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ABSTRACT. In this paper, we present a new numerical approximation to the solution of the
vector-valued Abel integral equation. We first convert the integral equation into an algebraic equa-
tion using Laplace transformations. Then, we use rational inversion formulas for the Laplace trans-
form introduced by Jara et. al. [5] in 2012. We apply our method to several examples and present
error estimates which illustrate a fast rate of convergence.
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1. Introduction

Integral equations evolve naturally in many applications including those in biol-

ogy, physics, engineering and chemistry [2]. Some of the earliest integral equations

were the Abel’s integral equations ([2], [8]). These equations were derived by Neils

Abel in 1823 [1] when he generalized the tautochrone problem which was first solved

by Huygens in 1659 [4]. Traditionally, there are two general forms for Abel’s integral

equations: the first kind given by

(1.1) f(x) =

∫ x

0

u1(t)

(x− t)α
dt

and second kind given by

(1.2) u2(x) = f(x) +

∫ x

0

u2(t)

(x− t)α
dt,

where 0 < α < 1, f(x) ∈ C[0, 1] and is a known function, 0 ≤ x, t ≤ 1, and u(x) is an

unknown function to be determined. Throughout the years, there have been several

methods for solving these integral equations using a variety of techniques including

Chebyshev [10] and orthogonal polynomials [16], wavelets ([8], [17], [18]), Abomian

decomposition ([11], [12], [13]), and Laplace decomposition [15] just to name a few.

In more recent years, Yang [7] and Huang et. al. [6] use Taylor expansion to

get approximate solutions to Abel’s integral equations of the first and second kind.
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Our study will use rational inversion formulas for the Laplace transform, first in-

troduced by Jara et. al. [5], to get numerical approximations for solutions to Abel’s

integral equations. These formulas only require the solution to be continuous and

exponentially bounded and come with error estimates for sufficiently smooth func-

tions. Therefore, the method used in this paper will not assume the existence of the

Taylor expansion for the solution. Furthermore, the method works for functions with

values in a Banach space. We then present several examples to show a fast rate of

convergence.

2. A- stable Padé approximants to the exponential and Laplace transform

We begin this section by taking the Laplace transform of Abel’s integral equations

of the first and second kind. We then provide an outline of the inversion formula

inversion formula for the Laplace transform presented in [5]. For further details of

the inversion formula, the reader is encouraged to see [5] or [9].

2.1. Laplace transform and convolution. Similar to [7], in order to solve Abel’s

integral equations of the first and second kind, we first apply the Laplace transform

to equations (1.1) and (1.2). Doing this, we get

(2.1) L[f(x)] = L
[∫ x

0

u1(t)

(x− t)α
dt

]
and

(2.2) L[u2(x)] = L[f(x)] + L
[∫ x

0

u2(t)

(x− t)α
dt

]
.

By the convolution property and linearity of the Laplace transform, equations (2.1)

and (2.2) become

(2.3) L[f(x)] = L [u1(x)]L
[
x−α

]
and

(2.4) L[u2(x)] = L[f(x)] + L [u2(x)]L
[
x−α

]
,

respectively. After we solve for L[ui(x)], i = 1, 2, we will use the inversion formulas

for the Laplace transform presented in [5] to get a numerical approximation for the

unknown function ui(x), i = 1, 2.

2.2. Inversion formula for the Laplace transform. We now give an outline for

the inversion formula given in [5]. To see the fundamental structure of the procedure,

we consider the shift semigroup

T (t)u(s) := u(t+ s),

which can be shown to be strongly continuous (see [19] or [9]) on the space of con-

tinuous functions vanishing at infinity denoted by (C0(R+, X), || · ||∞), where X is
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a Banach space and the generator A of T is given by the derivative A = d
ds

. One

formally thinks of T as the operator etA acting on the Banach space C0 for each

t ≥ 0. Since the resolvent operator R(λ,A) is known to be the Laplace transform of

the semigroup T , one obtains that

R(λ,A)u = (λI − A)−1u =

∫ ∞
0

e−λtT (t)u dt,

for all λ ∈ C+ and u ∈ X. In particular, if one denotes the Laplace transform of u

by L[u](λ) :=
∫∞

0
e−λtu(t)dt, then

R(λ,
d

ds
)u(0) =

∫ ∞
0

e−λtT (t)u(0)dt =

∫ ∞
0

e−λtu(t)dt = L[u](λ),

for λ ∈ C+. Furthermore, since Rn+1(λ,A) = (−1)n

n!
R(λ,A)(n) for all n ∈ N where

R(n) denotes the nth-derivative of R with respect to λ, one obtains that

(2.5) R(λ,
d

ds
)n+1u(0) =

(−1)n

n!

dn

dλn
R(λ,

d

ds
)u(0) =

(−1)n

n!
L[u](n)(λ).

In the celebrated paper of Benner and Thomée [21], the authors showed that if

r is any A-stable rational approximation to the exponential function of order m ≥ 1

(i.e., |r(z)| ≤ 1 and r(z) = ez + O(|z|m+1) as z → 0) and T is the generator of a

bounded strongly continuous semigroup T with generator A, then there exists Cm > 0

such that

sup
s∈[0,∞)

∥∥∥∥rn( tnA
)
u(s)− T (t)u(s)

∥∥∥∥
X

≤ Cm
tm+1

nm
‖Am+1u‖∞.

and limn→∞ r
n
(
t
n
A
)
u = T (t)u uniformly on compact intervals of t ∈ [0,∞) for all u.

In particular, for the shift semigroup on C0(R+, X), one obtains that

(2.6)

∥∥∥∥rn( tn d

ds

)
u(0)− T (t)u(0)

∥∥∥∥
X

≤ Cm
tm+1

nm
‖u(m+1)‖∞,

and limn→∞ r
n
(
t
n
d
ds

)
u(0) = u(t) uniformly on compact intervals.

If one uses partial fraction decomposition on an A-stable rational approximation

to the exponential r accurate of order m ≥ 1, then there exists constants B0, Bn,i,j,

bi ∈ C with Re(bi) > 0, and d, ri ∈ N (where d is the number of poles of r and ri is

the multiplicity of the pole bi) such that

rn(z) = Bn
0 +

d∑
i=1

n·ri∑
j=1

Bn,i,j

(bi − z)j
.

Upon application of the Hille-Phillips functional calculus together with (2.5), one

obtains

(2.7) rn
(
t

n

d

ds

)
u(0) = Bn

0 u(0) +
d∑
i=1

n·ri∑
j=1

Bn,i,j

(
n

j

)j
(−1)j

(j − 1)!
L[u](j−1)

(
bin

t

)
.
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If additionally one considers the A-stable rational approximations to the exponential

given by the subdiagonal Padé approximants, then B0 = 0 and the formula given by

(2.7) depends only on the Laplace transform of u and the underlying rational function

r. Notice that in the general case, u(0) = limλ→∞ λL[u](λ), and one can use any A-

stable rational approximation to the exponential of order m ≥ 1 provided one first

calculates these limit. However, for simplicity, we consider here rational functions

given by the subdiagonal Padé approximants. Thus, the rational inversion formula

for the Laplace transform is given by

(2.8) L−1
r,n[L[u]](t) :=

d∑
i=1

n·ri∑
j=1

Bn,i,j

(
n

j

)j
(−1)j

(j − 1)!
L[u](j−1)

(
bin

t

)
.

Now, as in [9], one defines the error function Er(n, t, u) := ||L−1
r,n[L[u]](t)− u(t)||X . It

then follows from (2.6) that

Er(n, t, u) ≤ Cm
tm+1

nm
||u(m+1)||∞,

for sufficiently smooth functions u, and limn→∞ L−1
r,n[L[u]](t) = u(t) uniformly on

compact intervals for all u ∈ C0.

In [20], the author showed that all of the previously described results hold for a

class wider than the one of strongly continuous semigroups which includes the shift

semigroup on the space of bounded and continuous functions and, more generally, on

the space of exponentially bounded functions denoted by

Cb,ω := {u : [0,∞)→ X : ‖u(t)‖ ≤Meωt}

with norm ‖u‖ω,∞ := supt≥0 |e−ωtu(t)|. However, in the later case, an extra eωt term

appears on the right side of the error estimate (2.6). In this way, one obtains the

following result:

Theorem 2.1. Let u1 and u2 be the solutions of the first and second order Abel’s Inte-

gral Equation (1.1) and (1.2) respectively and let r be a subdiagonal Padé approximant

of order m ≥ 1. If u1, u2 ∈ Cm+1
b,ω ([0,∞), X), then

(2.9)

∥∥∥∥∥L−1
r,m

[
(·)1−αL[f ]()̇

Γ(1− α)

]
− u1(t)

∥∥∥∥∥
X

≤ Cm
eωttm+1

nm
||u(m+1)

1 ||ω,∞,

and

(2.10)

∥∥∥∥L−1
r,m

[
(·)1−αL[f ](·)

(·)1−α − Γ(1− α)

]
− u2(t)

∥∥∥∥
X

≤ Cm
eωttm+1

nm
||u(m+1)

2 ||ω,∞.

Furthermore,

(2.11) lim
n→∞

L−1
r,m

[
(·)1−αL[f ](·)

Γ(1− α)

]
= u1(t) and lim

n→∞
L−1
r,m

[
(·)1−αL[f ](·)

(·)1−α − Γ(1− α)

]
= u2(t)

uniformly on compact intervals for all u ∈ Cb,ω([0,∞), X).
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Notice that if t ∈ [0, 1], the error estimate for the approximation of ui is smaller

than Cmeω

nm ‖u(m+1)
i ‖ω,∞ for ω ≥ 0 or than Cm

nm ‖u(m+1)
i ‖ω,∞ for ω < 0.

3. Numerical examples

In this section, we provide examples which are revisited from [6] and [7]. As

mentioned in Section 2, we will be using the rational functions given by the subdi-

agonal Padé approximants for all of the examples that follow. More specifically, we

use [9/10] subdiagonal Padé approximants in Examples 1 and 2 and use [2/3] and

[9/10] subdiagonal Padé approximants in Example 3. We use a program written in

Mathematica to calculate the Padé approximants and the values in the examples.

Example 1 The following example is the same as Example 3 in [6]. Consider

the Abel equation of the first kind

(3.1)

∫ x

0

u(t)

(x− t)1/2
dt = ex − 1.

Taking the Laplace transform of both sides of (3.1), we get from the convolution

property of the Laplace Transform,

L[u]L[x1/2] = L[ex − 1].

This implies that L[u] = L[ex−1]

L[x1/2]
. The exact solution of (3.1) can be computed to be

u(x) = exerf(
√
x)√

π
. Table 1 gives the exact values for u(x), the approximation using the

method in [6] with n = 3, and the approximation using the rational inversion formula

outlined in section 2. We see that although the method used in [6] is quite accurate,

the rational inversion formula method presented in section 2 is more accurate for this

example.

x Exact Huang et al. (n = 3) Rational Inversion Formula

0.1 0.21529 0.21629 0.21547

0.2 0.32588 0.32727 0.326137

0.3 0.42757 0.42925 0.427876

0.4 0.52933 0.53126 0.529691

0.5 0.63503 0.63715 0.635432

0.6 0.74704 0.74933 0.747478

0.7 0.86719 0.86962 0.86766

0.8 0.99709 0.99963 0.997594

0.9 1.13830 1.14091 1.13883

1 1.29239 1.29503 1.29295

Max Abs. Err. 2.647× 10−3 5.632× 10−4

Table 1. Comparision of our method to Huang et al. in [6].
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Example 2 The following example is the same as Example 5.3 in [7]. Consider

the Abel equation of the second kind

(3.2) u(x) = 2
√
x−

∫ x

0

u(t)

(x− t)1/2
dt, x ∈ [0, 1].

Taking the Laplace transform of both sides of (3.2), we get from the convolution

property and linearity of the Laplace Transform,

L[u] =
L[2
√
x]

1 + L[x−1/2]
.

The exact solution of (3.2) can be computed to be u(x) = 1 − eπxerfc(
√
πx). We

then apply (2.8) to L[u]. In [7], the author compares his result with two other meth-

ods presented in [22], the Chebyshev wavelets method and the block-pulse functions

(BPFs) method. Table 2 gives the exact values for u(x), the approximations from

three of the methods in Yang’s table 1 [7], and the approximation using the ratio-

nal inversion formula outlined in section 2. We see again that the rational inversion

formula method presented in section 2 is extremely accurate. Our method does out

perform the wavelet method and the BPF method but is slightly less accurate than

the method of Yang in [7] for this example.

x Yang([4/4]) Wavelets method (k = 0,M = 16) BPFs method (m = 16) Rational Inversion Formula

0.1 4.33846× 10−9 1.62983× 10−3 1.15872× 10−2 5.31211× 10−6

0.2 4.87786× 10−8 2.82352× 10−3 1.13995× 10−2 7.40412× 10−6

0.3 1.82276× 10−7 1.89633× 10−3 9.55367× 10−3 9.26409× 10−6

0.4 4.42272× 10−7 1.43922× 10−3 1.68378× 10−3 1.05841× 10−5

0.5 8.53771× 10−7 1.32002× 10−3 7.61903× 10−3 1.17567× 10−5

0.6 1.43214× 10−6 1.21446× 10−3 1.53846× 10−3 1.27792× 10−5

0.7 2.18575× 10−6 9.86938× 10−4 3.09894× 10−3 1.39448× 10−5

0.8 3.11805× 10−6 2.45968× 10−4 2.98197× 10−3 1.49093× 10−5

0.9 4.22898× 10−6 2.45968× 10−4 7.08482× 10−4 1.056083× 10−5

Table 2. Comparision of absolute errors to the results in [7].

Example 3 The following example is the same as Example 5.2 in [7]. Consider

the Abel equation of the first kind

(3.3)

∫ x

0

u(t)

(x− t)1/2
dt = e−x − 1.

Taking the Laplace transform of both sides of (3.3), we get from the convolution

property of the Laplace Transform,

L[u]L[x1/2] = L[e−x − 1].

This implies that L[u] = L[e−x−1]

L[x1/2]
. The exact solution of (3.3) can be computed to be

u(x) = ie−xerf(
√
−x)√

π
. We then apply (2.8) to L[u]. Table 3 gives the exact values for
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u(x) and the approximation using the rational inversion formula, which we will signify

as RIF, outlined in section 2 with [2/3] and [9/10] subdiagonal Padé approximants.

We see again that the rational inversion formula method presented in section 2 is

extremely accurate for this example.

x Exact RIF (Padé [2/3]) RIF (Padé [9/10])

.1 -0.188418 -0.186286 -0.188597

.2 -0.249615 -0.246571 -0.249869

.3 -0.286649 -0.282883 -0.286961

.4 -0.310643 -0.306249 -0.311003

.5 -0.326265 -0.321300 -0.326668

.6 -0.336073 -0.330573 -0.336514

.7 -0.341666 -0.335657 -0.342144

.8 -0.344130 -0.337628 -0.34641

.9 -0.344235 -0.337252 -0.344777
1 -0.342552 -0.335095 -0.343124
Max Abs. Err. 7.457× 10−3 5.719× 10−4

Table 3

Figure 1. Comparison of the exact solution and the subdiagonal Padé approximants.

4. Conclusion

In this paper, we provide a new numerical method for solving Abel’s integral

equations of the first and second kind. We show that using the ration inversion for-

mula outlined in Section 2 that we were able to get very accurate approximations to

the solutions to the integral equations in the examples. We use subdiagonal Padé

approximants as the rational functions for the inversion formula. With very minimal
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increase in computing time, our program can be run with a higher degree Padé app-

proximants to possibly get even more accurate results. We could also possibly use

other rational functions in the inversion formula in order to increase accuracy.
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