 

        
eq arS n P n   G Seq n   G Seq n  

T T 1 pf f
      

      

 

 
    

eq

ar

S n G Seq n   G Seq n  

P n
T T 1 1

p
f f

      

 
     

 
 

 

     
     

     
G Seq n   G Seq n  

pth

G Seq n   G Seq n  

1 p
S n,p

1

f f

f f

      

      

  


 
               (2.4) 

 

which is formula:  

 



626            E. M. KARANIKOLAOU AND M. P. BEKAKOS 

 

 

 

   

 

 

 

 

 

 

 

eq

eq

eq eq

eq

ar

S nar

S n

ar ar

S n S n

pth

ar

S n

P n
T

T   pP n
(T T )( x p)

p P n P n
T T T T

p p
S n,p

P n
T T

p

 
 

     
         
   
 

  
 

     (2.5) 

The mistake was hidden in the misunderstanding of the two laws, namely the misuse of 

fG[Seq(n)] in place of 

 
 

 

   

eq

eq

eq ar

S n

S n

S n P n

T

T T
f 


  

in Amdahl’s Spth(n,p), which is formula (2.2). 

These two laws are equivalent and the two serial percentages are related with the 

following equation, without introducing (TSeq(n) + TPar(n)),  

  
 

 

eqS n

G Seq n  

G Seq n  

1

(1 ) p
1

f
f

f
  

  


 



 (2.6) 

Hence, for the correct use of Amdahl’s law the fG[Seq(n)] should be altered to fSeq(n)  through 

(2.6). More thorough and further analysis can be found in [10]. 

  

3. PERFORMANCE/WATT AND PERFORMANCE/JOULE METRICS 

 

Many of the evaluation metrics describe a parallel system’s performance regarding the 

speedup achieved in terms, either of time complexity or instructions per processor cycle 

as compared to the serial implementation.  

Today, beyond performance, computer engineers face another significant challenge: 

energy efficiency. Parallel systems should be carefully designed so that their power 

consumption does not exceed their power capabilities. Hence, new evaluation metrics 

should be introduced measuring overall performance, while taking into account power 

and energy as well. 

The Performance/Watt and Performance/Joule metrics [6] will be discussed; these 

metrics are based on Amdahl’s law introducing in his speedup formula the power/energy 

concept targeting to the performance evaluation of an ideal parallel system. These metrics 

will be set herein following the time basis concept for the augmentation of Amdahl’s law; 

the theoretical estimations will be investigated and attempted to be approximated with 

real time experimental results. An experimental scenario will be executed on a 

multiprocessor platform and the carrying vehicle will be a parallel algorithm of specific 

structure. 

The total energy/power consumed by the shared memory platform in hand, for the 

complete execution of a parallel algorithm, is calculated. A primary target pursued when 

developing the experimental scenario was the modeling and the introduction of the 

overheads due to the interprocessor communication, not accounted in [6]; any 

interprocessor communication or non-parallel execution will rapidly diminish the 

performance scalability regardless the amount of additional computing resources.  

 



SHARED  MEMORY PLATFORM                                     627 

 

Apparently, power is becoming more critical factor than performance especially in the 

scaling up of multiprocessor systems. 

 

3.1 Amdahl’s Law Extension 

Amdahl’s law demonstrated a simple analytical model to provide computer designers and 

researchers a useful tool for the better realization of speedup scaling. Current 

technological advances require this law’s extension to account for the power scaling and 

the energy efficiency implications in the multiprocessor architectural designs [14-16]. 

Herein, the formulas for Performance/Joule and Performance/Watt [6] will be 

investigated for the case of energy-balanced shared memory platforms. 

Amdahl’s formula estimating the maximum achievable theoretical speedup, 

Spth(n,p), in case of solving a problem of size n, using a complex of p processors is (2.2), 

where, fSeq(n), is the time complexity fraction regarding the serial computation of the 

algorithm. To model the power consumption for a parallel system, a new parameter, k, is 

defined; it shows the fraction of power a processor consumes in idle state (0 ≤ k ≤ 1), 

under the assumption that a superscalar processor in fully active state consumes a power 

of 1. By default, the amount of power  a fully active processor consumes during the serial 

computation stage equals 1, whereas the remaining (p-1) processors consume power (p-

1)*k; hence,  the parallel complex during the serial computation stage will consume total 

power of 1+(p-1)*k. During the parallel computation stage, p fully active processors will 

consume p amount of power. Since the time complexity formula for the serial and 

parallel code segments is given by fSeq(n) and 1-fSeq(n), respectively, the formula for the 

average power consumption of the parallel complex is 

 

      

 

  

eq

eq

eq

eq

S n

S n

S n

S n

1
1 p 1 k p

p
W  

1

p

f
f

f
f

 
      

 




  

 
   

 

  
eq

eq

eq

S n

S n

S n

1 p 1 k
W  

1

p

f

f
f

   





 (3.1) 

The metric Performance per Watt (Perf/W) (3.2) determines the achievable performance 

(keeping constant the cooling capacity [7]) based on the average consumed power. In 

fact, it is the reciprocal of energy consumed, since, according to Amdahl’s law, the 

performance (speedup) is the reciprocal of the total execution time. Because Perf/W of a 

single processor execution is 1, the Perf/W benefit of a multiprocessor platform is given 

by  

 

  
 

  

   

eq

eq

eq
eq

eq

S n

S n

S nS n

S n

1

Perf 1 p

W 1 p 1 k1

p

f
f

ff
f




 
   



 

 
   eqS n

1

1 p 1 k f


   
 (3.2) 

 



628            E. M. KARANIKOLAOU AND M. P. BEKAKOS 

 

Since, as stated above, 
 

1/Perf W
J oule

 is a related metric, Perf/Joule (3.3) can be 

defined, for evaluating the maximum achievable performance based on the given quantity 

of energy. Perf/J is equivalent to the reciprocal of energy-delay product [7].  

 

 

 

 

      eq
eq

eq

S nS n

S n

Perf 1 1

J 1 p 1 k1

p

ff
f

 
   



 (3.3) 

 

Perf/W and Perf/J metrics are based on Amdahl’s law giving the fraction of the maximum 

achievable speedup to the minimum consumed power/energy. These metrics are biased 

and intended only for use on multicore platforms, since all unavoidable overheads 

resulting utilizing a conventional parallel platform are ignored. This implies that the 

serial part is actually increased by default, thus faulty maximizing the part with the 

inherent parallelism; the total time complexity when executing the algorithm is 

minimized resulting to a minimum consumed energy as well. The Perf/J and Perf/W 

evaluated are the maximum possible and always unachievable.  

The primary target in this paper is the investigation of an experimental scenario 

applied to shared memory platforms; a classic easily parallelizable algorithm is used, the 

unavoidable overheads are introduced as basic elements and the experimental results 

obtained are further discussed.  

 

 

4. POWER/ENERGY EFFICIENCY OF SHARED MEMOTY 

PLATFORMS 

 

The main difference when compared to the model in [6] is that all unavoidable overheads 

are taken into account during the experimental phase. The parameter k in (3.2, 3.3) is 

used for normalizing the experimental values obtained; the parameters, Wf(ull), Wi(dle), 

define the power each processor consumes in full utilization and in idle state, 

respectively. Hence, the total energy consumed in a real system is expected to be greater 

than the energy estimated in the model [6].  

 

4.1 Experimental Scenario 

The basic characteristic of the shared memory platform is that a fully synchronous 

parallel operation is assumed. The job scheduling follows the scheme of one parallel 

thread per available processor core. The schematic description of the synchronous 

parallel operation is described in Fig. 4.1; the total energy consumption is calculated 

according to this scenario.  



SHARED  MEMORY PLATFORM                                     629 

 

 

 

         t0                    t1                     t2                 t3 
 tser1 tpar tser2 

  

  

 

                    … 
 

          Master Thread                …                      Master Thread 

 

                                             
 

                   Serial Region#1             Parallel Region           Serial Region#2 

Fig. 4.1: Shared Memory Programming Scheme 

 

Master thread commences at time, t0, and continues to time, t1, for a period of, tser1; it is 

the only core in full utilization executing the serial region of code and consuming full 

core power, while all other cores remain in idle state; thus, the consuming power of the 

whole platform consumes Wf/p, depending on the number of cores, p, that are utilized on 

each problem’s execution. At time, t1, using a parallel construct, the master thread creates 

a team of parallel threads. The statements in the program that are enclosed by the parallel 

region construct are then executed in parallel among the various team threads. All cores 

during time interval, tpar, are in full utilization state. When the team threads complete the 

statements in the parallel region construct, at time, t2, they synchronize and terminate, 

leaving only the master thread until time t3, in order to produce the final result. During 

the serial region, which is the time interval, tser2, master core is the only core consuming 

full power, while all other cores remain in idle state. The time needed for thread creation 

(FORK) and destroy (JOIN) is negligible; thus, it does not affect the total energy 

calculation.   

To conclude, master core consumes power Wf for the total execution time, while all 

other cores consume power Wf during the whole computational stage, whereas the tser1 + 

tser2 are excluded; in tser1 + tser2 interval all other cores consume Wi due to their idle status. 

Let us define the time intervals, 

tser1 = t1 – t0  (Serial Region#1),   tp  = t2 – t1 (Parallel Region), tser2 = t3 – t2 (Serial Region#2) 

 

The total energy consumed by the shared memory platform is calculated by the following 

formula 

 total  par f /p ser1 ser2 f /1 E t W (t t W)     (4.1) 

                                                   

                                                     p cores fully utilized        master core fully utilized  
                     (p-1) cores in idle status                                       

where Wf/p is the total power consumption of all the active cores, p, in full utilization; 

while Wf/1 is the power consumption of the master proc during period of, tser, where it is 

the only proc fully utilized for executing the serial segment of code. In the expression 

Wf/1, since all cores belong to the same shared memory platform, the power consumed by 

the remaining nodes, being in idle state, is also included. 

F 

 

O 

 

R 

 

K 

J 

 

O 

 

I 

 

N 



630            E. M. KARANIKOLAOU AND M. P. BEKAKOS 

 

The performance/power ratio will be considered equal to the total parallel execution 

time measured, over the actual consumed power (for the same p-platform). Performance 

is represented by the total parallel execution time in order to perform a straightforward 

comparison with the Performance/Watt and Performance/Joule metrics given in [6]. 

Moreover, the performance/power ratio will be also considered equal to the speedup 

measured, over the actual consumed power. 

The total execution time results from the parallel execution of the algorithm, 

summing up all measured time intervals, which are given in Fig 4.1. With the use of 

specialized electrical equipment (Wattmeter) for monitoring the supply rate of electrical 

energy, the average power consumption during the parallel execution of the algorithm 

was also measured. Hence, the actual Perf/W is 

 
 total p

tPerf
=

W W
  , (4.2) 

where ttotal(p) is the total parallel execution time.  

Moreover, the average power consumption multiplied by a time period equals the 

consumed energy for that specific period under a certain electric load; thus, the total 

consumed energy during the parallel execution of the algorithm can be also calculated. 

Hence, the actual Perf/J is 

 
 total p

total

tPerf
=

J E
   (4.3) 

In case that performance is considered equal to the speedup measured, then the total 

parallel execution time, ttotal(p), should be altered to actual Speedup, Sp(n,p), into the 

equations (4.2) and (4.3). 

 

5. EXPERIMENTAL RESULTS 

 

The shared memory platform’s performance evaluation was carried out using OpenMP 

[11] standard, which provides a portable, scalable model for developers of shared 

memory parallel applications. The shared memory platform was a TYAN [12] advanced 

platform, based upon multiple Opteron [13] multicore processors with a common address 

space. The experimental vehicle was the parallel matrix multiplication algorithm, since it 

exhibits a high level inherent parallelism and offers various parallelization percentages 

according to the problem size selected. All the experiments were carried out in an 

isolation mode; namely, the platform in hand was inaccessible from other users and/or 

processes. 

 

5.1 Total Parallel Execution Time Evaluation 

In Fig. 5.1.1 is shown the total parallel execution time in seconds according to the 

selected problem size and the number of cores used. The representative problem sizes 

presented herein, concern matrix dimensions from 1K up to 5K, which progressively 

scale up, in steps of 1K. The evaluated values of time resulted taking the average of 

multiple program executions. A problem size of mK x mK represents the multiplication of 

two square matrices of size m. 

 

 

 



SHARED  MEMORY PLATFORM                                     631 

 

 

 

 
Fig. 5.1.1: Evaluation of total parallel execution time in seconds 

 

 

5.2 Relative and Traditional Speedup 

Herein, the relative and traditional speedup that the algorithm achieves will be discussed. 

The relative speedup is calculated as the ratio of the serial execution time to the parallel 

execution time, depending on the number of cores that are used in order to solve the 

problem. In this case, the serial execution time is the elapsed time for the execution of the 

parallel algorithm/implementation on the platform, using one core, which obviously is 

not the same algorithm as an actually optimized sequential algorithm. It shows how well 

the problem is coping with an increasing number of cores and thus provides an indication 

regarding the scalability of the parallel implementation. Without considering any possible 

parallel overhead, the limit to the speedup that can be achieved is set by the fraction of 

the program that can be run in parallel [19].  

On the other hand, the traditional speedup is calculated as the ratio of the execution 

time of the serial algorithm to the execution time of the parallel algorithm. Traditional 

speedup highlights all algorithmic properties that had to be sacrificed to achieve the 

parallel version [19]. In addition, none of the parallel implementation penalties is hidden 

in this comparison; thus, the speedup is not exaggerated. The execution time of the serial 

algorithm is by default smaller than the serial execution time considered in case of the 

relative speedup, since there is no overhead due to the parallel constructs. Hence, the 

traditional speedup is always smaller than the relative one. In Fig. 5.2.1 is shown the 

relative speedup of the parallel algorithm, while in Fig. 5.2.2 is shown the traditional 

speedup of the parallel algorithm. 

 

 

 

 

 

 

 



632            E. M. KARANIKOLAOU AND M. P. BEKAKOS 

 

 

 
Fig. 5.2.1: Evaluation of relative speedup 

 
Fig. 5.2.2: Evaluation of traditional speedup 

 

From the above Figures, it can be observed that the achieved speedup for the parallel 

matrix multiplication on the shared memory platform, in hand, proves to be superlinear 

for most of the cases described. Superlinear speedup can result whenever problem size 

per processor is reduced, whether from fixed size or fixed time performance evaluation. 

The decrease must be enough so that the usual sources of parallel inefficiency (load 

imbalance, serial algorithm steps and interprocessor communication) are compensated 

[17]. The superlinear speedup does not really result from parallel execution. It appears 

because each CPU core is now working on a smaller set of memory. The problem data 

handled by any one CPU core fits better in cache, so each CPU core executes faster than 

the single CPU could do; total computation time decreases due to more page/cache hits. 

A superlinear speedup is welcome, but it indicates that the sequential program was being 

held back by memory/cache effects. 

Superlinear performance practically is impossible. However, parallel programmers 

do not always think of strategies that would be of common sense in case of a "real world"  

 



SHARED  MEMORY PLATFORM                                     633 

 

problem. Hence, parallelism will sometimes lead to superlinear results. But if the most 

efficient method is applied to the problem in the first place, the illusion of superlinear 

performance would never probably appear [20]. 

 
5.3 Efficiency 

Efficiency is traditionally defined as the speedup achieved divided by the number of 

utilized processors. During execution phase, each CPU core is either performing 

computation, communication (through main memory) or is being idle. The efficiency is a 

useful measure regarding the percentage of a CPU’s core time spent for useful 

computation. An efficiency of 100% means that every CPU core spends 100% of its time 

performing useful computation. In Fig. 5.3.1 is shown the efficiency of the parallel 

algorithm achieved on the shared platform in hand, for the relative speedup case. 

Although typical values for efficiency lie always in the range 0 to 1, here some values 

exceed this range because of the resulted superlinear speedup, described in section 5.2.   

 

 

   

 
Fig. 5.3.1: Efficiency 

 

 

 

5.4 Power Consumption 

In Fig. 5.4.1 is shown the power consumption by the shared memory platform according 

to the number of cores used. Standby(p) bar, represents the measured power consumption 

when all cores are in idle state, while the other bars show the power consumption for one 

to eight cores being in full active state, respectively. The power consumption of the 

platform in idle state is remarkable, due to the fact that all cores are active and thus 

consuming power irrelevant to their actual use. It must be noted that when the platform is 

in idle state, it consumes approximately the 77,35% of the total power consumed when all 

cores are in full utilization. 

 

 



634            E. M. KARANIKOLAOU AND M. P. BEKAKOS 

 

 

Fig. 5.4.1: Measured supply rate of electrical energy in Watts 

From the above analysis, it is obvious that the value of parameter, k, which represents the 

fraction of power a core consumes in idle state (rf. 3.1, 3.2, 3.3), will vary, depending on 

the number of cores utilized. Its value can be evaluated by the ratio of Wi to Wf. The 

values of k for the shared memory platform, depending on the number p of active cores, 

are given in table 5.4.1. 

 

Table 5.4.1: Evaluation of parameter k    
 

p 1 2 3 4 5 6 7 8 

k 0,9669 0,9326 0,9038 0,8738 0,8484 0,8219 0,797 0,7735 

   

 

5.5 Estimation and Evaluation of Perf/W and Perf/J Metrics 

In this section, the metrics of Perf/W and Perf/J are estimated and evaluated. The 

percentage of parallelism, f, for the given algorithm should be evaluated, prior to the 

estimation of the Perf/W and Perf/J values through formulas (3.2, 3.3). This applies to all 

selected problem sizes; thus, there are different values of parallelization percentage 

evaluated, as the parallel segment of the code is scaling up along with the problem size 

(rf. [5]). The evaluation of the parallelization percentage for each case is the ratio of the 

execution time of the segment that can be parallelized to the total execution time of the 

serial program. The values of, f, for the specific algorithm, are shown in Fig. 5.5.1. 

 

 
Fig. 5.5.1: Percentage of parallelism vs. problem size 

 



SHARED  MEMORY PLATFORM                                      635 

 

Finally, the estimated values of Perf/W and Perf/J can be evaluated. In Fig. 5.5.2(a) are 

shown the estimated values of metric Perf/W, while in Fig. 5.5.2(b) are shown the 

estimated values of metric Perf/J. 

 

  
(a) Estimated Perf/W                                                     (b) Estimated Perf/J 

Fig. 5.5.2: Estimated values of metrics Perf/W, Perf/J 

 

The evaluated metrics of Perf/W and Perf/J are presented with the performance following 

not only the time basis concept, but, also, the speedup basis concept. Measured/Evaluated 

values of Perf/W and Perf/J are normalized, rescaling the results to the unit interval; thus, 

all the results are given in a scale between 0 and 1, in order to perform a straightforward 

comparison with the estimated values when using (3.2, 3.3), since the values of Perf/W, 

Perf/J of a single-core execution have been assumed as equal to one [6]. The results of 

the algorithm for the shared memory platform are presented in the Figures below. 

 

  
(a) Evaluated Perf/W (b) Evaluated Perf/J 

Fig. 5.5.3: Evaluated values of metrics Perf/W, Perf/J in terms of time 

 

 
(c) Evaluated Perf/W 

 
(d) Evaluated Perf/J 

Fig. 5.5.4 Evaluated values of metrics Perf/W, Perf/J in terms of speedup 



 
636            E. M. KARANIKOLAOU AND M. P. BEKAKOS 

 

The diagrams given in Figs. 5.5.3 and 5.5.4 show the relation between the metrics of 

Perf/W and Perf/J taking into consideration, both, the number of cores and the problem 

sizes. All the above diagrams were calculated from the values presented in Table 5.5.1. 

From the values of the metrics that are given in Table 5.5.1 and graphically shown in 

Figs. 5.5.3 and 5.5.4, significant differences are observed between estimated and 

evaluated values. These differences are due to the fact that the estimated values are 

obtained using (3.2, 3.3), where, f, represents percentage parallelization and not time. 

This leads in a faulty estimation of the average power consumption using (3.1), since for 

the calculation of energy only pure time values are required. It should be noted that, the 

evaluated values are obtained from the ratio of the real parallel execution time or the real 

speedup achieved, respectively, to the real average power/energy consumption, as it was 

explained earlier. 

  

Table 5.5.1: Estimated and Evaluated values of metrics Perf/W and Perf/J 

Evaluated Perf/W in terms of time Evaluated Perf/J in terms of time  

  1Kx1K 2Kx2K 3Kx3K 4Kx4K 5Kx5K   1Kx1K 2Kx2K 3Kx3K 4Kx4K 5Kx5K 

1 1 1 1 1 1 1 1 1 1 1 1 

2 0,4808 0,4854 0,4785 0,4847 0,4722 2 0,9646 0,9646 0,9646 0,9646 0,9646 

4 0,1986 0,2064 0,1871 0,2048 0,1844 4 0,9041 0,9039 0,9038 0,9038 0,9037 

8 0,1001 0,1050 0,0949 0,1047 0,0937 8 0,8014 0,8007 0,8004 0,8004 0,8003 

Evaluated Perf/W in terms of speedup Evaluated Perf/J in terms of speedup 

  1Kx1K 2Kx2K 3Kx3K 4Kx4K 5Kx5K   1Kx1K 2Kx2K 3Kx3K 4Kx4K 5Kx5K 

1 1 1 1 1 1 1 1 1 1 1 1 

2 1,9353 1,9169 1,9444 1,9196 1,9703 2 3,8827 3,8093 3,9197 3,8203 4,0248 

4 4,1159 3,9579 4,3665 3,9888 4,4300 4 18,7379 17,3308 21,0961 17,6048 21,7153 

8 6,4138 6,1062 6,7498 6,1177 6,8356 8 51,3307 46,5670 56,9186 46,7601 58,3844 

                        

Estimated Perf/W  Estimated Perf/J 

  1Kx1K 2Kx2K 3Kx3K 4Kx4K 5Kx5K   1Kx1K 2Kx2K 3Kx3K 4Kx4K 5Kx5K 

1 1 1 1 1 1 1 1 1 1 1 1 

2 0,997 0,999 0,999 1,000 1,000 2 1,99 1,99 2,00 2,00 2,00 

4 0,991 0,996 0,997 0,999 0,999 4 3,925 3,966 3,978 3,996 3,996 

8 0,982 0,992 0,995 0,999 0,999 8 7,673 7,853 7,902 7,980 7,980 

 

7. CONCLUSIONS 

 

Herein, the performance evaluation of a shared memory platform, in conjunction with the 

consumed energy, was investigated. An analytical model for calculating the total energy 

consumption was also introduced. In accordance with the parallelized percentage each time, 

the performance scalability to the power/energy consumption can be calculated.  

A shared memory platform was evaluated for the power its processors/cores demand at 

the idle and fully utilized state; the estimations of the theoretical model were compared to 

the experimental results obtained on the basis of the performance/power and 

performance/energy ratio metrics. The superlinear speedup obtained, and the differences  

 



SHARED  MEMORY PLATFORM                                637                                        

 

between the estimated and the evaluated results were highlighted and justified. The fact that 

the increasing demands for faster performance in the computer domain is never satisfied 

and the need for keeping the power/energy consumption in manageable levels, urges the 

research community to invent new and more precise analytical models in order to predict 

performance and energy/power consumption in the many-core era. Moreover, new metrics 

that will describe and compare different platforms in a direct way also have to be invented. 

The use of more accurate metrics and simple analytical models at the early design 

stages, it would assist to avoid misguidance and costly decisions. While performance per 

watt is useful, absolute power requirements are also important. Claims of improved 

performance per watt may be used to mask increasing power demands. For instance, though 

newer generation GPU architectures may provide better performance per watt, continued 

performance increases can negate the gains in efficiency and the GPUs continue to consume 

large amounts of power. And, last, energy required for climate control of the computer's 

surroundings is often not counted in the wattage calculation, but it is, also, quite significant. 

 

REFERENCES 

 
1. Amdahl, G. (1967). Validity of the Single-Processor Approach to Achieving Large Scale Computing 

capabilities: AFIPS Conference Proceedings. 

2. Mudge, T. (2001). Power: A First-Class Architectural Design Constraint, Computer,  pp. 52-58. 

3. Benner, R.E., Gustafson, J.L., Montry, G.R. (1988). Development and analysis of scientific application 

programs on a 1024-processor hypercube, SAND 88-0317: Sandia National Laboratories. 

4. Shi, Y. (1996). Reevaluating Amdahl’s Law and Gustafson’s Law, Computer and Information 

Sciences Department: Temple University. 

5. Gustafson, J.L. (1988). Reevaluating Amdahl’s Law, CACM , v.31(5), pp. 532-533. 

6. Woo, D.H., Lee, H.H.S. (2008). Extending Amdahl’s Law for Energy-Efficient Computing in the 

Many-Core Era, IEEE Computer, v.41(12), pp. 24-31.  

7. Gonzalez, R., Horowitz, M. (1996). Energy Dissipation in General-Purpose Microprocessors, IEEE J. 

Solid-State Circuits, v.31(9), pp. 1277-1284. 

8. Lu, J., Guo, Y. (2011). Energy-Aware Fixed-Priority Multi-core Scheduling for Real-Time Systems, 

RTCSA-IEEE 17th International Conference Proceedings, v.1, pp. 277-281. 

9. Yang, L., Lin, M., Yang, T. (2012). Multi-core Fixed Priority DVS Scheduling, Algorithms and 

Architectures for Parallel Processing, Lecture Notes in Computer Science, v.7439, pp. 517-530. 

10. Karanikolaou, E.M., Milovanović, E.I., Milovanović, I.Ž., Bekakos, M.P. (2014). Performance 

scalability and energy consumption on distributed and many-core platforms, The Journal of 

Supercomputing, v.70.1, pp. 349-364. 

11. The OpenMP® API specification for parallel programming, Last visit: Sept.2014, http://openmp.org 

12. TYAN - server motherboards, server barebones for HPC, GPU, Cloud Computing and embedded 

applications, Last visit: Sept.2014, http://www.tyan.com 

13. AMD Server Processors, Last visit: Sept.2014, http://www.amd.com/en-us/products/server 

14. Londono, S.M., Gyvez, J.P. (2010). Extending Amdahl's Law for Energy Efficiency, ICEAC 

Conference Proceedings, pp. 1-4. 

15. Marowka, A. (2012).Extending Amdahl's Law for Heterogeneous Computing. IEEE ISPA Conference 

Proceedings, pp. 309-316. 

16. Cassidy, A.S., Andreou, A.G. (2012). Beyond Amdahl's Law: An Objective Function That Links 

Multiprocessor Performance Gains to Delay and Energy, IEEE Transactions on Computers, v.61(8), 

pp. 1110-1126.  

17. Gustafson, J.L. (1990). Fixed time, tiered memory, and superlinear speedup, Proc. Fifth Conf. on 

Distributed Memory Computers, pp. 1255-1260. 

18. Sutter, H. (2008). Effective Concurrency-Herb considers how to set superlinear speedups by 

harnessing more resources, Dr Dobb's Journal-Software Tools for the Professional Programmer, pp. 

52-55. 

 



638            E. M. KARANIKOLAOU AND M. P. BEKAKOS 

 

19. Speedup and Amdahl's law, http://people.nas.nasa.gov/~schang/origin_parallel.html#amdahl 

20. Farnham, K. (2008). Superlinearity Is Impossible; We Just Don't Always Think Correctly, Last visit: 

Sept.2014, https://software.intel.com/ 

21. Akenine-Möller, T. & Johnsson, B. (2012). Performance per What? Journal of Computer Graphics 

Techniques (JCGT), v.1(1), pp. 37-41. 

 

 

  


