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ABSTRACT. In this paper, an advective-dispersive contaminant transport model with a chemical

reaction is considered. A quadratic finite volume element method (QFVEM) is presented for the nu-

merical solution of contaminant transport model. In addition, the advective-dispersive contaminant

transport equation in the presence of Gaussian white noise is considered. Time stochasticity as a

source term, spatial stochasticity as a source term, and time stochasticity in the boundary conditions

will be treated respectively. Monte Carlo method will be used in random space and quadratic finite

volume element method will be used in physical space. Numerical results demonstrate that the effect

of stochasticity of the boundaries is relatively less important than the effect of distributed-source

stochasticity on the concentration.
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1. INTRODUCTION

Practical problems [7], such as, groundwater management, groundwater pollution

control, and aquifer restoration require the use of a mathematical model to predict the

spatial distribution and time evolution of a contaminant plume in a system of aquifers

responding to a particular source. The good example is the advective-dispersive

equation, which still is the heart of dispersion model in porous media. The governing

equation for contaminant transport through homogeneous porous media is given by

(Freeze and Cherry 1979):

(1.1)
∂C

∂t
= −v

∂C

∂x
+D

∂2C

∂x2
− λC

where C is the contaminant concentration (mg/l), t the time (day), v the velocity

of flow (m/day), x the distance along the direction of flow upstream boundary of

the modeled domain (m), D the dispersion coefficient (m2/day), and λ the first-

order reaction rate constant or decay rate constant (day−1). The following initial and
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boundary conditions are considered:

C(x, 0) = f(x), C(0, t) = k(t), C(∞, t) = 0 or
∂C(∞, t)

∂x
= 0,

here f(x) is the initial concentration distribution across the aquifer, k(t) is a time-

dependent concentration at the origin.

The finite volume element method (FVEM) is a well-known numerical method

especially in the hydrodynamics field. The method has been introduced and analyzed

by Li and his collaborators since 1980s [12]. The FVEM uses a volume integral

formulation of the original problem and a finite element partition of the domain to

discretize the equations. The approximate solution is chosen from a finite element

space [4, 3, 12]. Based on the weak form of the considered problem, this method has

its own advantages: reasonable accuracy, conservation of physical quantity locally

and high efficiency, which make it be applied widely in computation fluid dynamics

[27, 26, 25, 6, 11, 31, 32]. We will use it for our following simulations when noise is

added in.

In addition, the convection-dominated diffusion problem has strongly hyperbolic

characteristics, therefore constructing a numerical method to solve such a problem is

difficult. When use central difference method, although it has second-order accuracy,

it produces numerical diffusion and oscillation near discontinuity. Douglas and Russell

used the character finite element method and character finite difference method [5]

to overcome the difficulties. Tabata and his collaborators have been studying upwind

schemes for the convection-diffusion problem since 1977 [1, 22, 23]. Yuan presented

an upwind finite difference fractional step method [29] and a character finite element

alternating direction method [30] for simulation in high-dimensional situation. Many

other techniques have been proposed to overcome the method instability in order to

improve the solution accuracy [8, 10, 16, 21].

With the above consideration, we mainly provide a quadratic finite volume ele-

ment method (QFVEM) due to the ease of implementation. The efficiency and con-

vergence order of the method are investigated. We achieve balance between obtaining

reliable control of the error and efficient use of the available computational resources.

There are various approaches in deriving finite volume element approximations of

advective-dispersive equation (see, for instance [13, 15, 17, 24]).

So far, most attention was paid to the advective-dispersive equation with or

without reaction in homogeneous porous media, ignoring the effects from the circum-

stances. We know that the solution of the advective-dispersive equation in porous

media is subject to very special circumstances. It is necessary for a method capable of

solving this equation and predicting the time and space evolution of the contaminant

migration in aquifers subject to any size or any form of stochasticity. The objective

of the present paper is to study different sources of stochasticity affecting the process
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of mass transport and their individual effects on the behaviour of the output con-

centration of the system. We use a well-known stochastic process in the examples,

namely the white Gaussian process [9, 28]. We do so for simplicity and because the

properties of this process closely resemble many physically-realizable processes after

the deterministic trend has been removed.

The general stochastic advective-diffusion equation [18, 19, 20] in porous media

may be treated as a stochastic evolution equation of the form

∂C

∂t
−D

∂2C

∂x2
+ v

∂C

∂x
+ λC = g(x, t, ω),(1.2a)

C(0, t) = k(t, ω), C(∞, t) = 0, C(x, 0) = f(x),(1.2b)

where g(x, t, ω) represents a stochastic source or sink disturbing the system, k(t, ω)

is the time-dependent concentration process at the origin.

In this paper, we will employ Monte Carlo method [9, 27, 14, 28] for discretization

in random space and QFVEM [12, 31, 32] for discretization in physical space. The

advantage of Monte Carlo method is clear, i.e., ease of implementation for complex

problems, which makes it popular in stochastic computations. We shall illustrate the

application of the above methods to the solution of the advective-dispersive equa-

tion in porous media subject to either time stochasticity as a source term, spatial

stochasticity as a source term, and time stochasticity in the boundary conditions.

The primary objective of the current work is to study the influence of a noise term

on the evolution of concentration.

The article is organized as follows. Our numerical method is described in sec-

tion 2, which will give numerical results for deterministic problems. In section 3,

we present numerical results for the stochastic advective-dispersive equation with

different cases of stochasticity. The conclusions are summarized in the last section.

2. NUMERICAL METHOD

Consider Eq. (1.1) in the interval [0, l], let C ∈ C1[0, l] ∩ C2(0, l) be the solution

of Eq. (1.1), and H1
E[0, l] = {w ∈ H1[0, l] : w(l) = 0}. Use any function w ∈ H1

E[0, l]

(called a test function) to multiply (1.1) and integrate it on [0, l] using integration by

parts, then apply the boundary conditions, we obtain the variational problem related

to (1.1) is: Find C = C(·, t) ∈ H1[0, l], (0 ≤ t ≤ T ) such that

(2.1)

(

∂C

∂t
, w

)

+ A(C,w) = (f, w),

where f = λC, (·, ·) denotes the inner product of L2([0, l]) andA(C,w) =
∫ l

0

(

D ∂C
∂x

∂w
∂x

+

v ∂C
∂x
w

)

dx.
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2.1. Finite volume element schemes. The region [0, l] can be decomposed into a

grid Th with a set of evenly spaced nodes

0 = x0 < x1 < x2 < · · · < xN−1 < xN = l.

Denote Th = {Ii : Ii = [xi−1, xi], i = 1, 2, . . .N}, h = xi − xi−1. To obtain quadratic

basis functions, we use the midpoints xi−1/2 = (xi + xi−1)/2 of the element Ii as the

interpolation points. Accordingly we place a dual grid T ∗
h with nodes

0 = x0 < x1/4 < x3/4 < · · · < xN−3/4 < xN−1/4 < xN = l,

where xi−k/4 = xi −
k
4
h, (k = 1, 3; i = 1, 2, . . .N). Then the dual elements are consti-

tuted by two groups: T ∗
h = {I∗i−1/2 : I∗i−1/2 = [xi−3/4, xi−1/4], i = 1, 2, . . . , N} ∪ {I∗i :

I∗i = [xi−1/4, xi+1/4], i = 1, 2, . . . , N − 1.I∗0 = [x0, x1/4], I
∗
N = [xN−1/4, xN ]}.

Select trial function space Ch as the quadratic element space of Lagrange type

with respect to Th. The basis functions with respect to the nodes xi and xi−1/2 are

as follows:

φi(x) =

{

(2 |x−xi|
h

− 1)( |x−xi|
h

− 1), xi−1 ≤ x ≤ xi+1,

0, elsewhere,

φi−1/2(x) =

{

4(1 − x−xi−1

h
)x−xi−1

h
, xi−1 ≤ x ≤ xi,

0, elsewhere.

Then the numerical solution ch for Eq. (1.1) can be uniquely written as

(2.2) ch =
N

∑

i=1

[uiφi(x) + ui−1/2φi−1/2(x)],

where ci = ch(xi, t), ci−1/2 = ch(xi−1/2, t). So in the element Ii, we have

ch = ci−1(2µ− 1)(µ− 1) + 4ci−1/2µ(1 − µ) + ci(2µ− 1)µ,

c
′

h = ci−1(4µ− 3)/h+ ci−1/2(−8µ+ 4)/h+ ci(4µ− 1)/h,

where µ = (x− xi−1)/h.

The test function space Wh corresponding to T ∗
h is taken as the piecewise constant

function space. The test functions of the nodes xj and xj−1/2 are

ψj(x) =

{

1, xj−1/4 ≤ x ≤ xj+1/4,

0, elsewhere,

ψj−1/2(x) =

{

1, xj−3/4 ≤ x ≤ xj−1/4,

0, elsewhere.

Any wh ∈Wh can be uniquely expressed as

wh =
N

∑

j=1

[wjψj(x) + wj−1/2ψj−1/2(x)],
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where wj = wh(xj , t), wj−1/2 = wh(xj−1/2, t).

Corresponding to the above chosen subspaces Ch and Wh, substituting (2.2) into

(2.1), and using the backward Euler scheme to discretize the time derivation, we

obtain the following fully-discrete QFVEM scheme:
(

cn+1
h − cnh

∆t
, wh

)

+ A(cn+1
h , wh) = (f(cn+1

h ), wh), ∀wh ∈Wh,

which can also be written as

(2.3)



































































h

2△t
(cn+1

j − cnj ) =
2D

h
(cn+1

j+1/2 − 2cn+1
j + cn+1

j−1/2)−

v

(

1

8
cn+1
j−1 −

3

4
cn+1
j−1/2 +

3

4
cn+1
j+1/2 −

1

8
cn+1
j+1

)

−
λh

2
cn+1
j ,

j = 1, 2, . . . , N − 1,

h

2△t
(cn+1

j−1/2 − cnj−1/2) =
2D

h
(cn+1

j − 2cn+1
j−1/2 + cn+1

j−1 )−

v

(

1

2
cn+1
j −

1

2
cn+1
j−1

)

−
λh

2
cn+1
j−1/2, j = 1, 2, . . . , N,

where ∆t is time step size, cnj = cj(n∆t).

2.2. Numerical experiments. In this section, we validate the QFVEM schemes on

the deterministic problem. Now we define the following error norms:

L∞ = max |Cn
i − (ch)

n
i |, L2 =

√

√

√

√

N
∑

i=1

(Cn
i − (ch)

n
i )2h.

The convergence rate is computed by applying the formula

(2.4) r =
1

ln(2)
ln(

‖c2h,j − Cj‖

‖ch,j − Cj‖
),

where c2h is the numerical solution with space step size 2h, C is the analytic solution,

and N is the number of nodes.

Consider the following initial-boundary value problem

∂C

∂t
=
∂C

∂x
+ 0.001

∂2C

∂x2
+ 0.001C, (x, t) ∈ [0, 2π] × [0, T ],(2.5a)

C(x, 0) = sin x, C(0, t) = sin t, C(2π, t) = sin(2π + t).(2.5b)

The exact solution of (2.5) is C(x, t) = sin(x+ t). Using the method presented above,

we can obtain the QFVEM schemes of (2.5). The problem is solved at T = 5.

The L2 and L∞ error norms are displayed in Table 1 with ∆t
h2 = 1. Examination of

the table shows that the error measures of the finite volume element schemes diminish

quadratically as the space step size becomes halved and time step size becomes a

quarter, which is consistent with the use of quadratic element space of Lagrange

type. We compare the relative error between QFVEM and finite difference method
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(FDM) in Fig. 1 and Fig. 2, it is much obvious that QFVEM is more accurate than

FDM.
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Figure 1. Comparison of relative error between QFVEM (left) and

FDM (right) at T=5 with N=20 and ∆T = 1
1000
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Figure 2. Comparison of relative error between QFVEM (left) and

FDM (right) at T=5 with N=40 and ∆T = 1
1000

.

Table 1. Error norms of numerical solution at various resolutions us-

ing FVEM.

h L∞ error r L2 error r
2π
40

9.1907e-002 7.9084e-002
2π
80

2.0593e-002 2.16 1.7452e-002 2.18
2π
160

4.7574e-003 2.00 4.3135e-003 2.03
2π
320

1.1370e-003 2.06 1.0887e-003 1.99
2π
640

2.6093e-004 2.12 2.7257e-004 2.00
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3. NUMERICAL SIMULATION OF THE STOCHASTIC

ADVECTIVE-DISPERSIVE EQUATION

In this section we present some numerical results on evolution of concentration

in the presence of noise. We will perform Monte Carlo simulation to obtain some

significant statistical information. In Monte Carlo method [9, 14, 28], we need gen-

erate realizations of random inputs based on a prescribed probability distribution.

For each realization the data are fixed and the problem becomes deterministic. Upon

solving the deterministic equations with one realization, we can collects an ensemble

of solutions. From this ensemble the influence of noise on the concentration will be

numerically investigated.

3.1. Case 1: A distributed source problem. Time stochasticity. The advective-

dispersive equation with stochastic force may be used to model the effect of unknown

environment quantities affecting the concentration distribution, errors in the estimate

of parameter values, errors generated in the development of the model, and uncertain

chemical reactions between the fluid and the porous matrix.

In this section, we study the kind of problems when a time-stochastic distributed

source dominates the uncertainty of the system. We consider that the random func-

tion g in Eq. (1.2) is a white Gaussian noise process in time and smooth in space, the

boundary condition k(t) is a constant source function C0. Eq. (1.2) becomes

∂C

∂t
−D

∂2C

∂x2
+ v

∂C

∂x
+ λC =

dB(t)

dt
,(3.1a)

C(0, t) = C0, C(∞, t) = 0, C(x, 0) = 0,(3.1b)

where dB(t)
dt

= ω is a white Gaussian process with mean zero δ−correlated:

(3.2) 〈ω(t)〉 = 0, 〈ω(t1)ω(t2)〉 = qδ(t2 − t1),

here 〈·〉 means average, q is the variance parameter and B represents Brownian motion

or Winner process [9, 28]. The solution to Eq. (3.1) is now considered to be a random

variable. Eq. (3.1) is called a stochastic partial differential equation, with C(x, t, ω)

now depending on a random noise term. The finite volume element schemes of (3.1)
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become:

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















h

2△t
(cn+1

j − cnj ) −
2D

h
(cn+1

j+1/2 − 2cn+1
j + cn+1

j−1/2)+

v

(

1

8
cn+1
j−1 −

3

4
cn+1
j−1/2 +

3

4
cn+1
j+1/2 −

1

8
cn+1
j+1

)

+
λh

2
cn+1
j =

h

2△t
(Bn+1

j −Bn
j ), j = 1, 2, . . . , N − 1,

h

2△t
(cn+1

j−1/2 − cnj−1/2) −
2D

h
(cn+1

j − 2cn+1
j−1/2 + cn+1

j−1 )+

v

(

1

2
cn+1
j −

1

2
cn+1
j−1

)

+
λh

2
cn+1
j−1/2 =

h

2△t
(Bn+1

j−1/2 − Bn
j−1/2),

j = 1, 2, . . . , N.

We are interested in seeing how the FVEM scheme compares to the deterministic

solution when noise is introduced and the ensemble average is computed. An average

pore velocity v = 0.2 (m/day), a dispersion coefficient D = 0.01 (m2/day), a concen-

tration at the original C0 = 10.0 (mg/l), and a reaction rate constant λ = 0.01 are

assumed. The value of q is entirely arbitrary here. We take N = 80 and ∆t = h2 in

our simulation. Each of these runs is done over the space interval [0, 40], where a run

is defined as one realization of the solution, these solutions are then averaged over

400 runs. Fig. 3 shows the stochastic concentration at x = 5 (m) from 200 runs to

500 runs. Obviously, there is no significant differences between the results of different

runs. Consider the cost of time, we will choose runs=500 in the following.

Fig. 4 is a plotter output of the program for points in space x = 2.5 (m) and

x = 5 (m) from the original with q = 0.05, the solid line represents the evolution with

time of mean concentration, the continuous sinuous line represents the concentration

without noise. The exact measurement of the dispersion around the mean is given by

the standard deviation in Fig. 5, which is a plotter with the same variance parameter

q = 0.05 at x = 2.5 (m), x = 5 (m) and x = 5 (m) in space. The mean concentration

coincides with the deterministic solution, whereas the sample concentration oscillates

above and below the mean concentration and the departure from the mean increases

as time increases. The effect of stochasticity becomes greater with the distance from

original increasing. Fig. 6 presents the situation when we increase the variance pa-

rameter to q = 0.5. We can see that the effect on the concentration becomes more

obvious as q gets larger. The results indicate a Brownian type of behaviour, as we

have expected.

A model like this presented in this section may partially explain the stochastic

nature of the concentration in an aquifer. The information collected may help in the

identification and parameter estimation of the stochastic process involved, and the

model could be used to forecast the statistical properties of the concentration.
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Figure 3. Stochastic concentration in space at x = 5 (m) from 200

runs to 500 runs, with q = 0.05.
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Figure 4. Stochastic concentration in space x = 2.5 (m) and x = 5

(m) from the origin in Case 1, with q = 0.05.
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Figure 5. Standard deviation in space x = 2.5 (m), x = 5 (m) and

x = 7.5 (m) from the origin in Case 1, with q = 0.05.

3.2. Case 2: A distributed source problem. Space stochasticity. Another

interesting case arises when the function g in Eq. (1.2) is a stochastic process in space

and smooth in time. This occurs when a source randomly distributes in time and
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Figure 6. Standard deviation in space x = 5 (m) from the origin in

Case 1, with q=0.05 and q=0.1.

space, or a reaction term poses a random in time and space behavior. We explore the

situation in which g(x, t, ω) is a white Gaussian process in space. Eq. (1.2) becomes

∂C

∂t
−D

∂2C

∂x2
+ v

∂C

∂x
+ λC =

dB(x)

dx
,(3.3a)

C(0, t) = C0, C(∞, t) = 0, C(x, 0) = 0,(3.3b)

where dB(x)
dx

= ω is a white Gaussian process with zero mean and δ−correlated corre-

lation structure:

〈ω(x)〉 = 0, 〈ω(x1)ω(x2)〉 = qδ(x2 − x1).

The finite volume element schemes of (3.3) become

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Again this problem could be solved similarly to (3.1). The initial conditions, time and

space size and other parameters are the same as the Case 1, except that the variance

parameter is chosen as q = 0.01.

Fig. 7 shows the concentration distribution at different positions. We can see from

them that the contaminant concentration varies as time changes and the mean values

of concentration coincide with the deterministic solution. From Fig. 8, we get crucial
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result which indicates a direct increase in the statistical dispersion of the concentration

around the mean with time increasing. This implies that the time component is

as important as the spatial component. Meanwhile they show a Brownian type of

behaviour, as we have expected.
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Figure 7. Stochastic concentration variation as time changes from 10

(days) to 40 (days) in Case 2, where q = 0.01.
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Figure 8. Standard deviation variation as time changes from 10

(days) to 30 (days) in Case 2, where q = 0.01.

3.3. Case 3: Stochasticity in the boundary conditions. We consider another

important case where the boundary condition is a stochastic function in time. It

appears in situation where there is a high degree of uncertainty with the history

deposition of solid or liquid wastes in the groundwater system.

Let us consider the case of (1.1) when the function k(t) is described by a white

Gaussian process in time ω(t) with the properties described by (3.2):

∂C

∂t
−D

∂2C

∂x2
+ v

∂C

∂x
+ λC = 0,(3.4a)

C(0, t) = w(t, ω), C(∞, t) = 0, C(x, 0) = 0.(3.4b)
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Figure 9. Stochastic concentration (left) and the standard deviation

(right) of Case 3 at x = 0.5 (m) with q = 0.1.

This problem could be solved in space interval [0, 10] and T = 20 (days). We take

N = 80, ∆t = h2 as before. In our numerical simulations we add Gaussian noise

ω(t) to produce the stochastic boundary condition C(0, t) = C0 + ω(t). The other

parameter values are the same as in Case 1 except the variance parameter q.

Fig. 9 and Fig. 10 show the stochastic evolution of the concentration with respect

to time at x = 0.5 (m) and x = 4.0 (m) respectively with q = 0.1. Standard deviations

are also given which have magnitudes of 10−14 and 10−15 respectively. That means

time stochasticity at the boundary has little effect on the concentration. When we

increase the variance parameter value to q = 1 in Fig. 11, the standard deviation has

no obvious variation.

The results indicate that the effect of time stochasticity at the boundary decreases

as the distance from the boundary increases. This of course depends on the type

and variance of the disturbing process, but in general the concentration variance

approaches to zero beyond several meters of distance from the boundary and the

process is then governed by the mean source concentration. This indicates that the

effect of stochasticity at the boundaries is relatively less important than the effect

of distributed-source stochasticity on the overall stochasticity of the concentration

distribution.

4. CONCLUSIONS

In this paper, we have numerically studied the advective-dispersive equation in

the presence of stochastic force. In order to do so we design second-order finite volume

element scheme for the considered problem. Numerical results demonstrate that the

scheme can be used to solve advective-dispersive equation. In addition, the stochastic

force would affect the distribution of contaminant concentration. Particularly, time

stochasticity as a source term or spatial stochasticity as a source term have a stronger

effect than time stochasticity in the boundary conditions.
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Figure 10. Stochastic concentration (left) and the standard deviation

(right) of Case 3 at x = 4.0 (m) with q = 0.1.
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Figure 11. Stochastic concentration (left) and the standard deviation

(right) of Case 3 at x = 4.0 (m) with q = 1.
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