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ABSTRACT.

In business practice, Monte Carlo (MC) simulation is extensively used for many purposes like

sensitivity analysis, risk quantification and analysis, prediction etc. MC simulation creates many

artificial futures for a given situation by generating number of sample paths of outcomes. The

process of simulation assumes importance in the context of our inability to mathematically model

the business process completely and also ‘Flaw of Averages’ (due to Savage). While performing

MC simulation, precision and error control are important and can be achieved by appropriate sam-

pling. This paper outlines how best to use MC simulation in business applications with inputs from

literature and the author’s work.

AMS (MOS) Subject Classification. 65C05.

1. Introduction

There are many stories about the advent of Monte Carlo simulation. One story

credits it to a scientist Stanislav Ulam who got the idea while recuperating in his

hospital bed. He took his idea to Von Neumann, who approved it and thus sowed

the seeds of Monte Carlo simulation in 1946. It is now almost 70 years after that and

perhaps a right time to review the progress made since then. In this paper, we dis-

cuss a few aspects of the theory behind Monte Carlo simulation, some representative

simulation applications, and a few simulation enablers.

Simulation refers to recreating or creating alternate scenarios of a situation based

on certain inputs. For a practitioner, simulation enables solving complex practical

problems with sufficient ease. A simulation procedure usually calculates various sce-

narios of a model by repeatedly picking up value from either historical data or a

user-defined probability distribution for the uncertain variables in the model. The

basic building block of Monte Carlo simulation is a computerized version of a roulette

wheel with many million random numbers around its edge.
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2. Monte Carlo Simulation

Monte Carlo (MC) simulation is a method of parametric simulation, where we

assume specific parameters of a suitable probability distribution for the uncertain

variables in the model. Parametric simulation starts afresh every time. MC simulation

is used for risk analysis, quantification of risk, sensitivity analysis, and forecasting and

prediction. MC simulation was central to the simulations required for the Manhattan

project, and became popular in the fields of physics and operations research.

Monte Carlo simulation was first described by David Hertz (1964) in a HBR ar-

ticle and popularized in financial circles by sophisticated users. Today, spreadsheet-

based Monte Carlo simulation software is widely available and is being used in fields

as diverse as petroleum exploration, financial engineering, defense, banking, and re-

tirement portfolio planning (Savage, 2002). MC simulation is a viable alternative

to complex stochastic closed-form mathematical models, where MC simulation, cor-

rectly modeled, obtains similar answers to the more elegant mathematical models.

Moreover, there are many complex real-life situations where either closed-form math-

ematical models are not available or analytical solutions may not be available.

There are many situations where simulation experiments are useful and worth-

while. Researchers, in the field of nuclear physics, have used Monte Carlo methods

for the study of neutron transport and radiation shielding. The methods are useful

whenever the underlying physical law is either unknown or it is known but we cannot

obtain enough detailed information in order to apply it directly in a deterministic

manner. The field of operations research has a long history of employing Monte

Carlo simulations. There are several reasons for using simulations, which include the

following: to supplement theory and to supplement experimentation.Even experimen-

tation may be costly or impossible in practice and MC simulation is possibly the only

recourse in such cases.

2.1. Random Numbers. We may want to generate random numbers, x − s, that

belong to some domain, x ∈ [xmin, xmax], in such a way that the frequency of

occurrence, or probability density, will depend upon the value of x in a prescribed

functional form f(x). Random numbers generated from standard uniform distribution

are useful in sampling from defined distributions. While true (0, 1) random numbers

can be generated only by electronic devices, simulation models executed on computer

use arithmetic operations and algorithms. Such numbers are not truly random. Since

they can be generated in advance, they are called pseudo-random numbers. Many

programming languages have the ability to generate pseudo-random numbers which

are effectively distributed according to the standard uniform distribution. The dif-

ference between truly random and pseudo-random numbers is purely technical and

business applications are being driven with pseudo-random numbers.
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Several methods are available to transform the uniform random variate on the

unit interval into another functional form. Inverse transformation, one of the most

common and easy-to-understand methods, involves describing the cumulative distri-

bution function F (x) associated with the function f(x) and generating the probability

density function through the inverse function F−1(x) for any value of uniform random

variate U(0, 1). If such inversion is not feasible, we use other methods which include

composition, convolution etc., statistical methods based on sampling, and methods

based on number theory. Specific methods are used to generate bivariate correlated

distributions, by generating first independent distributions and providing the desired

correlation by rotation of the axes. Even truncated distributions can be generated

through an appropriate method which works well with the inverse transformation

technique. Saucier (2000) provides a detailed exposition on generating statistical

distributions in a C++ environment.

2.2. Probability Distributions. An assumed probability distribution or distribu-

tions is at the core of any MC simulation. Any probability distribution is character-

ized by a probability density function and a few defined parameters. For example, a

continuous uniform distribution is characterized by the probability density function

(2.1) f(x) =
1

b − a
for a ≤ x ≤ b and = 0 for x > a or x > b.

The continuous uniform distribution, also called rectangular distribution, is a

family of symmetric probability distributions such that for each member of the family

all intervals of the same length on the distribution’s support are equally probable.

The support is defined by the two parameters a and b its minimum and maximum

values. A standard uniform distribution has a = 0 and b = 1. The cumulative

distribution function is

(2.2) F (x) = 0 for x < a, =
x − a

b − a
for a ≤ x < b, = 1 for x ≥ b.

Its inverse is

(2.3) F−1(p) = a + p ∗ (b − a) for 0 < p < 1.

Saucier (2000) also highlights the overuse of the continuous normal distribution and

the discrete Poisson distribution and provides the required codes for using lesser-

known distributions.

2.3. Distributional Fitting. While it is possible to run the simulation trials by

assuming parameters of a certain population, it is more preferable to make distri-

butional assumptions correctly based on historical data. This is done by converting

the raw data into a histogram and comparing it with that of regular distributions.

Based on the assumed distribution and its parameters, the distributional fitting is
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performed through either a chi-square Goodness-of-fit test or a Kolmogorov-Smirnov

test. While the former is used to test discrete distributions, the latter is used for

continuous distributions. The chi-square and K-S tests are semi-parametric and non-

parametric in nature respectively and are better suited for goodness-of-fit tests of

non-normal and normal distributions. There are other distributional tests like the

Anderson-Darling, Shapiro-Wilks which are very sensitive parametric tests. These

may not be appropriate in MC simulation.

2.4. Chi-square Test. The chi-square (CS) test is a goodness-of-fit test, which can

be applied to any univariate distribution for which you can calculate the cumulative

distribution function. The test requires a sufficient sample size for the CS approxi-

mation to be valid and is sensitive to the choice of bins. Also it can be applied to

discrete distributions like binomial, Poisson etc. The null hypothesis that the data

set follows a specified distribution is tested using the CS statistic defined as

(2.4) χ2 =

k∑

i=1

(Oi − Ei)
2

Ei

,

where Oi is the observed frequency for bin i and Ei is the expected frequency for bin

i. The expected frequency is calculated by

(2.5) Ei = N(F (YU) − F (YL))

where F is the cumulative distribution function for the distribution being tested,

(YU) is the upper limit for class i, (YL) is the lower limit for class i, and N is the

sample size. The test statistic follows a CS distribution with (k−c) degrees of freedom

where k is the number of nonempty cells and c = the number of estimated parameters

(including location, scale, and shape parameters) for the distribution +1. For example

for a two-parameter binomial distribution, c = 3. The hypothesis that the data are

from a population with specified distribution is rejected, if χ2 > χ2(α, k − c) where

χ2(α, k − c) is the CS percent point function with k − c degrees of freedom and a

significance level of α. A low p-value indicates a bad fit (null hypothesis rejected)

while a high p-value indicates a statistically good fit.

2.5. Kolmogorov-Smirnov (K-S) Test. The Kolmogorov-Smirnov statistic quan-

tifies a distance between the empirical distribution function of the sample and the

cumulative distribution function of the reference distribution, or between the empir-

ical distribution functions of two samples. The test is nonparametric based on the

empirical distribution function of the sample data set and the distribution of the K-

S test statistic does not depend on the underlying cumulative distribution function

being tested. It only applies to continuous distributions, and it tends to be more

sensitive near the centre of the distribution than at the distribution’s tails. We also

need to specify the distribution fully.
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The null distribution of this statistic is calculated under the null hypothesis that

the samples are drawn from the same distribution (in the two-sample case) or that

the sample is drawn from the reference distribution (in the one-sample case).

Given N ordered data points Y1, Y2, . . . , Yn, the empirical distribution function

is defined as En = n(i)/N where n(i) is the number of points less than Yi where Yi

values are ordered from the smallest to the largest value. The hypothesis is tested

using the K-S statistic defined as

(2.6) KS = max
1≤i≤N

|F (Yi) −
i

N
|,

where F is the theoretical cumulative distribution of the continuous distribution being

tested. This distribution must be fully specified, i.e. the location, scale, and shape

parameters cannot be estimated from the data (Mun,2006). A low p-value (e.g. less

than 0.05 or 0.01) leads to rejection of null hypothesis and indicates a bad fit whereas

a high p-value indicates a statistically good fit.

2.6. Precision Control in Simulation. While a large number of trials are expected

to produce reliable estimates with sufficient precision, we can carry out precision con-

trol by following certain statistical sampling procedures. In order to remove subjec-

tivity in estimating the required number of trials, precision control is done using the

confidence intervals to determine when a specified accuracy of a statistic has been

reached. If we have a 5 per cent error level with respect to the mean at the 95 per

cent confidence level, the number of trials required to obtain this precision is based

on the following confidence interval of

X ± Z0.05

s√
n

where Z0.05
s√
n

is the error of 5 percent level, X is the sample average, Z is the

standard-normal Z-score obtained from 95 per cent precision level, s is the sample

standard deviation and n is the number of trials required to obtain this level of error

with the specified precision. Very large number of trials also involves expensive com-

puter time, which can be saved by adopting variance reduction procedures to reduce

the variance and thereby reduce the number of trials. These include antithetic vari-

able technique, control-variate technique, importance sampling, stratified sampling,

moment matching etc.

2.7. Bootstrap Simulation. An alternative to MC simulation is nonparametric

bootstrap simulation in which historical data is used and no distributional parameters

are assumed. In essence, bootstrap simulation is an alternative to classical hypoth-

esis testing methods based on normal distribution of the sample statistic. Classical

methods offer higher power in their tests, but relies on normality assumptions and

can be used only to test the mean and variance. Bootstrap simulation, on the other
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hand, provides lower power but is nonparametric and distribution-free, and can be

used to test any distributional statistic, like skewness etc. Nonparametric simulation

uses raw data directly and hence may require additional procedures of cleaning the

data (e.g. outliers and non-sensical values).

3. Simulation Applications

3.1. Application to Portfolio Optimization. Markowitz’s theory of portfolio se-

lection (Markowitz, 1952) is an important contribution in the area of mathematical

finance. His theory was based on three important principles: risk, reward, and the

correlation among the assets in the portfolio. While risk was measured by standard

deviation, and correlation by a measure called covariance, reward was measured by

the mean, specifically arithmetic mean. In the recent past, some limitations of the

Markowitz model have been studied and some researchers have presented improve-

ments incorporating alternate concepts, primarily dependent on simulation.

The importance of simulation studies can be better understood also from a con-

sideration of the ‘Flaw of Averages’ (Savage, 2009) which simply states that plans

based on assumptions about average conditions usually go wrong. Whenever we use

an average to represent an uncertain quantity, we are distorting the results because

an average measure ignores the impact of the inevitable but possible variations. It

is also true that the average of a function of many random variables is not equal to

the function of the averages of the same variables unless the function is linear. In

the context of ‘Flaw of Averages’, even a nonparametric bootstrap simulation is quite

useful.

Though the mean-variance portfolio model of Markowitz addresses the ‘flaw of av-

erages’ associated with the mean, by distinguishing between different investments with

the same average (expected) returns but with different risks (standard deviation), Ka-

plan and Savage (2009) say “the use of standard deviation and covariance introduces

a higher-order version of ‘Flaw of Averages’, in that these concepts are themselves

a version of averages”. They present an updated version of their model Markowitz

2.0, addressing the several limitations of mean-variance optimization (MVO). Their

updated model focuses on five specific enhancements:

1) Use of a scenario-based approach to allow fat-tailed distributions,

2) Adoption of the long-term geometric mean in place of the arithmetic mean,

3) Choice of Conditional Value at Risk (CVaR) in place of standard deviation,

4) Scenario-based modelling with Monte-Carlo simulation to accommodate any

number of distributions to describe the returns and

5) Exploit new statistical technologies pioneered by Savage in the field of Prob-

ability Management.
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With phenomenal speed of computers, the field of Probability Management is able

to extend data management to probability distributions rather than numbers. The

key component of Probability Management is the Distribution String, or DIST TM ,

which can encapsulate thousands of trials as a single data element. The use of DISTs

greatly saves on storage and speeds up processing time, so that a Monte Carlo sim-

ulation consisting of thousands of trials can be performed on a personal computer in

an instant. Kaplan and Savage (2009) say, “While not all asset-management organi-

zations are prepared to create the DISTs needed to drive the GM-CVaR optimization

we described, some outside vendors, such as Morningstar Ibbotson, can fulfill this

role.”

Gulten and Ruszczvnski (2015) apply novel risk modeling and optimization tech-

niques to daily portfolio management to develop and compare specialized methods

for scenario generation and scenario tree construction. They also discuss a two-stage

stochastic programming problem with conditional measures of risk, which is used to

re-balance the portfolio on a rolling horizon basis, with transaction costs included

in the model. Their results are supported by an extensive simulation study on real-

world data of several versions of the methodology, based on which they conclude that

two-stage models outperform single-stage models in terms of long-term performance

and also that using high-order risk measures is superior to first-order measures.

3.2. Application to Capital Investment Decisions. Kempf et al. (2013) describe

a real-life business application at Intel Corporation in which they developed a frame-

work for procurement which seamlessly combines statistical forecasting with Monte

Carlo simulation and stochastic programming. This was used to determine the num-

ber of options, Intel should procure and exercise, and the solution suite included a

built-in scenario and sensitivity analysis to support Intel’s contract selection, options

reservation, and equipment procurement decisions.

In the public domain also, Monte Carlo simulation has been used in assisting gov-

ernment policy making, such as protecting the Netherlands against flooding (Delta

Commissioner of Holland, 2013). In order to obtain a scientific basis for the policy

decision, the Dutch government formed a team of specialists from Tilburg University,

Delft University of Technology, HKV Consultants, and Delta to determine economi-

cally efficient flood standards. The team used Monte Carlo simulations to establish

confidence intervals and confirm the robustness of the recommendations. Through

this analysis, the OR team showed that it is efficient to limit increased flood protection

standards only in three critical regions. These results formed a basis for government

policy and led to cost savings of 7.8 million euro. This project won the Edelman 2013

award from INFORMS.
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3.3. Application to Option valuation. Applications in this area have been driven

by the need to develop solutions in the context of mathematical complexity. In

the case of simple derivatives, like a European option, we have the famous Black-

Scholes model (Black-Scholes, 1973), based on assumptions of geometric Brownian

motion for the stock prices and other generalizing features. When exact formulas

are not available, different numerical procedures are used for valuing derivatives.

MC simulation is one of the preferred and prominent methods for valuing complex

derivatives.

MC simulation is generally used for valuing derivatives where the payoff is de-

pendent on the path of the underlying or where there are many underlying variables.

The main advantage of MC simulation is that we can use it when the payoff depends

on the path followed by S as well as when it depends only on the final value of S.

Also, payoffs can occur any number of times during the life of the derivative and any

stochastic process can be accommodated. We can extend the procedure to deal with

situations where there are many underlying variables. Though MC simulation can

be computationally time consuming and is not well suited for valuing American-style

options, researchers have developed different ways using a least-squares analysis or

parameterizing the early exercise boundary.

Black-Scholes model is found to be imperfect despite its prevalent use in hedging,

as it assumes continuous hedging and zero transaction cost. A specific application

(Nilakantan and Talwar, 2014) was developed by replacing the continuous hedging

assumption by discrete hedging specified number of times a day. This paper drew

upon the ongoing research to explore this aspect in the Indian markets by empirically

testing the model for discrete delta-hedging with European call options on 12 NIFTY-

constituent stocks. B-S replication strategy was studied by carrying out Monte Carlo

simulations of the model and analysing the results for the uncertainty in the replica-

tion error. Three scenarios: hedging once, twice, and four times a day were studied

with Monte Carlo simulation and the following conclusions were drawn.

The replication error (represented by final profit/loss) is not zero, in the Indian

market. The final distribution of replication error i.e. the final profit/loss is not

normal, in all the cases, as also verified with the K-S test. However, representing the

risk of final profit/loss in terms of a standard deviation of the distribution is quite

useful.

The standard deviation obtained in simulations for once-a-day hedging is differ-

ent/higher in all the options than the theoretical standard deviation (calculated from

the options vega). However, the obtained standard deviation reduces approximately

for all stocks by
√

2 and 2, when the hedging is performed twice and four times in

a given trading day respectively. Thus the proportion of
√

N is maintained at both
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twice and four times a day hedging. It was possible for us to verify the relationship

between σP and L at different hedging frequencies which is proportional to
√

N .

3.4. Applications of Simulation- Optimization. Standard optimization meth-

ods assume the property of certainty for the parameters and uncertainty is normally

dealt with through stochastic programming. Simulation is a viable process that can

be coupled with optimization procedures. A simulation-optimization application was

developed in the area of operations and logistics (Nilakantan, 2011) for procurement

and transportation of coal from different sources to the generation plants with exten-

sions for dealing with uncertainties associated with import delays. While variability

and uncertainty introduced nonlinearity and stochastic programming methodology,

Monte Carlo simulation was applied and the solution was obtained through a combina-

tion of simulation-optimization on the Risksolver platform. A full-fledged simulation-

optimization of a power plant logistics system was earlier demonstrated by Yabin Li

and Rong Li (2008).

Liu et al. (2013) discuss an application of simulation-optimization for inven-

tory management at Kroger pharmacy chain. Kroger’s operations research team,

in collaboration with faculty from Wright State University, developed a simulation-

optimization approach using empirical distributions to model demand. The system

was implemented in October 2011 in all Kroger pharmacies in the United States which

not only reduced out-of-stocks substantially but also resulted in increased revenue and

reduced costs of inventory and labour.

4. Simulation Enablers

Simulations can be performed with the help of Excel. Use of excel is easy and

effective for problems which are simple. Paul Jensen (1936–2011) developed Excel-

based computational tools to go with Operations Research. His website www.ormm.net

was originally created to support the text Operations Research Models and Methods,

but it has grown in content much beyond the text. The site is remarkably effective in

supporting the goals of OR education and practice. The site provides over 30 add-ins

for Microsoft Excel that implement OR methods and includes add-ins for running

simulation and optimization models. The testimonials page of the site lists hundreds

of comments from students and practitioners attesting to the usefulness of the site

and the add-ins. After his demise in 2011, the status of the website and its mainte-

nance is in question. However, some of these add-ins can still be accessed through

his official website at the University of Texas at Austin.

4.1. Simulation Softwares. While simple simulations can be performed with the

help of Excel, setting up spreadsheets for complex problems is difficult in many cases

for which use of more sophisticated simulation packages is recommended. Advanced
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simulation packages are available to perform the simulation more efficiently and with

additional features. Specialized software packages are quite useful to deal with various

aspects of the model and provide relevant results from the simulation runs. There are

many simulation languages like Arena, GPSS/SLX, SIMPLE++, SIMUL8 etc., which

score over general-purpose programming languages in terms of providing a natural

framework, lower development cost, simulation-specific error detection etc.

The Systems Modeling Language (SysML) is a general purpose visual modeling

language for systems engineering applications. SysML is defined as a dialect of the

Unified Modeling Language (UML) standard, and supports the specification, analysis,

design, verification and validation of a broad range of systems and systems-of-systems.

During the last decade SysML has evolved into enabling technology for Model-Based

Systems Engineering (MBSE) for applying rigorous visual modeling principles and

best practices to Systems Engineering activities throughout the System Development

Life Cycle (SDLC). According to Huang, Ramamurthy, and McGinnis (2007), “Sim-

ulation languages and the GUIs supporting them may be excellent tools for creating

simulation codes, but are not necessarily the best tools to use for creating descriptions

of systems, i.e. for modeling”. After using SysML both to model a system and to

support the automatic generation of simulation models, they conclude that “SysML

shows great promise for creating object-oriented models of systems that incorporate

not only software, but also people, material, and other physical resources, expressing

both structure and behavior for such systems.”

QSIM from SAS Inc. is a G-P simulation package used for constructing and

analyzing discrete-event simulation models (SAS, 2004). The design of the application

makes model building simple for novice users, while a broad array of components and

functions makes it appropriate for expert users as well. The ability to create composite

components reduces development time when complex model fragments are used over

and over.

AnyLogic is a multi-method simulation modeling tool developed by The AnyLogic

Company (former XJ Technologies). According to their website, theirs is the only

simulation tool that supports all the most common simulation methodologies in place

today: System Dynamics, Process-centric (AKA Discrete Event), and Agent-Based

modeling (www.anylogic.com). AnyLogic Personal Learning edition is available for

free for self-educational and educational purposes.

4.2. Simulation as a Teaching Aid. Management simulations have become preva-

lent in the education system over the past decades. While Harvard and other business

schools have developed many simulation games to teach management strategies to

business school students, we will discuss a few specific applications developed for op-

timization problem solving and to promote the teaching of simulation in classrooms.
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Based on their study, Salas, Wildman, and Piccolo (2009) suggest that simulation-

based training (SBT) offers many advantages as an approach for management ed-

ucation, and provide several practical guidelines regarding how best to implement

simulation-based training in the classroom.

Snarr and Gold (2006) posit the use of mathematical models and simulation

in teaching of macroeconomics at the intermediate level. While models have become

complex and sophisticated for students to learn, mathematical software such as Maple

has been used to design simulations as pedagogical aids. Based on the design of a

system of equations to model the economy, thereby simulating the system with Maple

and a pilot test of the simulation, they conclude that symbolic mathematics software

can be an effective student learning and teaching tool.

Rollins, Gunturi, and Sullivan (2014) discuss, in their paper, a Pharma busi-

ness simulation set up with inputs and hands-on exercises by their students. The

design of this practical exercise involved their pharmacy management students who

made calculations and global decisions, entered their data into a business simulation

software and developed a realistic community pharmacy marketplace. Based on this

exercise, their conclusion was that the pharmacy simulation program was an effective

active-learning exercise which enhanced students’ knowledge and understanding of

the business.

Liu et al. (2013) developed a spreadsheet model that incorporated a simulation of

the ordering process and an iterative procedure to search for near-optimal solutions

in a national chain of pharmacies. This was also easy to understand by students

and practitioners and the spreadsheet model is well-integrated into the curriculum

of several engineering courses including inventory management, simulation, and op-

timization. This has provided an interactive environment for students to experience

real-life inventory decision making.

5. Conclusions

In this paper, we have presented a broad overview of the area of Monte Carlo

simulation in the context of business applications. A few applications to business were

discussed, especially where models are either complex or not analytically tractable.

Brief ideas were presented about softwares and teaching aids with which we can solve

seemingly complex problems through Monte Carlo simulation. It is hoped that the

above discussion will lead to better understanding of the theory of MC simulation

and its application to business analysis and decision making.
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