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ABSTRACT. We develop a third (four) order accurate new nine-point compact finite difference
scheme for the numerical solution of two-dimensional Poisson equation in polar form. The peculiar
character of the exponential expanding mesh parameters help us in resolving interior or boundary
layer in the partial differential equations. The proposed scheme takes care of grid singularity and
oblique coefficient that accompany the polar form of Poisson equation. A detailed discrete con-
vergence analysis for the difference scheme has been developed based on monotone and irreducible
property of the iteration matrix. Numerical accuracy of the solutions has been obtained that shows
the applicability of the scheme in the presence of singularity and thin layers. Comparing the pro-
posed third order compact scheme with the corresponding fourth order uniform mesh strategy, the
solution accuracy proved to be highly satisfactory.
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1. INTRODUCTION

In this work, we investigate numerical solution of elliptic boundary value problems

(EBVPs) of semi-linear type, which is associated with Dirichlet’s boundary values. It

is common practice to consider approximating solution technique, because the semi-

linear problems may not exhibit theoretical solution in general. We are familiar with

some of the approximate solution methods such as finite element, boundary element,

collocation method, B-spline and Haar wavelets in the context of EBVPs [1, 2, 3].

The second and fourth order finite difference schemes for the numerical estimates

of Poisson equation in polar coordinate system has been discussed by Mittal [4].

With these available solution procedures, finite difference method (FDM) is one of

an elegant tool, used to discretize the EBVPs so as to obtain system of recurrence

relations, that can be easily solved with the help of matrix algebra.

We consider the following two space variables EBVPs in polar coordinate

(1.1) ∆φ(r, θ) ≡
(
∂rr + d(r)∂r + b(r)∂θθ

)
φ(r, θ) = H(r, θ, φ), (r, θ) ∈ Ω
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Figure 1. Computational molecules of [0 < r < 1]× [0 < θ < π].

and associated Dirichlet’s boundary values

(1.2) φ(r, θ) = H?(r, θ), (r, θ) ∈ ∂Ω

where r, θ are radial and polar coordinates, b(r) = 1/r2, d(r) = 1/r, and ∂Ω is

bounding the finite semi-circular region Ω = [0 < r < 1]× [0 < θ < π].

The major difficulty to the solution of above equation arises from the singularity

at origin r = 0. In the subsequent section, we develop a new method and the proce-

dure so as to retain order and accuracy of the scheme in the vicinity of singularity on

a variable mesh step-size network.

2. EXPONENTIAL EXPANDING MESHES AND COMPACT

SCHEMES

In order to obtain the discrete form to the equation (1.1), we discretize the region

Ω using nine-point meshes as Ω = {(rl, θm) : (l,m) ∈ D}, D = {n−1, n, n+ 1}⊗{j−
1, j, j+ 1}, where 0 = r0 < r1 < · · · < rN < rN+1 = 1, hn = rn− rn−1, n = 1(1)N + 1,

0 = θ0 < θ1 < · · · < θJ < θJ+1 = π, kj = θj− θj−1, j = 1(1)J + 1, hn+1 = αhn, kj+1 =

βkj, n = 1(1)N , j = 1(1)J , α, β ∈ R (see figure 1) and α, β > 0 are the exponential

expanding mesh parameters, whose values are associated with the location of layer(s)

and their finite range will be obtained while discussing convergence criterion. Such a

mesh structure has been found suitable in the application area of electrochemistry [5]

and other one dimensional problems [6, 7]. Let γn,j = kj/hn, n = 1(1)N, j = 1(1)J

be the spatial mesh ratio parameters. The solution values φ(r, θ) at the mesh point

(rn, θj) is represented by φn,j as an exact solution and ϕn,j as an approximate solution

values.
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Let us define the operators

Arφn,j = α−1(α + 1)−1φn+1,j + α−1(α− 1)φn,j − α(α + 1)−1φn−1,j,(2.1)

Aθφn,j = β−1(β + 1)−1φn,j+1 + β−1(β − 1)φn,j − β(β + 1)−1φn,j−1,(2.2)

Brφn,j = 2α−1(α + 1)−1φn+1,j − 2α−1φn,j + 2(α + 1)−1φn−1,j,(2.3)

Bθφn,j = 2β−1(β + 1)−1φn,j+1 − 2β−1φn,j + 2(β + 1)−1φn,j−1,(2.4)

With the help of operators (2.1)–(2.4), it is possible to approximate the first and

second order partial derivatives in r- and θ- directions. These operators are defined

on three-by-three mesh points D and since three is the minimum number of mesh

points needed to discretize the highest order derivative term present in equation

(1.1), thus the operators (2.1)–(2.4) and their composites are compact.

Initially, we discretize the two space EBVPs with oblique coefficient

(2.5) Lφ ≡ (∂rr + b(r)∂θθ)φ(r, θ) = H(r, θ).

With the application of finite Taylor’s series expansion, the finite difference replace-

ment of equation (2.5) is given by

(2.6) Lhn,kj
φn,j = 2h2

nk
2
j

∑
(l,m)∈D

fl,mHl,m + Tn,j, n = 1(1)N, j = 1(1)J,

where

Lhn,kj
= 36k2

jBr + 3h2
n[12bn + 4hn(α− 1)brn + h2

n(α2 − α + 1)brrn ]Bθ
+ 12(β − 1)k2

jBrAθ + 6h2
n[2(α− 1)br + (α2 − α + 1)hnb

r
n]ArBθ(2.7)

+ 3[h2
n(α2 − α + 1)bn + k2

j (β
2 − β + 1)]BrBθ,

is the discretization of the local operator L = ∂rr + b(r)∂θθ, bn = 1/r2
n, brn = −2/r3

n,

brrn = 6/r4
n and

(2.8) Tn,j =

O(h2
nk

2
j (h

3
n + h2

nkj + hnk
2
j + k3

j )), α 6= 1 ∨ β 6= 1,

O(h2
nk

2
j (h

4
n + h2

nk
2
j + k4

j )), α = 1 ∧ β = 1,

be the local truncated error (LTE) and

fn,j = [(2β2 − β + 2)(α2 + 1)− (β2 − 8β + 1)α]/[αβ],

fn+1,j = [(2β2 − β + 2)(α− 1) + 3α2β]/[(α + 1)αβ],

fn−1,j = [(2β2 − β + 2)α(1− α) + 3β]/[(α + 1)β],

fn,j+1 = [2(β − 1)(α2 + 1) + α(3β2 − β + 1)]/[αβ(β + 1)],

fn,j−1 = [2β(1− β)(α2 + 1) + α(β2 − β + 3)]/[α(β + 1)],

fn+1,j+1 = 2(β − 1)(α− 1)/[αβ(α + 1)(β + 1)],

fn+1,j−1 = −β2fn+1,j+1, fn−1,j+1 = −α2fn+1,j+1, fn−1,j−1 = α2β2fn+1,j+1.
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Thus, the method (2.6) is third order accurate for the arbitrary finite values of

α 6= 1 or β 6= 1 and in particular, it is fourth order accurate if α = β = 1 for the

numerical solution of EBVPs (2.5).

Our goal is to obtain compact scheme for (1.1), which involves first order partial

derivative in radial direction, therefore we need to define some more approximations

as follows:

For ρ = 0,±1,

(2.9)

 φ̂rn,j+ρ
φ̂rn+1,j+ρ

φ̂rn−1,j+ρ

 =
1

α(α + 1)hn

 α2 − 1 1 −α2

−(1 + α)2 1 + 2α α2

(1 + α)2 −1 −α(α + 2)


 φn,j+ρ

φn+1,j+ρ

φn−1,j+ρ

 .
Now, we construct the functional for (l,m) ∈ D ∼ {(n, j)} as follows

(2.10) R̂l,m = −dlφ̂rl,m +H(rl, θm, φl,m), Rl,m = −dlφrl,m +H(rl, θm, φl,m),

where dl = 1/rl and drl = −1/r2
l , l = n, n± 1.

With the help of series expansion, we obtain

R̂n+1,j−1

R̂n+1,j

R̂n+1,j+1

 =

Rn+1,j−1

Rn+1,j

Rn+1,j+1

+
h2
n

6
α(α + 1)M+

(dn + αhnd
r
n)φrrrn,j

hndnφ
rrrr
n,j /4

kjdnφ
rrrθ
n,j

+

O(h4
n)

O(h4
n)

O(h4
n)

 ,
(2.11)

R̂n−1,j−1

R̂n−1,j

R̂n−1,j+1

 =

Rn−1,j−1

Rn−1,j

Rn−1,j+1

+
h2
n

6
(α + 1)M−

(dn − hndrn)φrrrn,j
hndnφ

rrrr
n,j /4

kjdnφ
rrrθ
n,j

+

O(h4
n)

O(h4
n)

O(h4
n)

 ,(2.12)

[
R̂n,j−1

R̂n,j+1

]
=

[
Rn,j−1

Rn,j+1

]
− h2

n

6
αdnM

0

 φrrrn,j
hnφ

rrrr
n,j /4

kjφ
rrrθ
n,j

+

O(h4
n)

O(h4
n)

O(h4
n)

 ,(2.13)

where

M− =

1 α− 2 −1

1 α− 2 0

1 α− 2 β

 ,M+ = α

1 2α− 1 −1

1 2α− 1 0

1 2α− 1 β

 ,M0 =

1 α− 1 −1

1 α− 1 1

1 α− 1 −1

 .
Now, we define a linear combination so as to obtain new approximation of first order

derivative in radial-direction at the central mesh point (rn, θj) as follows

ˆ̂
φrn,j = φ̂rn,j + hn[δ1(R̂n+1,j+1 − R̂n−1,j+1) + δ2(R̂n+1,j−1 − R̂n−1,j−1)

+δ3(φ̂
θθ
n+1,j − φ̂θθn,j) + δ4(φ̂

θθ
n−1,j − φ̂θθn,j)] + h2

n(δ5φ̂
θθ
n+1,j + δ6φ̂

θθ
n−1,j)

(2.14)

where

φ̂θθn±τ,j = 2[φn±τ,j+1 − (β + 1)φn±τ,j + βφn±τ,j−1]/[β(β + 1)k2
j ], τ = 0, 1,
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and δi, i = 1(1)6, are the undetermined coefficients, to be obtained in such a manner

that the resulting difference scheme for the numerical solution of (1.1) gives rise to

third and fourth order of truncation error in an exponential mesh and uniform mesh

network respectively.

Let us construct the functional at the central mesh (rn, θj) as

(2.15) R̂n,j = −dn ˆ̂
φrn,j +H(rn, θj, φn,j), Rn,j = −dnφrn,j +H(rn, θj, φn,j).

The explicit algebraic expression to the equation (2.10) can be obtained with the help

of Taylor’s expansion as

R̂n,j = Rn,j − (h2
n/2)dn [(α + 1)(hn(α− 1)brrn + 2brn)(δ1 + δ2) + 2(δ5 + δ6)]φ

θθ
n,j

(2.16)

− (h2
n/6)dn[(α + 1)(hn(α− 1)dn + 6)(δ1 + δ2) + α]φrrrn,j

− h2
ndn[(α + 1)(hn(α− 1)brn + bn)(δ1 + δ2)− δ4 + αδ3 − hn(δ6 − αδ5)]φrθθn,j

− (h3
n/24)dn(α− 1)[12(α + 1)(δ1 + δ2) + α]φrrrrn,j − h2

nkjdn(α + 1)(βδ1 − δ2)φrrrθn,j

− (h2
nkj/3)dn[3bn(α + 1)(βδ1 − δ2) + (β − 1)(αδ3 − δ4)]φrθθθn,j

− (h2
nkj/3)dn[3(α + 1)brn(βδ1 − δ2) + (β − 1)(δ5 + δ6)]φ

θθθ
n,j

− (h3
n/2)dn[bn(α2 − 1)(δ1 + δ2) + α2δ3 + δ4]φ

rrθθ
n,j +O(h4

n).

Incorporating the above functional approximations (2.11)–(2.13) and (2.16) in the

compact scheme (2.6), one obtains

(2.17) Lhn,kj
φn,j = 2h2

nk
2
j

∑
(l,m)∈D

fl,mR̂l,m + Tn,j, n = 1(1)N, j = 1(1)J,

as the finite difference replacement of equation (1.1) and δ4 = bn(α+1)(δ1 +δ2)+αδ3,

δ6 = −brn(α+ 1)(δ1 + δ2)− δ5, δ1 = −δ2−αβ(α2 +α+ 1)/{2(α+ 1)[(α2 + 1)(2β2−β+

2)− α(β2 − 8β + 1)]}, gives Tn,j = O(h2
nk

2
j (h

3
n + h2

nkj + hnk
2
j + k3

j )), for the arbitrary

values of δ2, δ3 and δ5(may be zero). In addition to these values of undetermined

coefficients, if α = β = 1 and δ2 = −1/32, δ3 = bn/16, δ5 = brn/16, the local

truncation error in equation (2.17) becomes Tn,j = O(h2
nk

2
j (h

4
n+h2

nk
2
j +k4

j )). Thus, we

conclude this section with the observation that it is possible to develop a lower order

(three) compact scheme on exponential expanding meshes and the scheme achieve an

accuracy of order four, if the meshes are uniformly distributed.

3. APPLICATION TO POISSON EQUATION IN POLAR

COORDINATES

Consider the Poisson equation in polar coordinates

(3.1)

(
∂rr +

1

r
∂r +

1

r2
∂θθ
)
φ(r, θ) = H(r, θ),
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defined on the finite domain Ω. The application of method (2.17) to the equation (3.1)

gives rise to terms like 1
rn−1

, which fails to compute at n = 1, as 1
r0

leads to zero divisor.

A similar observation may occurs with Hn±1,j±1 . For example, if H(r, θ) = sin(θ)
r−1

,

then Hn+1,j±1 =
sin(θj±1)

rn+1−1
and at n = N , rn+1 = 1, thus we again land up with zero

divisor. Keeping these observation, it is suitable to replace all 1
rn±1

, Hn±1,j+1 terms

in its equivalent finite Taylor series up to the accuracy compatible with Tn,j. Such a

replacement gives rise to the difference scheme

∆φn,j + h2
nk

2
j [36Hn,j + 12(β − 1)kjH

θ
n,j + 3(β2 − β + 1)k2

jH
θθ
n,j(3.2)

+ 4(α− 1)(β − 1)hnkjH
rθ
n,j + 3(α2 − α + 1)h2

nH
rr
n,j

+ (hn/rn)((α2 + α + 1)hn

+ 12rn(α− 1))Hr
n,j] = Tn,j,

where

∆ =
k2
j

r2
n

[(5α2 − 7α + 5)h2
n − 12(α− 1)rnhn − 36r2

n]Br

−
4k2

j

rn
(β − 1)[(α− 1)hn + 3rn]BrAθ

+ (2h2
n/r

4
n)[{(α2 + α + 1)− 9(α2 − α + 1)rn}h2

n + 12(α− 1)hnrn − 18r2
n]Bθ

+ (h3
n/r

3
n)[(11α2 − 13α + 11)ArBθ − (5α2 − 7α + 5)k2

jAr]

+ (h2
n/r

2
n)[4(α− 1)k2

j (3Ar + (β − 1)ArAθ)− 12(α− 1)ArBθ − 3(α2 − α + 1)BrBθ]

− (hnk
2
j/rn)[36Ar + 3(β2 − β + 1)ArBθ + 12(β − 1)ArBθ]− 3k2

j (β
2 − β + 1)BrBθ

The scheme (3.2) is compact and free from the terms Hn±1,j±1 or 1/rn±1, and thus

easily computed inside the domain of integration Ω.

4. CONVERGENCE ANALYSIS

In this section, we prove that the compact scheme (2.17) for the numerical solution

of (1.1) converges for sufficiently small mesh spacing. At the mesh point (rn, θj),

equation(1.1) can be written as

(4.1)
(
∂rr + dn∂

r + bn∂
θθ
)
φn,j = H(rn, θj, φn,j),

where bn = 1/r2
n > 0 and dn = 1/rn.

The discretized compact scheme (2.17) for the equation (1.1) can be expressed as

(4.2) Gn,j +O(h5
n) = 0, n = 1(1)N, j = 1(1)J,

where Gn,j = −h−2
n Lhnkj

φn,j + 2γ2
n,jh

2
n

∑
(l,m)∈D fl,mR̂l,m.

In the vector notation

(4.3) G(φ) + T = ONJ×NJ ,
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whereG(φ) = [G11, . . . , GN1, . . . , G1J , . . . , GNJ ]T ,φ = [φ11, . . . , φN1, . . . , φ1J , . . . , φNJ ]T

and T = [T11, . . . , TN1, . . . , T1J , . . . , TNJ ]T be the vector of fifth order of local trunca-

tion error.

Let εn,j = ϕn,j−φn,j be the discretization error of approximate and exact solution

values and ε = [ε11, . . . , εN1, . . . , ε1J , . . . , εNJ ]T be the error vector.

The approximate solution ϕ satisfy

(4.4) G(ϕ) = ONJ×NJ .

For (l,m) ∈ D ∼ {(n, j)}, define Ŝl,m = −d(rl)ϕ̂
r
l,m + H(rl, θm, ϕl,m) and Ŝn,j =

−d(rn) ˆ̂ϕrn,j +H(rn, θj, ϕn,j) and let

(4.5) Êl,m = Ŝl,m − R̂l,m, (l,m) ∈ D.

With the help of Mean value theorem , it is easy to write

(4.6) Êl,m = Xl,mεl,m + Yl,mε̂
r
l,m, (l,m) ∈ D ∼ {(n, j)}, Ên,j = Xn,jεn,j + Yn,j ˆ̂ε

r
n,j,

where Xl,m = X(rl, θm) corresponds to ∂H
∂φ

and Yl,m = Y (rl, θm) , (l,m) ∈ D are

suitable finite constants and ε̂rl,m, (l,m) ∈ D can be obtained from the equation (2.9)

simply replacing φ by ε. In a similar manner ˆ̂εrn,j can be obtained from equation

(2.14).

Hence, we can explicitly write the error equation as

(4.7) G(ϕ)−G(φ) ≡ [−h2
nLhnkj

εn,j + 2γ2
n,jh

2
n

∑
(l,m)∈D

fl,mÊl,m]n=1(1)N,j=1(1)J

or equivalently in matrix notation, we have

(4.8) G(ϕ)−G(φ) = Mε

where M = [Mp,q], p, q = 1(1)NJ , is a block tri-diagonal matrix and has only non-

zero elements for α, β 6= (
√

5± 1)/2 at the following locations:

For j = 2(1)J

M(j−1)N+n,(j−2)N+n−1 =
12(α2 − α− 1)

(α + 1)(β + 1)r2
n

+
12γ2

n,j(β
2 − β − 1)

(α + 1)(β + 1)
+O(hn), n = 2(1)N,

M(j−1)N+n,(j−2)N+n = −12(α2 + 3α + 1)

α(β + 1)r2
n

−
12γ2

n,j(β
2 − β − 1)

α(β + 1)
+O(hn), n = 1(1)N,
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M(j−1)N+n,(j−2)N+n+1 = − 12(α2 + α− 1)

α(α + 1)(β + 1)r2
n

+
12γ2

n,j(β
2 − β − 1)

α(α + 1)(β + 1)
+O(hn), n = 1(1)N − 1,

For j = 1(1)J

M(j−1)N+n,(j−1)N+n−1 = −12(α2 − α− 1)

(α + 1)βr2
n

−
12γ2

n,j(β
2 + 3β + 1)

(α + 1)β
+O(hn), n = 2(1)N,

M(j−1)N+n,(j−1)N+n =
12(α2 + 3α + 1)

αβr2
n

+
12γ2

n,j(β
2 + 3β + 1)

αβ
+O(hn), n = 1(1)N,

M(j−1)N+n,(j−1)N+n+1 =
12(α2 + α− 1)

α(α + 1)βr2
n

−
12γ2

n,j(β
2 + 3β + 1)

α(α + 1)β
+O(hn), n = 1(1)N − 1,

For j = 1(1)J − 1

M(j−1)N+n,jN+n−1 =
12(α2 − α− 1)

(α + 1)β(β + 1)r2
n

−
12γ2

n,j(β
2 + β − 1)

(α + 1)β(β + 1)
+O(hn), n = 2(1)N,

M(j−1)N+n,jN+n = −12(α2 + 3α + 1)

αβ(β + 1)r2
n

+
12γ2

n,j(β
2 + β − 1)

αβ(β + 1)
+O(hn), n = 1(1)N,

M(j−1)N+n,jN+n+1 = − 12(α2 + α− 1)

α(α + 1)β(β + 1)r2
n

−
12γ2

n,j(β
2 + β − 1)

α(α + 1)β(β + 1)
+O(hn), n = 1(1)N − 1,

From the equations (4.3), (4.4) and (4.8), we obtain

(4.9) Mε = T

The lower, upper and main tri-diagonal blocks of the matrix M have non-zero values

at its sub-, sup- and main-diagonal provided α, β 6= (
√

5±1)/2. Further, if the arrow

p→ q denotes the directed path to each non-zero values Mp,q of the matrix M , then

there exists a directed path (p → p1), (p1 → p2), . . . , (pn → q) connecting any two
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ordered pair of nodes (p, q). Therefore, graph of the matrix M is strongly connected

and hence M is irreducible [8, 9].

Let x = minXn,j, y = minYn,j, γ = min γn,j, 1 ≤ n ≤ N, 1 ≤ j ≤ J . Let Wq

denote the weak row elements sum of the matrix M . Then, for sufficiently small

values of hn or in the limiting case as hn → 0+ and | α−
√

5/2 |≤ 1/2, | β −
√

5/2 |≤
1/2, we find

W1 ≥
12(α2 + 5α + 5)

(α + 1)(β + 1)
+

12γ2(β2 + 5β + 5)

(α + 1)(β + 1)
> 0,

Wq ≥
72

(β + 1)
> 0, q = 2(1)N − 1,

WN ≥
12(5α2 + 5α + 1)

α(α + 1)(β + 1)
+

12γ2(β2 + 5β + 5)

α(α + 1)(β + 1)
> 0,

W(t−1)N+1 ≥
72γ2

α + 1
> 0, t = 2(1)J − 1,

W(t−1)N+q ≥ 36xγ2h2
q ≥ 0, t = 2(1)J − 1, q = 2(1)N − 1, x ≥ 0,

W(t−1)N+N ≥
72γ2

α(α + 1)
> 0, t = 2(1)J − 1,

W(J−1)N+1 ≥
12(α2 + 5α + 5)

(α + 1)β(β + 1)
+

12γ2(5β2 + 5β + 1)

(α + 1)β(β + 1)
> 0,

W(J−1)N+q ≥
72

β(β + 1)
> 0, q = 2(1)N − 1,

W(J−1)N+N ≥
12(5α2 + 5α + 1)

α(α + 1)β(β + 1)
+

12γ2(5β2 + 5β + 1)

α(α + 1)β(β + 1)
> 0,

since 1/r2
n > 1, n = 1(1)N .

As all weak row sum (except corresponding to the main diagonal) are positive,

thus the matrix M is monotone [10, 11]. As a consequence, M is monotone and

irreducible, if | α−
√

5/2 |< 1/2, | β−
√

5/2 |< 1. Hence, M−1 exists and M−1 > 0.

Let M−1
p,q be the (p, q)th element of M−1 and define the matrix norm

‖M−1‖∞ = max
p=1(1)NJ


|M−1

p,1 |+
N−1∑
q=2

|M−1
p,q |+ |M−1

p,N |+ |M
−1
p,(J−1)N+1|+

N−1∑
q=2

|M−1
p,(J−1)N+q|

+|M−1
p,NJ |+

J−1∑
t=2

(
|M−1

p,(t−1)N+1|+
N−1∑
q=2

|M−1
p,(t−1)N+q|+ |M

−1
p,tN |

)
 ,

and the vector norm

‖T ‖∞ = max
n=1(1)N

∑
j=1(1)J

Tn,j.

The elementary matrix identityM−1(MI) = I, where I is the NJ×1 column matrix

with one as all of its elements, gives rise

(4.10)
∑

q=1(1)NJ

M−1
p,qWq = 1, p = 1(1)NJ.
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With the help of equation (4.10), it is possible to determine the bounds on the ele-

ments of matrix M−1. Applying finite Taylor’s expansion, we observed,

For h = maxn=1(1)N hn and p = 1(1)NJ :

M−1
p,1 ≤

1

W1

≤ (α + 1)(β + 1)

12[α2 + 5α + 5 + γ2(β2 + 5β + 5)]
+O(h),

N−1∑
q=2

M−1
p,q ≤

1

minq=2(1)N−1Wq

≤ 1

72
(β + 1) +O(h),

M−1
p,N ≤

1

WN

≤ (α + 1)(β + 1)

12[5α2 + 5α + 1 + γ(β2 + 5β + 5)]
+O(h),

∑
t=2(1)J−1

M−1
p,(t−1)N+1 ≤

1

mint=2(1)J−1W(t−1)N+1

≤ α + 1

72γ2
+O(h),

J−1∑
t=2

N−1∑
q=2

M−1
p,(r−1)N+q ≤


∑NJ

q=1M
−1
p,qWq = 1, x = 0,

1
minq=2(1)N−1

t=2(1)J−1

W(t−1)N+q
≤ 1

36xγ2O(h2)
, x > 0,

J−1∑
t=2

M−1
p,tN ≤

1

mint=2(1)J−1WtN

≤ α(α + 1)

72γ2
+O(h),

M−1
p,(J−1)N+1 ≤

1

W(J−1)N+1

≤ (α + 1)β(β + 1)

12[α2 + 5α + 5 + γ2(5β2 + 5β + 1)]
+O(h),

N−1∑
q=2

M−1
p,(J−1)N+q ≤

1

minq=2(1)N−1W(J−1)N+q

≤ 1

72
β(β + 1) +O(h),

M−1
p,NJ ≤

1

WNJ

≤ α(α + 1)β(β + 1)

12[5α2 + 5α + 1 + γ(5β2 + 5β + 1)]
+O(h),

Incorporating the above inequalities in equation (4.9), the bounds of error are given

by

(4.11) ‖ε‖∞ ≤ ‖M−1‖∞.‖T ‖∞ ≤

 h3

36γ2x
+O(h4), x > 0

O(h5), x = 0

Thus, ε→ 0 as h→ 0+. Hence, the compact method (2.17) for the numerical solution

of semi-linear EBVPs (1.1) converges, if x ≥ 0 i.e. ∂H
∂φ
≥ 0.
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5. NUMERICAL VALIDATION

The presented nine-point compact scheme will be applied on Poisson equation,

Helmholtz equation, Schrödinger equation and on a semi-linear equation. The solu-

tion values for the linear equations are computed using Gauss-Seidel method. For

semi-linear equation, Newton-Raphson method is applied. In all the problems, zero

vector is taken as an initial guess with 10−14 as a tolerance of the iterative method

and the minimum number of converging iterations is denoted by (I). All the alge-

braic calculations are performed using symbolic tool of Maple software and numerical

calculations have been performed with C programming using Mac OS.

Example 5.1 ([12]). Consider the Poisson equation ∆φ = (4 + π2) cosh(πθ), having

equilibrium temperature as φ(r, θ) = r2 cosh(πθ).

Example 5.2 ([13]). We consider the Helmholtz equation in two space dimensions

∆φ = φ. The theoretical solution is given by φ(r, θ) = e
r
2
(cos θ+

√
3 sin θ).

Example 5.3 ([12]). Consider the stationary Schrödinger equation representing nu-

clear motion ∆φ = ωr2φ. The theoretical solution is given by φ(r, θ) = [r2 cos(2θ) +

2][cosh(
√
ωr2 cos θ sin θ) + sinh(

√
ωr2 cos θ sin θ)]/2.

Example 5.4 ([14]). We solve semi-linear Poisson equation ∆φ = 4φ3. The theoret-

ical solution is given by φ(r, θ) = 1/[4 + r(cos θ + sin θ)].

All the above examples are solved using proposed third and fourth order compact

scheme by taking α 6= 1, β 6= 1 and α = β = 1 respectively. The boundary values are

obtained from the theoretical solution as a test procedure. The accuracy of approx-

imate and theoretical solution values in terms of maximum absolute errors (MAE)

E∞N,J = maxn=1(1)N
j=1(1)J

|φn,j − ϕn,j| and convergence order Θ = log2

(
E∞N,J/E∞2N+1,2J+1

)
are

presented in Table 1-4 for various mesh spacing (N = J). The numerical results

show that the exponential expanding meshes third order compact scheme is superior

as compared with uniform meshes fourth order compact scheme both in terms of

accuracy and convergence iteration number.

6. CONCLUSION

A new non-uniform mesh nine-point compact scheme for the solution of two space

dimensional singular EBVPs have been presented with third and fourth order of accu-

racy. The application of proposed method to Cartesian coordinate is straightforward

by taking b(r) = 1.
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Table 1. MAE of solution values for example 1

N α β I E∞N,J Θ α β I E∞N,J Θ

5 1.00 1.00 116 3.45e+01 - - 0.632 0.894 89 5.68e-01 - -

11 1.00 1.00 412 2.45e-00 3.8 0.640 0.946 254 4.34e-02 3.7

23 1.00 1.00 1368 1.63e-01 3.9 0.910 0.970 1059 8.84e-03 2.3

47 1.00 1.00 4558 1.03e-02 4.0 0.910 0.990 3329 1.56e-03 2.5

Table 2. MAE of solution values for example 2

N α β I E∞N,J Θ α β I E∞N,J Θ

7 1.00 1.00 117 1.95e-04 - - 1.220 1.010 103 9.10e-05 - -

15 1.00 1.00 376 1.65e-05 3.6 1.100 1.010 332 6.00e-06 3.9

31 1.00 1.00 1129 1.97e-06 3.1 1.070 1.010 829 3.68e-07 4.0

63 1.00 1.00 3038 2.43e-07 3.0 1.040 1.000 2086 2.97e-08 3.6

Table 3. MAE of solution values for example 3 at ω = 25

N α β I E∞N,J Θ α β I E∞N,J Θ

5 1.00 1.00 70 1.37e-01 - - 1.110 1.180 59 7.54e-02 - -

11 1.00 1.00 222 9.93e-03 3.8 1.110 1.050 204 5.71e-03 3.7

23 1.00 1.00 692 6.16e-04 4.0 1.040 1.020 620 3.64e-04 4.0

47 1.00 1.00 1950 4.18e-05 3.9 1.020 1.010 1744 2.33e-05 4.0
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Table 4. MAE of solution values for example 4

N α β I E∞N,J Θ α β I E∞N,J Θ

5 1.00 1.00 61 1.67e-05 - - 1.120 0.930 53 6.03e-06 - -

11 1.00 1.00 195 2.33e-06 2.8 1.110 0.990 150 5.54e-07 3.4

23 1.00 1.00 568 3.00e-07 3.0 1.070 1.000 379 6.58e-08 3.1

47 1.00 1.00 1439 3.79e-08 3.0 1.050 1.000 980 5.61e-09 3.6

REFERENCES

[1] P. N. Swarztrauber, The direct solution of the discrete Poisson equation on the surface of a
sphere, J. Comput. Phys., 15:46–54, 1974.

[2] M. C. Lai and W. C. Wang, Fast direct solvers for Poisson equation on 2D polar and spherical
geometries, Numer. Meth. Part. D. E., 18(1):56–68, 2002.

[3] O. O. Onyejekwe, A note on Green element method discretization for Poisson equation in polar
coordinates, Appl. Math. Lett., 19:785–788, 2006.

[4] R. C. Mittal and S. Gahlaut, High-order finite-differences schemes to solve Poisson’s equation
in polar coordinates, IMA J. Numer. Anal., 11:261–270, 1991.

[5] D. Britz, Digital simulation in electro-chemistry, Springer Berlin, Heidelberg, 2005.
[6] M. K. Kadalbajoo and D. Kumar, Geometric mesh FDM for self-adjoint singular perturbation

boundary value problems, Appl. Math. Comput., 190:1646–1656, 2007.
[7] N. Jha, A fifth order accurate geometric mesh finite difference method for general nonlinear

two point boundary value problems, Appl. Math. Comput., 219(16):8425–8434, 2013.
[8] R. S. Varga, Matrix Iterative Analysis, Springer Series in Computational Mathematics, Springer

Berlin, Germany, 2000.
[9] D.M. Young, Iterative solution of large linear systems, Academic Press, New York, 1971.

[10] P. Henrici, Discrete variable methods in ordinary differential equations, Wiley, New York, 1962.
[11] R. K. Mohanty, M. K. Jain and D. Dhall, High accuracy cubic spline approximation for two

dimensional quasi-linear elliptic boundary value problems, Appl. Math. Model., 37:155–171,
2013.

[12] A. D. Polyanin, Handbook of linear partial differential equations for engineers and scientists,
CRC Press, 2010.

[13] W. Chen, J. Zhang and Z. Fu, Singular boundary method for modified Helmholtz equations,
Eng. Anal. Bound. Elem., 44:112–119, 2014.

[14] H. Hossenzadeh and M. Dehghan, A new scheme based on boundary elements method to solve
linear Helmholtz and semi-linear Poisson equations, Eng. Anal. Bound. Elem., 43:124–135, 2014.


