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ABSTRACT. Using the theory of semigroup of bounded linear operators in a complex Banach

space, we establish the existence and uniqueness of a pseudo almost periodic mild solution of a

quasilinear functional differential equation. The main result is applied to a partial integro-differential

equation modeling nonlocal reaction-diffusion problem in biology. Then we develop a numerical

method based on the nonstandard finite difference discretization. We use a non-local approximation

to approximate a nonlinear term to preserve the positivity of the solution. We then provide a

detailed stability analysis and establish the convergence of this numerical method. We prove that

this method is unconditionally stable. Finally, we present several numerical results which show the

existence of positive asymptotically stable solutions of the model.
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1. Introduction

Pseudo-almost periodicity was introduced by Zhang, 1994; Zhang, 1995. The

problems having almost periodic and pseudo-almost periodic solutions often require

serious attention from the qualitative theory of differential equations because the

outcomes are applicable in biology, economics and other domains of sciences and

engineering. Some works related to pseudo-almost periodic solutions to abstract

differential and partial differential equations can be found in Cuevas & Pinto, 2001;

Dads & Arino, 1996; Dads et al., 1997; Diagana, 2005; and Li, 2001.

In this paper, we consider the following quasilinear functional differential equation

in a complex Banach space X:

du(t)

dt
+ A(t, u(t))u(t) = f(t, u(t), ut), t ∈ R, u ∈ X,(1)
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where ut(θ) = u(t + θ), θ ∈ R, f : R × X × X → X is an L1 function. We

assume that for (t, u) ∈ R × B, B ⊂ X, A(t, u(t)) is a linear operator in X. We

study theoretically and numerically, the existence and uniqueness of a pseudo-almost

periodic mild solution of the above equation.

After the introduction of almost periodicity, there have been many generalization

to this terminology. One immediate generalization is the concept of pseudo almost

periodicity given by Zhang, 1994. It has several applications, for instance, in theory of

partial differential equations, integral equations and functional differential equations.

The existence and uniqueness of a pseudo-almost periodic solution to a differential

equation has been of great interest to many mathematicians in the past few decades,

see for instance, the works Amir & Maniar, 1999; Cuevas & Pinto, 2001; Diagana et

al., 2006; Li et al., 2001; Zhang, 1994 and references therein.

The existence of a pseudo-almost periodic solution of an abstract differential

equation has been considered by many authors when A(t, u(t)) = A, A(t, u(t)) = A(t)

and without retarded argument, see for instance, the papers Amir & Maniar, 1999;

Diagana, 2007 and Li et al., 2001. In Ding et al., 2007; authors showed the existence

and uniqueness of a pseudo almost periodic mild solution of the following differential

equation in X:

du(t)

dt
+ A(t)u(t) = g(t, u(t− h)), t ∈ R,(2)

for fixed h ≥ 0. In Amir & Maniar, 1999 and Cuevas & Pinto, 2001, the authors

have shown the existence and uniqueness of a pseudo almost periodic solution of a

semilinear differential equation when A is a Hille-Yosida operator.

Our aim is to show the existence and uniqueness of a mild solution of (1). We

assume that for (t, w) ∈ R × B, B ⊂ X, A(t, w) is the stable infinitesimal generator

of a C0-semigroup {St,w(s), s, t ≥ 0} (cf. Pazy, 2005 for more details), in the sense

that there exists constants M ≥ 1 and w known as stability constants, such that

ρ(A(t, w)) ⊃ (w,∞), (t, w) ∈ R ×B.

The rest of the paper is organized as follows. In Section 2, we given some prelim-

inarily results concerning evolution semigroups in a Banach space. The existence of

mild solutions to functional as well as integro-differential equations in Banach spaces

is established in Section 3. An application problem is discussed in Section 4. In Sec-

tion 5, a numerical method, based on a nonstandard finite difference discretization,

is developed and analyzed for solving a delay partial differential equation. Numer-

ical simulations are presented in Section 6. Finally, some concluding remarks are

presented in Section 7.
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2. Preliminaries

Let us denote BC(R, X) the space of all bounded continuous functions from R

to X. It is a Banach space with the norm

‖u‖∞ = sup
t∈R

‖u(t)‖.

Also let B(X, Y ) be the set of all bounded linear operators from X to Y . It is easy

to see that, B(X, Y ) is a Banach space with the norm

‖A‖B(X,Y ) = sup
x∈X,x 6=0

‖Ax‖Y

‖x‖X

.

Now we list some basic results which are helpful to understand the present work.

Definition 2.1. A bounded continuous function f : R → X is said to be almost

periodic if for each ǫ > 0 there exists lǫ > 0 such that every interval of length lǫ

contains a number τ with the property that

‖f(t+ τ) − f(t)‖ < ǫ, for all t ∈ R.

Definition 2.2. A continuous mapping f : R × X × X → X is said to be almost

periodic in t uniformly for (x, χ) ∈ X × X if for each ǫ > 0 and for each compact

subset E×S of X×X there exists lǫ > 0 such that every interval of length lǫ contains

a number τ with the property that

‖f(t+ τ, x, χ) − f(t, x, χ)‖ < ǫ, for all t ∈ R, (x, χ) ∈ E × S.

We denote by AP (R ×X ×X,X) the set of all such functions.

We denote by

AP0(X) =
{
f ∈ BC(R, X) : lim

r→∞

1

2r

∫ r

−r

‖f(ξ)‖dξ = 0
}
,

and by AP0(R ×X ×X,X) the set of all continuous functions f : R ×X ×X → X

such that f(., u, χ) ∈ AP0(X) and

lim
r→∞

1

2r

∫ r

−r

‖f(ξ, u, χ)‖dξ = 0,

uniformly in (u, χ) ∈ X ×X.

Definition 2.3. A mapping f ∈ BC(R, X) is called pseudo almost periodic if it can

be written as f = f1 + f2, where f1 ∈ AP (X) and f2 ∈ AP0(X).

The functions f1 and f2 are called the almost periodic and the ergodic perturba-

tion components of f , respectively. The set of all such functions will be denoted by

PAP (X).
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Definition 2.4. A continuous mapping f : R×X ×X → X is called pseudo almost

periodic in t ∈ R uniformly in (x, χ) ∈ X × X if it can be written as f = f1 + f2,

where f1 ∈ AP (R ×X ×X,X) and f2 ∈ AP0(R ×X ×X,X).

Let us assume that St,w(s), s ≥ 0 be a C0-semigroup generated by A(t, w).

Definition 2.5. A subspace Y ⊂ X is called A(t, w)-admissible if Y is an invariant

subspace of St,w(s), s ≥ 0, and the restriction of St,w(s) to Y is a C0-semigroup in Y .

In order to prove the results of our paper, we need to implement the following

hypothesis on A(t, w).

(H1) There exists a subset B of X such that the family of operators {A(t, w), (t, w) ∈
R × B} is stable.

(H2) For (t, w) ∈ R×B, Y is A(t, w)-admissible. Moreover, the family {Ã(t, w), (t, w) ∈
R × B} of parts of A(t, w) of Y is stable in the space Y .

(H3) A(t, w) is a bounded linear operator for (t, w) ∈ R × B, A(·, w) is continuous

in B(X, Y ), and D(A(t, w)) ⊃ Y .

(H4) A is Lipschitz, that is there exists a constants LA > 0, satisfying ‖A(t, w1) −
A(t, w2)‖ ≤ LA‖w1 − w2‖.
(H5) Uu(t, s)Y ⊂ Y, s, t ∈ R, s ≤ t, for each u ∈ C(R, X), and Uu(t, s) is strongly

continuous in Y .

Definition 2.6. A two parameters family of bounded linear operators U(t, s), t ≥
s ≥ 0, on X is called an evolution system if

(i) U(s, s) = I and U(t, r)U(r, s) = U(t, s), t ≥ r ≥ s ≥ 0.

(ii) (t, s) → U(t, s) is strongly continuous for t ≥ s ≥ 0.

If u ∈ C(R, X) and the family of operators {A(t, w), (t, w) ∈ R × X}, satisfies

(H1)–(H4), then there exists an evolution system Uu(t, s) in X satisfying the following

relations:

(i) ‖Uu(t, s)‖ ≤ M̃eδ(t−s) for t ≥ s ≥ 0, where M̃ and δ are the stability constants;

(ii) ∂+

∂t
Uu(t, s)w|t=s = A(s, u(s))w for w ∈ Y ;

(iii) ∂+

∂s
Uu(t, s)w|t=s = −Uu(t, s)A(s, u(s))w for w ∈ Y .

Also there exists a positive constant C1 such that

‖Uu(t, s)y − Uv(t, s)y‖ ≤ C1‖y‖Y

∫ t

s

‖u(ξ) − v(ξ)‖dξ,

for every u, v ∈ C(R, X) and every y ∈ Y .

Definition 2.7. By a pseudo-almost periodic mild solution u : R → X we mean that

u ∈ PAP (X), and u(t) satisfies

u(t) = Uu(t, a)u(a) +

∫ t

a

Uu(t, ξ)f(ξ, u(ξ), uξ)dξ, t ≥ a.(3)
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It is easy to see that if Uu(t, s) ≤ M̃eδ(t−s), then relation (3) can be replaced by

u(t) = −
∫ ∞

t

Uu(t, ξ)f(ξ, u(ξ), uξ)dξ.

Assumptions. We require the following assumptions:

1. The function f : R ×X ×X → X is Lipschitz continuous, that is, there exists

a positive number Lf such that

‖f(t, u1, χ1) − f(t, u2, χ2)‖ ≤ Lf [‖u1 − u2‖ + ‖χ1 − χ2‖∞],

for all t ∈ R and for each (ui, χi) ∈ X ×X, i = 1, 2;

2. A(t, u(t)), t ∈ R, satisfies all the hypothesis (H1) −−(H5);

3. Uu(t, s), t ≥ s, satisfy the condition that, for each ǫ > 0 there exists a number

lǫ > 0 such that each interval of length lǫ > 0 contains a number τ with the

property that

‖Uu(t+ τ, s+ τ) − Uu(t, s)‖ < M̃eδ(t−s)ǫ.

Throughout the paper, we assume that all the above assumptions are satisfied.

3. Pseudo almost periodic mild solution

In this section, we prove the existence and uniqueness of a pseudo almost periodic

mild solution of (1).

Lemma 3.1. If u ∈ PAP (X), then ut ∈ PAP (X).

Proof. By definition u = u1 + u2, where u1 is almost periodic and u2 is ergodic

perturbation components of u. It is not difficult to observe that (u1)t is almost

periodic. Consider

1

2r

∫ r

−r

‖(u2)ξ‖dξ =
1

2r

∫ r+θ

−r+θ

‖u2(ξ)‖dξ

= 2
(r + θ)

2r

1

2(r + θ)

∫ r+θ

−r+θ

‖u2(ξ)‖dξ → 0 as r → ∞.

Hence (u2)t ∈ AP0(X). So ut ∈ PAP (X). This completes the proof of the lemma.

We define the operator F on PAP (X) by

(Fu)(t) = −
∫ ∞

t

Uu(t, ξ)f(ξ, u(ξ), uξ)dξ, u ∈ PAP (X),(4)

and will show that Fu ∈ PAP (X) for u ∈ PAP (X). The composition theorem given

by Amir & Maniar, 1999; ensure that φ(t) = f(t, u(t)) is pseudo almost periodic,

when u are pseudo almost periodic. This result could be easily extended for the

function f ∈ PAP (R ×X ×X). We have the following result.

Lemma 3.2. The operator F is bounded.
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Proof. By the composition theorem for pseudo-almost periodic function Amir & Ma-

niar, 1999; we claim that φ(·) = f(·, u(·), u(·)) is pseudo-almost periodic. Taking the

norm of the operator F , we have

‖(Fu)(t)‖X ≤
∫ ∞

t

M̃eδ(t−ξ) ‖f(ξ, u(ξ), uξ)‖X
dξ ≤ M̃Ñ

∫ ∞

t

eδ(t−ξ)dξ ≤ M̃Ñ

δ
<∞,

where Ñ is a bound for f . The above estimate guarantee the boundedness of Fu,

which completes the proof of the lemma.

Let us define φ(·) = f(·, u(·), u(·)), for u ∈ PAP (X), as mentioned above, then

φ ∈ PAP (X). Thus φ = φ1 + φ2 for φ1 ∈ AP (X) and φ2 ∈ AP0(X).

Lemma 3.3. The operator F is continuous.

Proof. Consider the sequence un → u. We need to prove that Fun → Fu. Taking

the norm of both side, we have

‖Fun(t) − Fu(t)‖

=
∥∥∥−

∫ ∞

t

Uun
(t, ξ)f(ξ, un(ξ), unξ)dξ +

∫ ∞

t

Uu(t, ξ)f(ξ, u(ξ), uξ)dξ
∥∥∥,

≤
∫ ∞

t

‖Uun
(t, ξ)‖f(ξ, un(ξ), unξ) − f(ξ, u(ξ), uξ)‖dξ

+

∫ ∞

t

‖(Uun
(t, ξ) − Uu(t, ξ))f(ξ, u(ξ), uξ)‖dξ,

≤
∫ ∞

t

M̃eδ(t−ξ)Lf(‖un(ξ) − u(ξ)‖+ ‖unξ − uξ‖∞)dξ +D‖un − u‖∞,

≤ 2M̃Lf

(∫ ∞

t

eδ(t−ξ)dξ
)
‖un − u‖∞ +D‖un − u‖∞,

≤
(

2M̃Lf

δ
+D

)
‖un − u‖∞.(5)

Taking supremum on the both sides, we get

‖Fun − Fu‖∞ ≤
(2M̃Lf

δ
+D

)
‖un − u‖∞,

which proves our theorem.

Lemma 3.4. The map defined by

(F1φ1)(t) = −
∫ ∞

t

U(t, ξ)φ1(ξ)dξ, φ1 ∈ AP (X),(6)

is AP (X) → AP (X).
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Proof. As φ1 is almost periodic, we can choose the period τ such that

(F1φ1)(t+ τ) − (F1φ1)(t) = −
∫ ∞

t+τ

Uu(t+ τ, ξ)φ1(ξ)dξ +

∫ ∞

t

Uu(t, ξ)φ1(ξ)dξ,

= −
∫ ∞

t

Uu(t+ τ, ξ + τ)φ1(ξ + τ)dξ +

∫ ∞

t

Uu(t, ξ)φ1(ξ)dξ,

= −
∫ ∞

t

(Uu(t+ τ, ξ + τ)φ1(ξ + τ) − Uu(t, ξ)φ1(ξ))dξ,

= −
∫ ∞

t

(Uu(t+ τ, ξ + τ)φ1(ξ + τ) − Uu(t+ τ, ξ + τ)φ1(ξ))dξ

−
∫ ∞

t

Uu(t+ τ, ξ + τ)φ1(ξ) − Uu(t, ξ)φ1(ξ))dξ.(7)

Now we know that for every ǫ > 0, we have

‖φ1(t+ τ) − φ1(t)‖ < ǫ.

From (7), for τ ∈ Pǫ, we get

‖F1φ1(t+ τ) − F1φ1(t)‖ ≤
∫ ∞

t

‖(Uu(t+ τ, ξ + τ)‖‖φ1(ξ + τ) − φ1(ξ))‖dξ

+

∫ ∞

t

‖Uu(t+ τ, ξ + τ) − Uu(t, ξ)‖φ1(ξ))dξ,

≤ M̃

δ
ǫ+

M̃C

δ
ǫ < ǫ′,

which ensure the almost periodicity of F1(φ1).

Lemma 3.5. The map defined by

(F2φ2)(t) = −
∫ ∞

t

Uu(t, ξ)φ2(ξ)dξ, φ2 ∈ AP0(X),(8)

is AP0(X) → AP0(X).

Proof. It is easy to see that (F2φ2)(t) is bounded and continuous in t on R. Consider

lim
r→∞

1

2r

∫ r

−r

‖(F2φ2)(t)‖dt ≤ lim
r→∞

1

2r

∫ r

−r

∫ r

∞

‖Uu(t, ξ)φ2(ξ)‖dξdt

+ lim
r→∞

1

2r

∫ r

−r

∫ t

r

‖Uu(t, ξ)φ2(ξ)‖dξdt

= I1 + I2,

where

I1 = lim
r→∞

1

2r

∫ r

−r

∫ r

∞

‖Uu(t, ξ)φ2(ξ)‖dξdt ≤ lim
r→∞

1

2r

∫ r

−r

∫ r

∞

M̃eδ(t−ξ)‖φ2‖dξdt,

≤ lim
r→∞

1

2r

∫ r

−r

M̃‖φ2‖eδtdt

∫ r

∞

e−δξdξ ≤ lim
r→∞

1

2r

∫ r

−r

M̃

δ
e−δr‖φ2‖eδtdt,(9)
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I2 = lim
r→∞

1

2r

∫ r

−r

∫ t

r

‖Uu(t, ξ)φ2(ξ)‖dξdt ≤ lim
r→∞

1

2r

∫ r

−r

∫ t

r

M̃eδ(t−ξ)‖φ2‖dξdt,

≤ lim
r→∞

1

2r

∫ r

−r

M̃‖φ2‖dt
∫ t−r

0

eδξdξ ≤ lim
r→∞

1

2r

∫ r

−r

−M̃
δ

‖φ2‖(e−δ(t−r) − 1)dt.(10)

Adding (9) and (10), we obtain

I1 + I2 ≤
M̃

δ
lim
r→∞

1

2r

∫ r

−r

‖φ2‖dt = 0.

Theorem 3.6. Assume that f ∈ PAP (R×X×X,X) is Lipschitz continuous. Then

equation (1) has a unique pseudo almost periodic mild solution if

Λ =
2M̃Lf

δ
+D < 1.

Proof. Using Lemmas 3.2, 3.4 and 3.5, it follows that the operator F is well-defined

and is from PAP (X) to PAP (X). Moreover, for u, v ∈ PAP (X), we have

‖(Fu)(t) − (Fv)(t)‖ =

∥∥∥∥
∫ ∞

t

Uu(t, ξ)(f(ξ, u(ξ), uξ) − Uv(t, ξ)f(ξ, v(ξ), vξ))dξ

∥∥∥∥ ,

≤
∫ ∞

t

M̃eδ(t−ξ)Lf [‖u(ξ) − v(ξ)‖ + ‖uξ − vξ‖∞]dξ

+

∫ ∞

t

‖Uu(t, ξ)f(ξ, v(ξ), vξ) − Uv(t, ξ)f(ξ, v(ξ), vξ)‖dξ,

≤
∫ ∞

t

M̃eδ(t−ξ)Lf‖u(ξ) − v(ξ)‖dξ

+

∫ ∞

t

M̃eδ(t−ξ)Lf sup
θ∈R

‖u(ξ + θ) − v(ξ + θ)‖dξ

+D‖u− v‖∞,

≤
(

2

∫ ∞

t

M̃eδ(t−ξ)Lfdξ +D

)
‖u− v‖∞

≤
(

2M̃Lf

δ
+D

)
‖u− v‖∞.(11)

The operator F has a unique fixed point for Λ < 1, by the Banach fixed-point theorem.

Because the solution is pseudo almost periodic, this fixed point is our desired unique

pseudo almost periodic mild solution of (1).
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4. Applications to partial integro-differential equations

We consider the following age-structured model from Al-Omari & Gourley, 2002:

(12) ∂tu = D∂xxu− b0(t)u
2 +

∫ +∞

−∞

h(y − x)u(y, t− τ)dy,

where D > 0 (denotes diffusion rate), b0 is a pseudo-almost periodic function and h

has the form

h(x) = αe−γτ 1√
4πβτ

e
−x2

4βτ ,

for some real constants α, β and γ. The history function is given by

H(x, t) = (1 − sin((t− τ)/τπ)) sin(0.5(x+ L)/πL).

Note that we can rewrite this function as H(x, t) = ζ(t)ξ(x), where ξ(x) is a suffi-

ciently smooth P -periodic function on R and ζ(t) is a pseudo-almost periodic function

on R.

We let X to be the Banach space of all continuous P -periodic functions from R

into R, i.e., φ ∈ X if φ : R → R is continuous and φ(x + P ) = φ(x) for all x ∈ R,

endowed with the supremum norm,

‖φ‖X = sup
x∈R

|φ(x)|, φ ∈ X.

For each w ∈ X, let A(t, w) : D(A(t, w)) ⊂ X → X, be given by

D(A(t, w)) = {φ ∈ X : φ, φ′, φ′′ ∈ X},
A(t, w)φ(x) = Dφ′′(x) − b(t, w(x))φ(x),

φ ∈ D(A(t, w)), w ∈ X,

where b : R × R → R, b(t, r) = b0(t)r.

Now, to tackle the integral operator, we define K : X → X, by

(Kφ)(x) =

∫

R

h(y − x)φ(y)dy ⇒ |(Kφ)(x)| ≤
(∫

R

|h(y − x)|dy
)
‖φ‖X .

Let F : PAP (X) → X, defined by

F (ψ) = K(ψ(−τ)), ψ ∈ PAP (X).

Then replacing ψ by any u ∈ PAP (X), so that

F (ut)(x) = K(ut(−τ))(x) =

∫

R

h(y − x)u(t− τ)(y)dy =

∫

R

h(y − x)u(y, t− τ)dy.

Thus (12) can be written as

du(t)

dt
+ A(t, u(t))u(t) = F (ut), t ∈ R, u ∈ X.(13)

The existence results for (1) can therefore be applied to (13) and hence guarantees

the existence of pseudo-almost periodic mild solutions to (12).
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To numerically simulate the delay partial differential equations such as (12), we

design and analyze a robust numerical method in the next section.

5. Construction and analysis of a numerical method to solve DPDEs

We partition the domain Ω = [−L,L] × [0, T ] through the grid points (xm, tn)

where xm = m∆x, tn = n∆t; ∆x = h = 2L/M , ∆t = k = T/N ; m = 0, . . . ,M ,

n = 0, . . . , N . Here M and N are the total number of subintervals in spatial and time

directions, respectively. Furthermore, we assume that N has been chosen such that

the equality τ = s∆t = sk is satisfied where s is any positive integer.

We discretize the problem described by equation (12) along with the conditions

(35)–(36) by a Crank-Nicolson’s type of scheme which reads as

Un+1
m − Un

m

k
=
D

2

(
Un+1

m−1 − 2Un+1
m + Un+1

m+1 + Un
m−1 − 2Un

m + Un
m+1

h2

)

− b0(tn)(Un
m)2 + b0(tn+1)(U

n+1
m )2

2

+
αe−γτ

√
4πβτ

∫ L

−L

e−
(y−xm)2

4βτ

(
Hn

m +Hn+1
m

2

)
dy,(14)

where

Un
0 = 0; n = 0, . . . , N,(15)

Un
M−1 = 0; n = 0, . . . , N,(16)

and Hn
m denotes the delayed term u(tn − τ) which is evaluated as

(17) Hn
m =

{
θ(xm, tn − τ), if tn < τ, m = 0, . . . ,M

Un−s
m , if tn ≥ τ, m = 0, . . . ,M.

The second term on the right hand side of (14) is approximated non-locally (c.f.

Mickens, 1994; Patidar, 2005) as

b0(tn)(Un
m)2 + b0(tn+1)(U

n+1
m )2

2
≈ b0(tn)Un+1

m Un−1
m + b0(tn+1)U

n+1
m Un

m

2

=
b0(tn)Un−1

m + b0(tn+1)U
n
m

2
Un+1

m .(18)

Using (18) into (14), multiplying the two sides of the resulting equation by k and

rearranging the terms, we obtain

− φ

2
Un+1

m−1 +

(
1 + φ+ k

b0(tn)Un−1
m + b0(tn+1)U

n
m

2

)
Un+1

m − φ

2
Un+1

m+1

(19)

=
φ

2
Un

m−1 + (1 − φ)Un
m +

φ

2
Un

m+1 +
kαe−γτ

√
4πβτ

∫ L

−L

e−
(y−xm)2

4βτ

(
Hn

m +Hn+1
m

2

)
dy,

where m = 1, 2, . . . ,M − 1; n = 0, 1, . . . , N − 1, and φ = kD/h2.



SOLUTIONS OF QUASILINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS 329

Equation (19) together with (15)–(17) can be written as a linear system of the

form

(20) TLv
n+1 = TRv

n +
k

2

(
F n + F n+1

)
; F n =

αe−γτ

2
√

4πβτ

∫ L

−L

e−
(y−x)2

4βτ Hndy ∈ R
M−1,

where vℓ = [U ℓ
1, . . . , U

ℓ
M−1]

T and TL and TR are tridiagonal matrices whose entries are

given by

TL(n,m) =





−φ

2
, if n = m− 1

1 + φ+ k
2
(b0(tn)Un−1

m + b0(tn+1)U
n
m) 2, if n = m

−φ

2
, if n = m+ 1

0, otherwise,

(21)

and

TR(n,m) =





φ

2
, if n = m− 1

1 − φ, if n = m
φ

2
, if n = m+ 1

0, otherwise,

(22)

for all m = 1, . . . ,M−1.

The numerical solution is obtained by solving the linear system (20) at all levels

n = 1, 2, . . . , N .

Now we analyze the above method for convergence. We discuss the consistency

and stability of this method which will then imply the convergence through the equiv-

alence theorem of Lax (c.f., Richtmyer & Morton, 1967).

We see that the local truncation error (LTE) at the grid point (tn, xm) is given

by

(23)

LTE = −Dk
2

12
utttxx(xm, ξ)−

Dh2

12
uxxxx(η, tn)+

kb0(tn)ut(xm, ζ1) − k2b0(tn+1)u
2
t (xm, ζ2)

2
,

where ξ, ζ1 and ζ2 ∈ [tn, tn + k] and η ∈ [xm −h, xm + h]. Hence, |LTE| → 0 as k → 0

and h→ 0. This proves the consistency of the numerical method.

To check the stability of our method, we follow our work in Bashier & Patidar,

2011 and use the matrix method

We rewrite the linear system (20) as

(24) TLU
n+1 = TRU

n +
k

2

(
F n + F n+1

)
.

Let vn = [u(tn, x1), . . . , u(tn, xM−1)]
T and let en = Un − vn be the difference

between the approximate and exact solutions at level n.
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If we insert the exact solution instead of the numerical solution in equation (20),

we obtain an equation of the form

(25) TLv
n+1 = TRv

n +
k

2

(
fn + fn+1

)
.

By subtracting equation (25) from (24), we obtain the linear system

(26) TLe
n+1 = TRe

n +
k

2

(
Gn +Gn+1

)
, where Gn =

αe−γτ

2
√

4πβτ
en−s

∫ L

−L

e−
(y−x)2

4βτ dy.

Since the two matrices TL and TR are strictly diagonally dominant, they are nonsin-

gular. By Gershgorin disk theorem, each eigenvalue λm of the matrix TL should lie

in one of the Gershgorin disks

Dm
L

(
1 + φ+ k

bn0U
n−1
m +Bn+1

0 Un
m

2
, φ

)
.

Hence, all the eigenvalues of the matrix TL lie in
⋃M−1

m=1D
m
L , yielding that λm > 1 for

all m = 1, 2, . . . ,M−1. We rearrange these eigenvalues of TL such that

0 < λ1 ≤ · · · ≤ λM−1.

Similarly, we find that all the eigenvalues µm; m = 1, . . . , µM−1 of TR lie in the union

of the Gershgorin disks
M−1⋃

m=1

Dm
R

(
1 − φ,

φ

2

)
.

It is obvious that each eigenvalue µm of TR satisfies −1 < µm ≤ 1. If we rearrange

the eigenvalues of TR such that µj ≤ µm for j < m, then, the eigenvalues of the two

matrices TL and TR satisfy the relation

−1 < µ1 ≤ · · · ≤ µM−1 ≤ 1 ≤ λ1 ≤ · · · ≤ λM−1.

Let B = TL
−1 and Ã = BTR, then system (26) can be written as

(27) en+1 = Ãen +
k

2
B
(
Gn +Gn+1

)
.

We would like to show that the defect vector e which propagates over time,

does not increase indefinitely. To this end, we note that the eigenvalues of Ã, given

by γm = µm/λm, satisfy 0 < γm < 1 and the eigenvalues of B = TL
−1, given by

νm = 1/λm, satisfy the relation 0 < νm < 1 for all m = 1, . . . ,M−1.

Since Ã is nonsingular (as neither of its eigenvalues is zero), it has a complete set

of linearly independent eigenvectors ϕm corresponding to the eigenvalues γm, m =

1, . . . ,M−1. Then, the set ωm is a basis for R
M−1. Also, B has a complete set of linearly

independent eigenvectors ϑm, m = 1, . . . ,M−1 corresponding to the eigenvalues νm
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which forms a basis for R
M−1. Note that using these two different bases ϕm and ϑm,

the vector e0 can have two different representations of the forms

(28) e0 =

M−1∑

m=1

ωmϕm =

M−1∑

m=1

δmϑm,

where ωm and δm are constants, m = 1, . . . ,M−1.

We consider (26) in two separate intervals, namely [0, τ ] and (τ, T ]. In [0, τ ] where

n ≤ s, the history terms Hn are evaluated exactly from the given history function

θ(t, x). Therefore, the quantity Gn vanishes and hence (27) reduces to

(29) en = Ãen−1.

Iterations on equation (29) imply

en = Ãne0 =

M−1∑

m=1

ωmγ
nϕm.(30)

On the other hand, in (τ, T ], where n is strictly greater than s, the history term

Hn is equal to Un−s and equation (26) takes the form

(31) en = Ãen−1 +
k

2
B
(
Gn +Gn+1

)
.

The second term on the right hand side of equation (31) is evaluated as

k

2
B
(
Gn + Gn+1

)
=
kC

2

∫ L

−L

[
e−

(y−x)2

4βτ

(
M−1∑

m=1

δmν
n−s
m (1 + νm)ϑm

)]
dy,(32)

where C = αe−γτ/
√

4πβτ .

Using equations (30) and (32), we can re-write equation (27) as

(33) en =

M−1∑

m=1

ωmγ
n
mϕm +

kC

2

∫ L

−L

[
e−

(y−x)2

4βτ

(
M−1∑

m=1

δmν
n−s
m (1 + νm)ϑm

)]
dy.

Since 0 < γm < 1 and 0 < νm < 1, we conclude that

en → 0 as n→ ∞.

This proves that the proposed numerical method is unconditionally stable.

Using (23) and the Lax equivalence theorem, we have the following main result.

Theorem 5.1. The numerical method (14)–(17) is convergent of order O(k+ h2) in

the sense that

sup
0<D≤1

max
m≤M,n≤N

|u(tn, xm) − Un
m| ≤ C(k + h2),

where U is the numerical solution and M , N are the total number of subintervals in

the spatial and time directions, respectively.
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6. Numerical results and discussion

In this section, we consider the delay partial differential equation (12) in the

following form:

(34)
∂u

∂t
(x, x) = D

∂2u

∂x2
(x, t) − b0(t)u

2(x, t) +
αe−γτ

√
4πβτ

∫ L

−L

e−
(y−x)2

4βτ u(y, t− τ)dy,

where −L < x < L and t > 0, subject to the initial data

(35) u(x, t) = u0(x, t), t ∈ [−τ, 0],

and homogeneous Dirichlet boundary conditions

(36) u(−L, t) = u(L, t) = 0, t ≥ 0.

In the above, D > 0 is the diffusion rate, b0(t) is a pseudo-almost periodic function

and α, β and γ are non-negative real constants. For the numerical simulations, we

consider L = 3, T = 200, M = 200, N = 2000, D = 0.01, γ = 0.05, β = 0.1, a = 2

and u(x, 0) = sin((x+ L)/(2L)π). We simulate our method for b0(t) = 2 sin (8πt/T ),

t ∈ [0, T ] and for different values of time delays. From figures 1–4, it can be seen

that, regardless of the values of the time delay τ , the solutions of the model always

tend to be asymptotically stable and is often pseudo almost periodic.

7. Concluding remarks

In this paper, we established the existence and uniqueness of a pseudo almost

periodic mild solution of a quasilinear functional differential equation. We applied this

result to a partial integro-differential equation modelling nonlocal reaction-diffusion

problems in biology. In order to substantiate this theoretical work, we developed

a numerical methods and produced some results confirming theory. This method

was also analyzed for convergence and we found that it is unconditionally stable.

Our numerical simulations revealed the existence of positive asymptotically stable

solutions of the model.

Acknowledgment. DB would like to acknowledge the financial help provided by

the Department of Science & Technology (DST), New Delhi, India, under its research

project SR/S4/MS:581/09. The research of KCP was supported by the South African

National Research Foundation.



SOLUTIONS OF QUASILINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS 333

Figure 1. Profile of

u(x, t) for τ = 1.

Figure 2. Profile of

u(x, t) for τ = 10.

Figure 3. Profile of

u(x, t) for τ = 20.

Figure 4. Profile of

u(x, t) for τ = 40.
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