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ABSTRACT. In this paper, a forced discrete chaotic viral infection model with virus-driven pro-
liferation of target cells is presented. The chaotic behavior of the proposed model is investigated.
The existence and stability of the equilibria of the skeleton are studied. Numerical simulations are
employed to show the model’s complex dynamics by means of the largest Lyapunov exponents, bi-
furcations, time series diagrams and phase portraits. Time series diagrams are used to follow the
dynamics of the model and discuss the marginal distribution of the state variables. The effects of
noise intensity on its dynamics and the intermittency phenomenon are also discussed via simulation.
An indicator of the chaotic behaviour of the asymptotic distribution of the stochastic systems is
given.
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1. INTRODUCTION

The analysis of nonlinear dynamical systems (deterministic and stochastic) has

received much attention from researchers in various fields, including physics, biology,

mathematics, engineering, etc., see [5, 8, 12–14, 18–20, 25, 27, 35]. In recent years

there has been an increasing interest in in vivo dynamics of viral infections. Most

existing mathematical models for viral infection are described by systems of ordinary

differential equations (ODEs), see [29, 32, 34, 36, 37]. Nowak and May [32] intro-

duced the standard in-host model, which describes the interactions among healthy

target cells x(t), infected virus-producing cells y(t) and free virus particles υ(t) in the

following form: 
ẋ = λ− dx(t)− βx(t)υ(t)

ẏ = βx(t)υ(t)− ay(t)

υ̇ = ky(t)− uυ(t),

where, λ is the production rate of uninfected target cells, which die at rate dx(t),

βx(t)υ(t) is the rate of infection of target cells by free virus, which die at rate ay(t),

Received March 15, 2015 1061-5369 $15.00 c©Dynamic Publishers, Inc.



88 A. ELHASSANEIN

and ky(t) is the rate of the production of new virus from infected cells, which die

at rate uυ(t).The average life-time of uninfected cells, infected cells, and free virus is

thus given by 1/d, 1/a, and 1/u, respectively. The average number of virus particles

produced over the lifetime of a single infected cell (the burst size) is given by k/a, see

also [1, 3, 6, 7, 9, 11, 24]. The proliferation of healthy T cells in the presence of virus

is often neglected in many in-host models. However, it is known that both CD8+ and

CD4+T cells specific to HIV can be directly stimulated, and that activated T cells

can stimulate other CD8+ and CD4+, [26]. Taking this into account, Shu and Wang

[34] introduced a general viral model with virus-driven proliferation of target cells in

the following form:

(1.1)


Ṫ = f(T, V )− k1h(T )g(V )

Ṫ i = k1h(T )g(V )− µ2p(T
i)

V̇ = Nµ2p(T
i)− µ3q(V )− k2h(T )g(V ),

where the function f(T, V ) denotes the intrinsic growth rate of the healthy T cells,

which includes the source of new T cells from the thymus, the natural mortality of

cells and the stimulation of T cells to proliferate in the presence of virus, k1h(T )g(V )

is the rate of new infections of T cells, which includes the rate of contact between free

virions and healthy T cells as well as the probability of cell entry per contact, µ2p(T
i)

is the rate of death of the infected cells, N id the number new virions, µ3q(V ) is

the natural death rate of free virions, k2h(T )g(V ) is the loss of free infectious virions

when they enter target cells, and k2 is assumed to satisfy k2 < Nk1. Recently there

has been an increasing interest in stochastic systems, see [10, 15, 16, 21, 22, 28, 30,

31, 38]. Parameters estimation of stochastic models is the most essential and critical

problem in parametric analysis.

The main objectives of this paper are: to present a new stochastic discrete viral

infection model with virus-driven proliferation of target cells; to investigate parame-

ters changes effects on the dynamics of the proposed model; to give a numerical evi-

dence about the chaotic behaviour of stochastic systems; and to give a novel chaotic

3-dimensional discrete time scale system (functional coefficient nonlinear autoregres-

sive model).

The organization of this paper is as follows. In section 2, a stochastic discrete

viral infection model with virus-driven proliferation of target cells is formulated. In

section 3, the stability condition of the system are derived. The simulation is used

in section 4, to discuss the analytical results, to show the effects of noise intensity

on the dynamics of the system, and to give a numerical evidence about the chaotic

behaviour of stochastic systems.
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2. THE STOCHASTIC DISCRETE MODEL

Applying the forward Euler scheme to model (1.1) we obtain a general stochastic

discrete viral infection model with virus-driven proliferation of target cells, in the

following form:

(2.1)


Tt = Tt−1 + l(f(Tt−1, Vt−1)− k1h(Tt−1)g(Vt−1)) + kεt

T it = T it−1 + l(k1h(Tt−1)g(Vt−1)− µ2p(T
i
t−1)) + kηt

Vt = Vt−1 + l(Nµ2p(T
i
t−1)− µ3q(Vt−1)− k2h(Tt−1)g(Vt−1)) + kξt,

where l is the step size, the other functions are defined as in model (1.1) and (εt, ηt, ξt)

are assumed to be an i.i.d. white noise sequence conditional upon the history of the

time series, which is denoted Ωt−1 = (Tt−1, T
i
t−1, Vt−1) that is, E[(εt, ηt, ξt)|Ωt−1] = 0

and E[ε2
t |Ωt−1] = E[η2

t |Ωt−1] = E[ξ2
t |Ωt−1] = σ2, and k is a scalar parameter of the

noise intensity. All parameters are assumed to be positive. In this paper we consider

the system (2.1), where f(Tt−1, Vt−1) = aTt−1 − T 2
t−1 − bTt−1Vt−1, h(Tt−1) = Tt−1,

g(Vt−1) = Vt−1,p(T
i
t−1) = T it−1, q(Vt−1) = α2Vt−1 + α3V

2
t−1, and a, b,α2, and α3 are

positive parameters. Then the proposed system has the form:

(2.2)


Tt = Tt−1 + l(aTt−1 − T 2

t−1 −mTt−1Vt−1) + kεt

T it = T it−1 + l(k1Tt−1Vt−1 − µ2T
i
t−1) + kηt

Vt = Vt−1 + l(α1T
i
t−1 − α2Vt−1 − α3V

2
t−1)− k2Tt−1Vt−1) + kξt,

where m = b+ k1, and α1 = Nµ2.

3. THE SKELETON

In this section we study the chaotic behaviour of the free noise system (2.2)

caused by the change of time step. Where k = 0, the system (2.2) becomes

(3.1)


Tt = Tt−1 + l(aTt−1 − T 2

t−1 −mTt−1Vt−1)

T it = T it−1 + l(k1Tt−1Vt−1 − µ2T
i
t−1)

Vt = Vt−1 + l(α1T
i
t−1 − α2Vt−1 − α3V

2
t−1)− k2Tt−1Vt−1).

Equilibria of the system (3.1) are derived in the following.

Lemma 3.1. The equilibria of the system (3.1), are E0 = (0, 0, 0), E1 = (a, 0, 0),

E2 = (0, 0,−α3

α2
) and E3 = (a−mα, bα

µ2
(a−mα), α), is a positive interior equilibrium

point for α = aµ2k2+µ2α2−aα1k1
mµ2k2−mα1k1−α3µ3

> 0 and a > bα.

Proof. The equilibria of the system (3.1) are obtained as the solution of the

algebraic system:

(3.2)


T = T + l(aT − T 2 −mTV )

T i = T i + l(k1TV − µ2T
i)

V = V + l(α1T
i − α2V − α3V

2)− k2TV
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which is obtained by setting Tt = Tt−1 = T , T it = T it−1 = T i and Vt = Vt−1 = V in

(3.1), it is easy to get the results.

Now, we study the stability of these equilibria of model (3.1). The local stability

analysis of the system (3.1) can be studied by computing the variation matrix corre-

sponding to each equilibrium. The variation matrix of the system at state variable is

given by

(3.3) J(T, T i, V ) =

 ϕ1 0 −lmT
lk1V 1− lµ2 lk1T,

lk2V lα1 ϕ2


where, ϕ1 = 1 + l(a− 2T −mV ) and ϕ2 = 1− l(α− 2 + 2α3V + k2T )

For the local stability of E0, we have the following result.

Theorem 3.1. The following conclusions hold.

A1) If l > min{ 2
µ2
, 2
α2
}, then the equilibrium E0 is a saddle point.

A2) If l > max{ 2
µ2
, 2
α2
}, then E0 is a source.

A3) If l = 2
µ2

or l = 2
α2

, then the equilibrium E0 is non-hyperbolic.

Proof. In order to prove this result, we estimate the eigenvalues of Jacobian

matrix at E0. The Jacobian matrix for E0 is

J(E0) =

 1 + la 0 0

0 1− lµ2 0

0 lα1 1− lα1

 .

Hence the eigenvalues of J(E0) are ω1 = 1 + la,ω2 = 1 − lµ2 and ω3 = 1 − lα2, and

since all parameters are positive, we have |ω1| > 1. Let l > min{ 2
µ2
, 2
α2
}, then one

of the other eigenvalues has an absolute value less than unit and the other has an

absolute value greater than unit, which completes the proof of (A1). It is easy to get

(A2) and (A3).

For the local stability of E1, we have the following result.

Theorem 3.2. If ak2 + µ2 + α2 >
√
β1 and a2k2

2 + 2aα2k2 + 4α1k1a + α2
2 + µ2

2 >

2aµ2k2 + 2α2µ2α, then

H1) E1 is asymptotically stable if 0 < l < min{β2, β3},
H2) E1 is a saddle if min{β2, β3} < l < max{β2, β3},
H3) E1 is source if l > max{β2, β3},
H4) E1 is non-hyperbolic if l = β2, or β3,

where β1 = a2k2
2 + 2aα2k2 − 2aµ2k2 + 4α1k1a + α2

2 − 2α2µ2 + µ2
2, β2 = 2

a
, and β3 =

4
ak2+µ2+α2+

√
β1

.
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Proof. The Jacobian matrix (3.3) at E1 has the form

J(E1) =

 1− la 0 −lma
0 1− lµ2 lak1

0 lα1 1− l[α2 + ak2]

 .

The eigenvalues of J(E1) are ω1 = 1− la, and ω2,3 = (1/2)[2− l(ak2 +µ2 +α2∓
√
β1)].

After some calculations, we obtain the results.

For the local stability of E2, we have the following result.

Theorem 3.3. The following conclusions hold.

M1) If 0 < l < 2
µ2

, then E2 is a saddle point,

M2) If l > 2
µ2

, then E2 is a source,

M3) if l = 2
µ2

, then E2 is non-hyperbolic.

Proof. We can get the proof by same structure in the previous theorem.

For local stability of E3 we have the following result.

Theorem 3.4 The equilibrium point E3 is asymptotically stable iff A > 0, B > 0,

C > 0, and AB > C, where A = lβ+ lµ2 + lθ−3, B = (lβ−1)(lµ2−1)+(lθ−1)(lβ+

lµ2−2)− l2βα1k1− l2mαβk2, C = lα1(lβk1(lµ2−1)+ l2mαβk1)− l2ρ+(lβ−1)(lµ2−
1)(lθ−1), θ = α2+2αα3+βk2, and ρ = (βα1k1+mαβk2)(lβ+lµ2−2)−mαβk2(lβ−1).

Proof. The proof can be obtained by the same procedure in the previous theorem

and applying Jury criterion, [33].

4. NUMERICAL SIMULATION

The main objectives of this section are: to introduce a numerical evidence about

the chaotic behaviour of the system (2.2); to discuss the interrelationship between the

dynamics of the skeleton and the complex dynamics of the stochastic system; and to

investigate the changes of parameters and noise intensity effects on the dynamics of the

stochastic system which may be regarded as an indicator of the chaotic behaviour of

the asymptotic marginal distribution of the state variables. Throughout this section,

we consider the initial point (x0, y0, z0) = (0.4, 0.3, 0.2), and other parameters a =

0.3,m = 5, k1 = 0.3, µ2 = 0.2, α1 = 0.3, α2 = 4, α3 = 6, and k2 = 0.2.

4.1. Deterministic system. In this subsection the qualitative behavior of the so-

lution of the nonlinear system (3.1) is investigate. Various numerical results are pre-

sented here to show the chaoticity including its, bifurcation diagrams, Lyapunov expo-

nents, and fractal dimension. Bifurcation diagrams of the system (3.1) are plotted on

the interval 0.1 ≤ l ≤ 0.7 in Figs. 1(a), (b), and (c). It is corresponding maximum Lya-

punov exponent is given in Fig. 1(d). A positiveness of this exponent for l > l∗ ' 0.491

confirms the chaotic character of attractors in this parametrical zone, [4] ( here, the

value l∗ ' 0.491 is a tangent bifurcation point). To show the chaotic behaviour of
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the system, phase portraits are given for different values of l in Fig. 2. For the given

parameters the only positive equilibrium point is, E∗1 = (0.3, 0, 0) which is attracting

point for 0.1 < l ≤ 0.491 as we can see in Fig. 2(a). Fig. 2(b) show the period-two

orbit in the parameter zone 0.491 < l ≤ 0.601. The period-four orbit in the parameter

zone 0.601 < l ≤ 0.624 is clear in Fig. 2(c). The period-eight orbit in the parameter

zone 0.624 < l ≤ 0.63 is clear in Fig. 3(c). The chaotic attractor for 0.63 < l ≤ 0.7

is clear in Fig. 2(d). Which means that the system (3.1) undergoes a discrete Hopf

bifurcation. One of the commonly used characteristics for classifying and quantifying

the chaoticity of a dynamical system is Lyapunov dimension, [23, 39]. Via simulation

we get three Lyapunov exponents λ1 = 1.490 > N2 = −0.136 > N3 = −2.896 for

l = 0.639, which means that dL ' 2.46. Therefor the system (3.1) exhibits a fractal

structure and its attractor has a fractal dimension which is chaotic behaviour.

4.2. Stochastic Model. In this subsection, we consider a stochastic system forced

by additive noise (2.2), where εt, ηt and ξt are uncorrelated Gaussian random pro-

cesses with parameters Eεt = Eηt = Eξt = 0, Eε2
t = Eη2

t = Eξ2
t = 1 and k is a

scalar parameter of the noise intensity. The main objectives of this subsection are:

to give a numerical evidence about the interrelationship between the dynamics of the

stochastic system and its skeleton; to discuss the phenomenon of noise-induced inter-

mittency; and to investigate the changes of parameters and noise intensity effects on

the asymptotic marginal distribution of the state variables, which may be regarded as

an indicator of stochastic chaotic distribution of the system. We study a behavior of

this stochastic system for different values of parameters l and k. In Fig. 3, bifurcations

diagrams of the system (2.2) are plotted on the interval 0.1 ≤ l ≤ 0.7 for three values

of the noise intensity k = 0.0001, 0.0003, and 0.0006. Maximum Lyapunov exponents

corresponding to each value of noise intensity are given in Fig. (4)(a), (b) and (c) re-

spectively. By comparing Figs. 1 and 3, we can see how noise deforms the determinis-

tic attractor. The dynamical characteristics are also changed (compare Lyapunov ex-

ponents in Figs. 1(d) and 4). As noise intensity increases, a border between order and

chaos moves to the left, see Fig. 4. To follow the dynamics of the system (2.2), time se-

ries, phase portraits and stochastic attractors are plotted for different values of l and k.

For l = 0.485, with low noise k = 0.0001, the states (xt, yt, zt) oscillate with low ampli-

tude around the stable deterministic equilibrium E∗1 . Random states are concentrated

near the stable deterministic equilibrium, see Figs. 5(a)− 5(c) and 10(a). With high

noise k = 0.0006, we can observe the stochastic oscillations of large amplitude and the

increase of the dispersion, see Figs. 5(d)−5(f), 10(b) and 11(a)−11(c). For l = 0.495,

the stochastic oscillations of large amplitude around the deterministic period-two orbit

(0.28516, 0.00078,−0.04050) and (0.31584,−0.00101, 0.03608), can be observed even

though for low noise intensity k = 0.0001, see Fig. 6. In this case, the stochastic sys-

tem (2.2) exhibits a coexistence of two different dynamical regimes even if the system
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(3.1) has a stable equilibrium only. This type of dynamics of the system (2.2) can be

determined as a noise-induced intermittency, [2, 17], see Figs. 6(a)−6(c), 10(c), 10(d)

and 11(d)-11(f). For l = 0.616, the stochastic oscillations of large amplitude around

the deterministic period-four orbit (0.18882, 0.00396,−0.31418), (0.38447,−0.00749,

0.10317), (0.24229, 0.00076,−0.19666), and (0.39766,−0.00814, 0.15098) can be ob-

served even though for low noise intensity k = 0.0001, see Figs. 7; 10(e), 10(f) and

11(g)-11(i). In this case, the stochastic system (2.2) exhibits a coexistence of four dif-

ferent dynamical regimes even if the system (3.1) has a stable equilibrium only. The

stochastic chaotic behaviour can be observed for l = 0.640andl = 0.670, even though

for low noise intensity k = 0.0001, see Figs. 8, 9; 10(g) − 10(j); and 11(j) − 11(o).

For stochastic dynamic characteristics, the dependence on noise level is illustrated in

Fig. 12 for l = 0.490 and l = 0.4909. To investigate the changes of parameters and

noise intensity effects on the asymptotic marginal distribution of the state variables,

we discuss it for different values of l and k. For l = 0.485, and 0 ≤ k ≤ 0.0006

the marginal distribution of the state variables is asymptotically normal, with mean

E∗1 = (0.3, 0, 0), which we may call it a stable distribution see Figs. 13(a) − 13(c),

the sample statistics are given in Table 1. As the control parameter l increases the

asymptotic distribution split into two regimes, see Figs. 13(d)−13(f) and Table 2, for

l = 0.495, then into four regimes, see Figs. 13(g)−13(i) and Table 3, for l = 0.616, and

so on until it reaches what we may call it chaotic distribution, see Figs. 13(j)−13(o),

and Tables 4 and 5, for l = 0.640 and l = 0.670, respectively. This phenomenon may

be regarded as an indicator of stochastic chaotic behaviour.

5. CONCLUSION

The current paper has presented a new stochastic discrete chaotic viral infection

model with virus-driven proliferation of target cells. The model shows rich and varied

dynamics and chaos. Local stability of equilibria have been discussed. The results

show that, for certain parametric restrictions there is a unique interior equilibrium

point which is locally stable. When the time step parameter passes a critical value

the attractor is a period-2 cycle. As the time step parameter increases, both branches

split simultaneously, yielding a period-4 cycle. This splitting is the period-doubling

bifurcation. A cascade of further period-doubling occurs as the time step parameter

increases, yielding period-8, period-16, and so on until the map becomes chaotic and

the attractor changes from a finite to an infinite set of points. The results referred

to that there is a closed relationship between the time step parameter changes and

the distribution of the states of the stochastic system. The remarkable feature of the

dynamics of the model considered here is that small noises generate large-amplitude

chaotic oscillation. The asymptotic distribution of the state variables is used as an

indicator of the chaotic behaviour of stochastic systems, which still an open problem.
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Table 1. Sample statistics of the variable state (xt, yt, zt), with initial

values (x0, y0, z0) = (0.4, 0.3, 0.2), for l = 0.475 and k ∈ [0.0, 0.0006],

where a = 0.3,m = 5, k1 = 0.3, µ2 = 0.2, α1 = 0.3, α2 = 4, α3 = 6, and

k2 = 0.2.

l = 0.485 Mean Median St.D. Skewness Kurtosis

xt 0.300 0.300 0.000 0.06 2.34

yt 0.000 0.000 0.000 0.08 2.59

zt 0.000 0.000 0.001 -0.03 2.33

Table 2. Sample statistics of the variable state (xt, yt, zt), with initial

values (x0, y0, z0) = (0.4, 0.3, 0.2), for l = 0.495 and k ∈ [0.0, 0.0006],

where a = 0.3,m = 5, k1 = 0.3, µ2 = 0.2, α1 = 0.3, α2 = 4, α3 = 6, and

k2 = 0.2.

l = 0.495 Mean Median St.D. Skewness Kurtosis

xt 0.300 0.300 0.015 0.00 -1.98

yt 0.000 0.000 0.001 -0.02 -0.11

zt -0.002 -0.001 0.038 0.00 -1.99

Table 3. Sample statistics of the variable state (xt, yt, zt), with initial

values (x0, y0, z0) = (0.4, 0.3, 0.2), for l = 0.616 and k ∈ [0.0, 0.0006],

where a = 0.3,m = 5, k1 = 0.3, µ2 = 0.2, α1 = 0.3, α2 = 4, α3 = 6, and

k2 = 0.2.

l = 0.616 Mean Median St.D. Skewness Kurtosis

xt 0.303 0.314 0.100 -0.12 -1.82

yt -0.003 -0.003 0.005 0.13 -1.74

zt -0.064 -0.044 0.196 -0.11 -1.80

Table 4. Sample statistics of the variable state (xt, yt, zt), with initial

values (x0, y0, z0) = (0.4, 0.3, 0.2), for l = 0.64 and k ∈ [0.0, 0.0006],

where a = 0.3,m = 5, k1 = 0.3, µ2 = 0.2, α1 = 0.3, α2 = 4, α3 = 6, and

k2 = 0.2.

l = 0.64 Mean Median St.D. Skewness Kurtosis

xt 0.303 0.332 0.095 -0.20 -1.73

yt -0.003 -0.005 0.006 0.21 -1.67

zt -0.071 -0.022 0.205 -0.18 -1.71
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Table 5. Sample statistics of the variable state (xt, yt, zt), with initial

values (x0, y0, z0) = (0.4, 0.3, 0.2), for l = 0.67 and k ∈ [0.0, 0.0006],

where a = 0.3,m = 5, k1 = 0.3, µ2 = 0.2, α1 = 0.3, α2 = 4, α3 = 6, and

k2 = 0.2.

l = 0.67 Mean Median St.D. Skewness Kurtosis

xt 0.306 0.341 0.091 -0.65 -0.96

yt -0.003 -0.005 0.005 0.65 -0.90

zt -0.065 -0.016 0.197 -0.60 -0.88

Figure 1. Bifurcation diagram of (3.1), for 0.1 ≤ l ≤ 0.7 for initial

point (x0, y0, z0) = (0.4, 0.3, 0.2) for: (a)xt; (b)yt; (c)zt; (d) its corre-

sponding Maximum Lyapunov exponents with a = 0.3,m = 5, k1 =

0.3, µ2 = 0.2, α1 = 0.3, α2 = 4, α3 = 6, and k2 = 0.2.
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Figure 2. Phase portrait of the system (3.1) for: (a)l = 0.490; (b)l =

0.495; (c)l = 0.616; (d)l = 0.630; (e)l = 0.640; (f)l = 0.670 with

a = 0.3,m = 5, k1 = 0.3, µ2 = 0.2, α1 = 0.3, α2 = 4, α3 = 6, and

k2 = 0.2.
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Figure 3. Bifurcation diagram of the stochastic model (2.2), with

0.1 ≤ l ≤ .7 and the initial point (x0, y0, z0) = (0.4, 0.3, 0.2) for: (a)xt;

(b)yt; (c)zt, with k = 0.0001; (d)xt; (e)yt; (f)zt, with k = 0.0003; (g)xt;

(h)yt; (i)zt, with k = 0.0006; where a = 0.3,m = 5, k1 = 0.3, µ2 =

0.2, α1 = 0.3, α2 = 4, α3 = 6, and k2 = 0.2.
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Figure 4. Lyapunov exponents of the stochastic model (2.2) with l ∈
[0.1, 0.7] for: (a)k = 0.0001; (b)k = 0.0003; (c)k = 0.0006.
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Figure 5. Time series of the stochastic model (2.2) with l = 0.485 and

k = 0.0001 for: (a)xt; (b)yt; (c)zt and with l = 0.485 and k = 0.0006

for: (d)xt; (e)yt; (f)zt, where a = 0.3,m = 5, k1 = 0.3, µ2 = 0.2, α1 =

0.3, α2 = 4, α3 = 6, and k2 = 0.2.
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Figure 6. Time series of the stochastic model (2.2) with l = 0.495 and

k = 0.0001 for: (a)xt; (b)yt; (c)zt and with l = 0.495 and k = 0.0006

for: (d)xt; (e)yt; (f)zt, where a = 0.3,m = 5, k1 = 0.3, µ2 = 0.2, α1 =

0.3, α2 = 4, α3 = 6, and k2 = 0.2.
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Figure 7. Time series of the stochastic model (2.2) with l = 0.616 and

k = 0.0001 for: (a)xt; (b)yt; (c)zt and with l = 0.616 and k = 0.0006

for: (d)xt; (e)yt; (f)zt, where a = 0.3,m = 5, k1 = 0.3, µ2 = 0.2, α1 =

0.3, α2 = 4, α3 = 6, and k2 = 0.2.



104 A. ELHASSANEIN

Figure 8. Time series of the stochastic model (2.2) with l = 0.640 and

k = 0.0001 for: (a)xt; (b)yt; (c)zt and with l = 0.640 and k = 0.0006

for: (d)xt; (e)yt; (f)zt, where a = 0.3,m = 5, k1 = 0.3, µ2 = 0.2, α1 =

0.3, α2 = 4, α3 = 6, and k2 = 0.2.
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Figure 9. Time series of the stochastic model (2.2) with l = 0.670

and k = 0.0001 for: (a)xt; (b)yt; (c)zt and with l = 0.67 and k = 0.0006

for: (d)xt; (e)yt; (f)zt, where a = 0.3,m = 5, k1 = 0.3, µ2 = 0.2, α1 =

0.3, α2 = 4, α3 = 6, and k2 = 0.2.
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Figure 10. Phase portrait of the stochastic system (3.1) for: (a)l =

0.490 and k = 0.0001; (b)l = 0.485 and k = 0.0006; (c)l = 0.495 and

k = 0.0001; (d)l = 0.495 and k = 0.0006; (e)l = 0.616 and k = 0.0001;

(f)l = 0.616 and k = 0.0006; (g) l = 0.640 and k = 0.0001; (h)l =

0.640 and k = 0.0006; (i) = 0.670 and k = 0.0001; (b)l = 0.670 and

k = 0.0006, with a = 0.3,m = 5, k1 = 0.3, µ2 = 0.2, α1 = 0.3, α2 =

4, α3 = 6, and k2 = 0.2.
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Figure 11. Attractors of the stochastic system (3.1) with k ∈
[0.0, 0.0006],and the initial point (x0, y0, z0) = (0.4, 0.3, 0.2) for: (a)xt;

(b)yt; (c)zt, with l = 0.485; (d)xt; (e)yt; (f)zt, with l = 0.495;(g)xt;

(h)yt; (i)zt, with l = 0.616;(j)xt; (k)yt; (l)zt, with l = 0.640; (m)xt;

(n)yt; (o)zt, with l = 0.670, where a = 0.3,m = 5, k1 = 0.3, µ2 =

0.2, α1 = 0.3, α2 = 4, α3 = 6, and k2 = 0.2
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Figure 11. Continued

Figure 12. Lyapunov exponents of the stochastic system (2.2) with

k ∈ [0.0, 0.0006] and the initial point (x0, y0, z0) = (0.4, 0.3, 0.2) for:

(a)l = 0.490; (b)l = 0.4909, where a = 0.3,m = 5, k1 = 0.3, µ2 =

0.2, α1 = 0.3, α2 = 4, α3 = 6, and k2 = 0.2.
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Figure 13. Asymptotic distributions of state variables (xt, yt, zt) of

the system (2.2) with k ∈ [0.0, 0.0006],and the initial point (x0, y0, z0) =

(0.4, 0.3, 0.2) for: (a)xt; (b)yt; (c)zt, with l = 0.485; (d)xt; (e)yt; (f)zt,

with l = 0.495;(g)xt; (h)yt; (i)zt, with l = 0.616;(j)xt; (k)yt; (l)zt, with

l = 0.640; (m)xt; (n)yt; (o)zt, with l = 0.670, where a = 0.3,m =

5, k1 = 0.3, µ2 = 0.2, α1 = 0.3, α2 = 4, α3 = 6, and k2 = 0.2
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Figure 13. Continued


