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ABSTRACT. In this paper, a new stochastic discrete chaotic stage-structured predator-prey model
is presented. The chaotic behavior of the proposed model is investigated. The existence and stability
of the equilibria of the skeleton are studied. Numerical simulations are employed to show the model’s
complex dynamics by means of the largest Lyapunov exponents, bifurcations, time series diagrams
and phase portraits. Time series diagrams are used to follow the dynamics of the model and discuss
the marginal distribution of the state variables. The effects of noise intensity on its dynamics and
the intermittency phenomenon are also discussed via simulation.
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1. INTRODUCTION

Stage-structured models in continuous time scale have been studied by many

researchers. In stage-structured predator-prey models the immature predator has

no direct effect on the prey or the mature predator, and the immature prey is not

subject to predation. Aiello et al. [4] proposed a stage-structured model of popu-

lation growth where the time to maturity is itself state dependent. They discussed

the stability of the equilibria. The asymptotic behavior of a proposed predator-prey

system with stage-structure for predator has been discussed by Wang and Chen [30].

Sufficient conditions under which positive equilibrium of the system is globally stable

are also investigated. A predator-prey system, where the predator has two stages,

a juvenile stage and a mature stage, has been constructed by Magnusson [26]. Hu

and Huang [19] considered a predator-prey system of Lotka-Volterra type with time

delays and stage structure for prey. The local stability of the equilibria and Hopf

bifurcations occurring at the positive equilibrium under some conditions have been

demonstrated. A stage-structured predator-prey system with time delays has been

considered, where the time delays are regarded as bifurcation parameters, by Li et al.

[25]. The local stability of a positive equilibrium has been investigated. They showed

that Hopf bifurcations occurs when time delay crosses some critical values. Kar and

Jana [21] studied the local and global stability for all possible non-negative equilibria
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of a predator-prey system with stage-structured for the predator population. How-

ever many authors used continuous time scale equations to describe stage-structured

predator-prey systems, many authors [1, 2, 17, 27] have pointed out that the dis-

crete time models governed by difference equations are more appropriate than the

continuous ones when the populations have nonoverlapping generations. Discrete

time models can also provide efficient computational models of continuous models for

numerical simulations. Ecosystems are open systems and so they are often subject

to environmental noises. Taking into account the complex behaviour of ecosystems

it is more robust than the traditional methods to model observed time series by a

stochastic chaotic models or non-linear chaotic models disturbed by dynamic noise.

This type of models has been studied by many researchers, see [5, 6, 9-16, 18, 22, 23].

The main objectives of this paper are: to present a new chaotic stochastic discer-

tized version of a stage structured predator-prey model for the predator population;

to investigate parameters changes effects on the dynamics of the proposed model; to

give a numerical evidence about the chaotic behaviour of stochastic systems; and to

give a novel chaotic 3-dimensional discrete time scale system (functional coefficient

nonlinear autoregressive model).

The organization of this paper is as follows. In section 2, the stochastic discrete

stage structured predator-prey system is formulated. In section 3, equilibria are

obtained and their asymptotic behaviour is discussed. The simulation is used in

section 4, to discuss the analytical results, to show the effects of noise intensity on

the dynamics of the system, and to give a numerical evidence about the chaotic

behaviour of stochastic systems.

2. THE STOCHASTIC DISCRETE MODEL

Kar and Jana [21] proposed and analyzed a predator-prey system with stage-

structured for the predator population. They set three different classes, namely, the

prey, the juvenile predator and the matured predator. The class of prey biomass is

denoted by x1 and that of immature and matured predator populations by x2 and x3

respectively. The model has been formulated in the following form:

(2.1)


ẋ1 = rx1(1− x1

k
)− αx1x3

ẋ2 = sx3 − βx2 − θ1x2

ẋ3 = mx1x3 + βx2 − θ2x3 − νx2
3,

where the matured predator population reproduces at a rate s(> 0), the transfer rate

from the immature predator to the matured predator be β(> 0), the natural death

rate for the immature predator be θ1(> 0), m(> 0) be the conversion factor from the

prey population to the matured predator population, θ2(> 0) be the natural death

rate of the matured predator population and ν(> 0) be the intra-specific competition
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rate among the matured predator population. Applying the forward Euler scheme to

model (2.1) and using suitable non dimensional conditions we obtain the following

stochastic discrete stage structured predator prey model.

(2.2)


xt = xt−1 + l(axt−1 − x2

t−1 − bxt−1zt−1) + kεt

yt = yt−1 + l(zt−1 − yt−1) + kηt

zt = zt−1 + l(−czt−1 + dxt−1zt−1 + fyt−1 − gzt−1) + kξt,

where l is the step size a, b, c, d, f and g are the non dimentional version of the pa-

rameters defined in model (2.1) and (εt, ηt, ξt) are assumed to be an i.i.d. white

noise sequence conditional upon the history of the time series, which is denoted

Ωt−1 = (xt−1, yt−1, zt−1) that is, E[(εt, ηt, ξt)|Ωt−1] = 0 and E[ε2
t |Ωt−1] = E[η2

t |Ωt−1] =

E[ξ2
t |Ωt−1] = σ2, and k is a scalar parameter of the noise intensity. All parameters

are assumed to be positive.

3. THE SKELETON

The skeleton is defined by Tong [29], where k = 0. In this section we study the

chaotic behaviour of the free noise system (2.2) caused by the change of time step.

Where k = 0, the system (2.2) becomes:

(3.1)


xt = xt−1 + l(axt−1 − x2

t−1 − bxt−1zt−1)

yt = yt−1 + l(zt−1 − yt−1)

zt = zt−1 + l(−czt−1 + dxt−1zt−1 + fyt−1 − gz2
t−1),

Equilibria of the system (3.1) are derived in the following.

Lemma 3.1. The equilibria of the system (3.1), are (i) E0 = (0, 0, 0), (ii)

E1 = (0, f−c
g
, f−c

g
), in the absence of the prey; (iii) E2 = (a, 0, 0), in the absence of

the predator; (iv) E3 = (a− bad+f−c
bd+g

, ad+f−c
bd+g

, ad+f−c
bd+g

), is a positive interior equilibrium

point for ag + bc > bf , and ad+ f > c.

Proof. The equilibria of the system (3.1) are obtained as the solution of the

algebraic system: 
x = x+ l(ax− x2 − bxz)

y = y + l(z − y)

z = z + l(−cz + dxz + fy − gz2),

Which is obtained by setting xt = xt−1 = x , yt = yt−1 = y and zt = zt−1 = z in (3.1),

it is easy to get the results.

Now, we study the stability of these equilibria of model (3.1). The local stability

analysis of the system (3.1) can be studied by computing the variation matrix corre-

sponding to each equilibrium. The variation matrix of the system at state variable is
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given by

(3.2) J(x, y, z) =

 1 + l[a− 2x− bz] 0 −blx
0 1− l l,

ldz lf 1 + l[−c+ dx− 2gz]

 .

For the local stability of E0, we have the following result.

Theorem 3.1. If 1 + c−
√

(c− 1)2 + 4f > 0, the following conclusions hold.

(N1) If ( 4

(1+c+
√

(c−1)2+4f
) < l < ( 4

(1+c−
√

(c−1)2+4f
), then the equilibrium E0 is a saddle

point.

(N2) If l > ( 4

(1+c−
√

(c−1)2+4f
), then E0 is a source.

(N3) If l = ( 4

(1+c+
√

(c−1)2+4f
) or l = ( 4

(1+c−
√

(c−1)2+4f
), then the equilibrium E0 is

non-hyperbolic.

Proof. In order to prove this result, we estimate the eigenvalues of Jacobian

matrix at E0. The Jacobian matrix for E0 is

J(E0) =

 1 + la 0 0

0 1− l l,

0 lf 1− lc

 .

Hence the eigenvalues of J(E0) are ω1 = 1 + la, and ω2,3 = (1/2)[2 − (1 + c) ±
l
√

(c− 1)2 + 4f ] and since all parameters are positive, we have |ω1| > 1. Let 1 + c−√
(c− 1)2 + 4f > 0 and ( 4

(1+c+
√

(c−1)2+4f
) < l < ( 4

(1+c−
√

(c−1)2+4f
) then |ω2| < 1 and

|ω3| > 1, which completes the proof of (N1). It is easy to get (N2) and (N3).

For the local stability of E1, we have the following result.

Theorem 3.2. If c − 2f − 1 <
√

(1 + 2f − c)2 + 4(c− f) < 1 + 2f − c and

a < b(f−c)
g

, then

H1) E1 is asymptotically stable if 0 < l < min{α1, α2, α3},
H2) E1 is a saddle if mid{α1, α2, α3} < l < max{α1, α2, α3}
H3) E1 is unstable if l > max{α1, α2, α3} or min{α1, α2, α3} < l < mid{α1, α2, α3},
H4) E1 is non-hyperbolic if l = α1, or α2, or α3,

where α1 = 2g
b(f−c)−ag

, α2 = 4

1+2f−c+
√

(1+2f−c)2+4(c−f)
, and α3 = 4

1+2f−c−
√

(1+2f−c)2+4(c−f)

Proof. The Jacobian matrix (3.2) at E1 has the form:

J(E1) =

 1 + l[a− b(f−c)
g

] 0 0

0 1− l l,
ld(f−c)

g
lf 1− l[2f − c]

 .

The eigenvalues of J(E1) are ω1 = 1 + l[a − b(f−c)
g

], and ω2,3 = (1/2)[2 − l(1 + 2f −
c∓

√
(1 + 2f − c)2 + 4(c− f))]. After some calculations, we obtain the results.

For the local stability of E2, we have the following result.
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Theorem 3.3. If ad − c − 1 <
√

(ad− c− 1)2 + 4(ad− c+ f) < c + 1 − ad,

then

M1) E2 is asymptotically stable if 0 < l < min{β1, β2, β3},
M2) E2 is a saddle if mid{β1, β2, β3} < l < max{β1, β2, β3}
M3) E2 is unstable if l > max{β1, β2, β3} or min{β1, β2, β3} < l < mid{β1, β2, β3},
M3) E2 is non-hyperbolic if l = β1, or β2, or β3,

where β1 = 2
a
, β2 = 4

1+c−ad−
√

(ad−c−1)2+4(ad−c+f)
, and β3 = 4

1+c−ad+
√

(ad−c−1)2+4(ad−c+f)
.

Proof. The proof can be obtained by the same procedure in the previous

theorem.

For local stability of E3 we have the following result.

Theorem 3.4. The equilibrium point E3 is asymptotically stable iff 1 + A +

B + C > 0,1 − A + B − C > 0,1 − |C| > 0, and |1 − C| − |B − AC| > 0, where

A = l − lϕ − lγ − 3, B = (lγ + 1)(lϕ − l + 2) − (lϕ + 1)(l − 1) − fl2 − bdl2αϕ,

C = (fl2 +bdl2αϕ)(lϕ− l+2)+(lϕ+1)(lγ+1)(l−1)+fl2(l−1)−bdl2αϕ(lϕ+1),ϕ =

bα− a,α = ad+f−c
bd+g

, and γ = −c− dβ − 2gα.

Proof. The proof can be obtained by the same procedure in Theorem 3.2, and

applying Jury criterion [28].

4. NUMERICAL SIMULATION

The main objective of this section is to introduce a numerical evidence about

the chaotic behaviour of the system (2.2). Throughout this section, we consider the

initial point (x0, y0, z0) = (0.3, 0.2, 0.1), and other parameters a = 0.1, b = 7, c = 6,

d = 0.01, f = 0.1, and g = 8.

4.1. Deterministic System. In this subsection the qualitative behavior of the so-

lution of the nonlinear system (3.1) is investigated. Various numerical results are

presented here to show the chaoticity including its, bifurcation diagrams, Lyapunov

exponents, and fractal dimension. Bifurcation diagrams of the system (3.1) are plot-

ted on the interval 0.1 ≤ l ≤ 0.490 in Fig. 1(a), (b), and (c). Its corresponding

maximum Lyapunov exponent is given in Fig. 1(d). A positiveness of this exponent

for l > l∗ ' 0.330 confirms the chaotic character of attractors in this parametrical

zone [8] ( here, the value l∗ ' 0.330 is a tangent bifurcation point). To show the

chaotic behaviour of the system, phase portraits are given for different values of l In

Fig. 3. For the given parameters the only positive equilibrium point is in the absence

of the immature and matured predators, E∗
2 = (0.1, 0, 0) which is attracting point for

0.1 < l ≤ 0.330 as we can see in Fig. 2(a). Fig. 2(b) shows the period-two orbit in

the parameter zone 0.330 < l ≤ 0.408. The period-four orbit in the parameter zone

0.408 < l ≤ 0.424 is clear in Fig. 2(c). The chaotic attractor for 0.428 < l ≤ 0.490

is clear in Fig. 2(d). Which means that the system (3.1) undergoes a discrete Hopf
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bifurcation. One of the commonly used characteristics for classifying and quantifying

the chaoticity of a dynamical system is Lyapunov dimension [3, 20]. Via simulation

we get three Lyapunov exponents λ1 = 0.947 > λ2 = −0.432 > λ3 = −0.622 for

l = 0.470, which means that dL ' 2.83. Therefor the system (3.1) exhibits a fractal

structure and its attractor has a fractal dimension which is chaotic behaviour.

Figure 1. Bifurcation diagram of (3.1), for 0.1 ≤ l ≤ 0.490 for initial

point (x0, y0, z0) = (0.3, 0.2, 0.1) for: (a) xt; (b) yt; (c) zt; (d) its cor-

responding Maximum Lyapunov exponents with a = 0.1, b = 7, c = 6,

d = 0.01, f = 0.1, and g = 8.

Figure 2. Phase portrait of the system (3.1) for: (a) l = 0.330; (b)

l = 0.334; (c) l = 0.42; (d) l = 0.44 with a = 0.1, b = 7, c = 6, d = 0.01,

f = 0.1, and g = 8.

4.2. Stochastic System. In this subsection, we consider a stochastic system forced

by additive noise (2.2), where εt, ηt and ξt are uncorrelated Gaussian random pro-

cesses with parameters Eεt = Eηt = Eξt = 0, Eε2
t = Eη2

t = Eξ2
t = 1 and k is a scalar

parameter of the noise intensity. Although the Frobenius-Perron integral equation [7,

24], is an exhaustive mathematical description of stochastic attractors, a direct using

of these equations is very difficult technically even for the simplest cases. The main

tool for the analysis of noise-induced phenomena is the direct numerical simulation of
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random trajectories. The main objectives of this subsection are: to give a numerical

evidence about the interrelationship between the dynamics of the stochastic system

and its skeleton; to discuss the phenomenon of noise-induced intermittency; and to

investigate the changes of parameters and noise intensity effects on the asymptotic

marginal distribution of the state variables, which may be regarded as an indicator of

stochastic chaotic distribution of the system. We study a behavior of this stochastic

system for different values of parameters l and k. In Figs. 3(a)–3(i), bifurcations dia-

grams of the system (2.2) are plotted on the interval 0.1 ≤ l ≤ 0.490 for three values

of the noise intensity k = 0.00008, 0.0001, and 0.0008. Maximum Lyapunov expo-

nents corresponding to each value of noise intensity are given in Figs. (3)(j), (k) and

(l) respectively. By comparing Figs. 1 and 3(a)–3(i), we can see how noise deforms

the deterministic attractor. The dynamical characteristics are also changed (com-

pare Lyapunov exponents in Figs. 1(d) and 3(j)–3(l)). As noise intensity increases, a

border between order and chaos moves to the left, see Figs. 3(j)–3(l). To follow the

dynamics of the system (2.2), time series, phase portraits and stochastic attractors are

plotted for different values of l and k. For l = 0.330, with low noise k = 0.0001, the

states (xt, yt, zt) oscillate with low amplitude around the stable deterministic equilib-

rium E∗
2 . Random states are concentrated near the stable deterministic equilibrium,

see Figs. 4(a)–4(c) and 6(a). With high noise k = 0.0008, we can observe the sto-

chastic oscillations of large amplitude and the increase of the dispersion, see Figs.

4(d)–4(f), 6(b) and 7(a)–7(c). For l = 0.334, the stochastic oscillations of large am-

plitude around the deterministic period-two orbit (0.09697, 0.00563,−0.03970) and

(0.10607,−0.00951, 0.03582), can be observed even though for low noise intensity

k = 0.0001, see Figs. 4(g)–4(l). In this case, the stochastic system (2.2) exhibits a

coexistence of two different dynamical regimes even if the system (3.1) has a sta-

ble equilibrium only. This type of dynamics of the system (2.2) can be determined

as a noise-induced intermittency [5], see Figs. 4(g)–4(i), 6(c), 6(d) and 7(d)–7(f).

For l = 0.420, the stochastic oscillations of large amplitude around the determin-

istic period-four orbit (0.11394,−0.03902,−0.21811), (0.18633,−0.11423, 0.16994),

(0.08648, 0.00512,−0.36002), and (0.17850,−0.14824, 0.11181) can be observed even

though for low noise intensity k = 0.0001, see Figs. 5(a)–5(f); 6(e), (f) and 7(g)–7(i).

In this case, the stochastic system (2.2) exhibits a coexistence of four different dy-

namical regimes even if the system (3.1) has a stable equilibrium only. The stochastic

chaotic behaviour can be observed for l = 0.440, even though for low noise intensity

k = 0.0001, see Figs. 5(g)–5(l), 6(g), 6(h), and 7(j)–7(l). For stochastic dynamic

characteristics, the dependence on noise level is illustrated in Fig. 8 for l = 0.330 and

l = 0.331. To investigate the changes of parameters and noise intensity effects on

the asymptotic marginal distribution of the state variables, we discuss it for different

values of l and k. For l = 0.420, and 0 ≤ k ≤ 0.0008 the marginal distribution of



284 A. ELHASSANEIN

the state variables is asymptotically normal, with mean E∗
1 = (0.1, 0, 0), which we

may call it a stable distribution see Figs. 9(a)–9(c), the sample statistics are given in

Table 1. As the control parameter l increases the asymptotic distribution split into

two regimes, see Figs. 9(d)–9(f) and Table 2, for l = 0.334, then into four regimes,

see Figs. 9(g)–9(i) and Table 3, for l = 0.420, and so on until it reaches what we

may call it chaotic distribution, see Figs. 9(j)–9(l), and Table 4, for l = 0.440. This

phenomenon may be regarded as an indicator of stochastic chaotic behaviour.

5. CONCLUSION

The current paper has presented a new stochastic discrete chaotic stage-structured

predator-prey model. The model shows rich and varied dynamics and chaos. Local

stability of equilibria have been discussed. The results show that, for certain paramet-

ric restrictions there is a unique equilibrium point which is locally stable. When the

time step parameter passes a critical value the attractor is a period-2 cycle. As the

time step parameter increases, both branches split simultaneously, yielding a period-4

cycle. This splitting is the period-doubling bifurcation. A cascade of further period-

doubling occurs as the time step parameter increases, yielding period-8, period-16,

and so on until the map becomes chaotic and the attractor changes from a finite to

an infinite set of points. The results referred to that there is a closed relationship

between the time step parameter changes and the distribution of the states of the

stochastic system. The remarkable feature of the dynamics of the model considered

here is that small noises generate large-amplitude chaotic oscillation. The asymptotic

distribution of the state variables is used as an indicator of the chaotic behaviour of

stochastic systems, which still an open problem.

Table 1. Sample statistics of the variable state (xt, yt, zt) of the system

(2.2), with initial values (x0, y0, z0) = (0.3, 0.2, 0.1), for l = 0.330 and

k ∈ [0.0, 0.0008], where a = 0.1, b = 7, c = 6, d = 0.01, f = 0.1, and

g = 8.

l = 0.330 Mean Median St.D. Skewness Kurtosis

xt 0.1000 0.1000 0.0019 0.03 2.25

yt 0.0000 0.0000 0.0008 -0.11 2.57

zt 0.0000 0.0000 0.0027 -0.05 2.35
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Figure 4. Time series of the stochastic model (2.2) with l = 0.330

and k = 0.0001 for: (a)xt; (b)yt; (c)zt, with l = 0.330 and k = 0.0008

for: (d)xt; (e)yt; (f)zt, with l = 0.334 and k = 0.0001 for: (g)xt; (h)yt;

(i)zt and with l = 0.334 and k = 0.0008 for: (j)xt; (k)yt; (l)zt, where

a = 0.1, b = 7, c = 6, d = 0.01, f = 0.1, and g = 8.

Table 3. Sample statistics of the variable state (xt, yt, zt) of the system

(2.2), with initial values (x0, y0, z0) = (0.3, 0.2, 0.1), for l = 0.420 and

k ∈ [0.0, 0.0008], where a = 0.1, b = 7, c = 6, d = 0.01, f = 0.1, and

g = 8.

l = 0.420 Mean Median St.D. Skewness Kurtosis

xt 0.1413 0.1442 0.0423 -0.14 -1.78

yt -0.0741 -0.0770 0.0604 0.08 -1.62

zt -0.0741 0.0477 0.2217 -0.12 -1.77
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