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ABSTRACT. We have derived a secular equation approach to solve for a two-dimensional particle

in a box model. The particle in a box model is relevant to the quantum confinement in nanowire

structured nanomaterials. Numerical solutions of secular relations allow us to extract the energy

and charge density for potential barrier and well cases, respectively. In the case of potential barrier,

charge density is confined to the shell region, while in the case of potential well, charge density is

confined to the core region. Our results provide useful insight to the quantum confinement effect in

nanostructured materials.
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1. INTRODUCTION

The recent technological approach is based on two dimensional (2D) quantum

wells, one dimensional (1D) quantum wires and zero dimensional (0D) quantum dots

where carrier transport is entirely controlled by quantum effects [1, 2, 3]. The quan-

tum confinement is observed when the size of the particle is too small as compared

to the wavelength of the electron. Since the band gap and wavelength are inversely

related to each other , the wavelength decreases with decrease in size. Qualitatively

this effect is analogous to the problem of a particle in a box, and efforts to quantify

confinement effects. Nonmaterial exhibit unique optical and electrical properties in

connection with the quantum confinement effect and are increasingly used in elec-

tronic and optoelectronic devices including sensors, detectors, field effect transistors,

solar cells, light-emitting diodes [4]. The size and shape of the materials affects the

electronic and optical properties of materials. Nanomaterials have unexpected vi-

sual properties because they are small enough to confine their electrons and produce

quantum effects. Core shell semiconductor nanocrystal properties are based on the

relative conduction and valence band edge alignment of the core and the shell.

The semiconductor nanowires (NWs) structure is a favorable environment to

achieve 1D system. The ability to control the physical and chemical properties of low
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dimensional nanomaterials by variation of their size is of crucial importance for nan-

otechnological applications. It is now well recognized that nanometer-scale silicon and

germanium wires have immense potential for the fabrication of a new generation of

optoelectronics devices within well-established silicon based microelectronic technol-

ogy. More recently, due to the technological importance much effort has been focused

on the core-shell structured semiconductor quantum wires. One of the distinctive fea-

tures of the core-shell structured nanomaterials is the composition dependence of their

electronic, structural and optical properties. One of the most important reason that

nanoscale systems can show new properties is the size of nanomaterials. As a result,

fundamental building blocks of matter such as an electrons experience “confinement”

effects. This type of non-classical behavior can be explained by the “particle in a

box” model, which is a result of the Schrodinger equation. The particle-in-a-box

model is relevant to the quantum confinement in core-shell structured nanomaterials,

which provides an insight into the behavior of the electrons and quantum mechanical

description.

2. THEORETICAL MODEL

2.1. One dimensional Secular equation. A particle in one dimensional box is

a fundamental quantum mechanical model describing the translational motion of a

single particle confined inside an infinitely deep well from which it can’t escape. The

Schrodinger equation in one dimension is

(1) − ~
2

2m

∂2ψ

∂x2
+ V ψ(x) = Eψ(x).

For a free particle with effective mass m confined by impenetrable barriers (i.e.

infinite potential energy), the energy levels are given by ~
2
k
2

2m
where the wave vector,

k = nπ/L, n = 1, 2, 3 . . . and L is the size of the box. Though this model is a good

approximation for one-dimensional system such as nanowires, it is not adequate for

core-shell nanowire or doped nanowires. For this reason, we study the confinement in

a heterostructure by considering a particle in a potential central barrier and central

well of height ∆ (i.e. walls of infinite potential energy) with boundaries x = 0 and

x = a as shown in Figure1. For both cases, the regions x < 0 and x > a are forbidden

and the wavefunction is zero at these boundaries. In the case of a potential barrier,

the potential is set to zero outside the barrier and to ∆ in the barrier region.

Eq. (1) is solved by applying boundary conditions such that the wave function

as well as it first derivative are continuous at the interface (b and a-b). The wave

function vanishes at the edge (x = 0 and x = a) because the potential outside the

well is infinity. The resulting secular equation for solving E for the central barrier
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Figure 1. One dimensional central potential barrier (left panel) and

well (right panel). The barrier has potential ∆ and a width equal to

a− 2b centered at the middle of the box of width a.

Figure 2. charge distribution for central barrier (left panel) and cen-

tral well (right panel). The graphs represent the charge density for

different values of barrier ∆.

case is given by

[κ cos(κb) cosh(λb) − λ sinh(λb) sin(κb)]

× [λ cosh(λa− λb) sin(κb) + κ cos(κb) sinh(λa− λb)]

= [κ cos(κb) sinh(λb) − λ cosh(λb) sin(κb)]

× [λ sinh(λa− λb) sin(κb) + κ cos(κb) cosh(λa− λb)](2)

where κ =
√
E and λ =

√
∆ − E.

Similarly, in the case of central well, the resulting secular equation is of the form

[κ sin(κb) sinh(λb) + λ cosh(λb) cos(κb)]

× [κ cos(κa− κb) sinh(λb) + λ cosh(λb) sin(κa− κb)]

= [κ cos(κb) sinh(λb) − λ cosh(λb) sin(κb)]

× [κ sin(κa− κb) sinh(λb) − λ cosh(λb) cos(κa− κb)].(3)

For general values of ∆, the classification of confined (∆ > E) states for barrier

and well can be obtained through numerical solutions of Eqs. 2 and 3, respectively.

The calculated charge densities for the ground state of a central barrier and central

well are shown in Figure 2. As expected, as ∆ is set to zero, the charge density is

a given by the square of a sine function, having its maximum at the center of the

well. As the value of barrier is increased, the ground state moves from a core state
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Figure 3. Charge distribution of central barrier (left panel) and well

(right panel) in two dimensions. ∆ is the height of the potential barrier.

to a shell state. As the barrier potential is increased, the density of a particle at the

center decreases significantly. On the other side. For the central well case, the charge

density gets more confined in the core as ∆ increases.

The one-dimensional solution can be easily generalized for a two dimensional

system. This is due to the fact Equation 1 becomes separable in x and y. Figure 3

depicts the wavefunction for a particle in a square box as the value of ∆ is changed.

For the case of a central barrier, the charges get more confined to the box corners as

the potential barrier is increased. The case of a central well is very similar to the one

dimensional case since charges get more confined to the core as ∆ get higher.

2.2. Cylindrical two dimensional Secular equation. The secular equation for

a cylindrical heterostructure has been derived previously [7]. The spatial separation

of electron and holes are important for the practical application of solar cells [5],

which is implied in coaxial silicon nanowires. While the spatial confinement in het-

erostructured nanowires is known to be attributed to a type-II (electrons and holes

are confined in different materials) band offset [6], the nature of confinement in com-

plementary doped coaxial silicon nanowires remains not fully understood. It have

been shown that the dipoles of complementary doping generate confinement poten-

tials for carriers across a p-type/intrinsic/n-type coaxial nanowire [8]. The effective

type-II confinement potential for such as system is depicted in Figure 4. We derive

the secular equation for such heterostructure.

The effect of this cascade shaped confinement potential on the band structure

of a coaxial nanowire structure can be studied by a two-dimensional (2D) “particle-

in-a-box” model [4]. Along the nanowire axis one has a continuous spectrum of

plane waves, and the quantization arises from the radial confinement. The model

is characterized by four parameters, the height of the dipole potential barrier, ∆;

the core radius Rc; the inner shell radius Rs, and the radius of the nanowire R.

The central barrier model corresponds to electrons (holes) in a p-i-n (n-i-p) coaxial
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Figure 4. Model for a p-i-n doped coaxial nanowire. The core is p-

doped while the shell is n doped. Rc is the potential barrier at the core

while Rs is the beginning of the n-doped shell.

nanowire, while the central well model corresponds to holes (electrons) in a p-i-n

(n-i-p) nanowire.

Considering a cylindrical multishell structured nanowire, the radial distribution

functions can be obtained through a secular equation of the form

κ[Jl(λR)Yl(λRs) − Jl(λRs)Yl(λR)]{I ′

l
(κRs)[κIl(ηRc)K

′

l
(κRc) − ηI

′

l
(ηRc)Kl(κRc)]

(4)

+K
′

l
(κRs)[ηIl(κRc)K

′

l
(ηRc) − κI

′

l
(κRc)Il(ηRc]}

= λ[Y
′

l
(λRs)Jl(λR) − J

′

l
(λRs)Yl(λR)]{Il(κRs)[κIl(ηRc)K

′

l
(κRc) − ηI

′

l
(ηRc)Kl(κRc)]

+Kl(κRs)[ηIl(κRc)K
′

l
(ηRc) − κI

′

l
(κRc)Il(ηRc]}

where ℓ is the angular momentum that labels the subband, Jℓ and Yℓ are the Bessel

functions of the first and second kinds, respectively. The three inverse length scales,

η =
√

2m∗(E − ∆)/~, κ =
√

2m∗(E − ∆/2)/~, and λ =
√

2m∗E/~, correspond to

electrons (holes) in p-i-n (n-i-p) regions of coaxial nanowires, respectively. For holes

(electrons) in p-i-n (n-i-p) regions, η ↔ λ. The energy and length units are ~
2/2m∗R2

and R, respectively.

It is straightforward to study the limiting cases of Eq. (4), namely, ∆ = 0 and

∆ → ∞. ∆ = 0 refers to an undoped nanowire. The energy spectrum is of the

form Enℓ = ~
2γ2

nℓ
/2m∗R2, where γnℓ is the nth zero of ℓth Bessel function Jℓ. For

our purpose, we are interested in the charge distribution of ℓ = 0 for conduction

band minimum (CBM) and valence band maximum (VBM). The solution assumes

the same charge density distribution centered at the core region for CBM and VBM,

indicating no spatial charge separation. In contrast, for ∆ → ∞, electrons (holes)

in p-i-n (n-i-p) case are confined in the core with the spectrum Enℓ = ~
2γ2

nℓ
/2m∗R2

c
,

while holes (electrons) in p-i-n (n-i-p) case are all confined in the outer shell, satis-

fying Yℓ(λR)Jℓ(λRs) = Yℓ(λRs)Jℓ(λR). This yields complete charge separation. For

general values of ∆, the spatial separation of electrons and holes can be qualitatively
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Figure 5. Top view of the H-passivated rectangular SiNW (top pan-

els). The top-left panel is the pristine SiNW while the top right panel

is the doped SiNW. The bottom panels are the charge density of the

top of the valence band. The bottom left, center and right panels are

for pristine, p-i-n doped and n-i-p doped SiNW.

determined through the solution of Eq. (1) with realistic parameters. For practical

designs of solar cells, the intrinsic shell layer is important in preventing the tunneling

of electrons and holes [5].

2.3. Application on a doped silicon nanowire. In order to test the reliability of

the models presented above, we study the confinement effect in rectangular doped (p-i-

n doping) silicon nanowires (SiNWs). It has been shown that technology that involves

both p- and n-type doping, outperforms devices based on pure p- or n-type technology

with a key characteristic of reduced static power consumption. Recent experimental

work by Tian and co-workers [5] demonstrated the synthesis of multishell structured

coaxial silicon nanowire that can be utilized as solar cells and nanoelectronic power

sources. The solar cells involve the assembly of nanoscale “p-i-n” diodes, in which

an intrinsic silicon shell is layered between p-type core and n-type outer shell that

accommodate positive and negative charged carriers, respectively. The multishell sets

up an electric field between the p- and n-layers, with the intrinsic component serving

as a resistor. Consequently, the photogenerated electrons and holes in the intrinsic

inner shell swept into the n-shell and p-core, respectively.

The SiNWs studied were oriented along the [112] direction. They were con-

structed from diamond structure and passivated with H atoms to eliminate the surface

states. In order to compare NWs sizes, we represent them by a radius of a cylinder

with the same surface area as the nanowires. The sizes of the nanowire was 9.97 Å.
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Depicted in Fig. 5 is the ball-and-stick model of the prototype NW studied. The n

and p doping were made by replacing some silicon atoms by P and B atoms. For

each nanowire, we did a p-doping near the core and an n-doping near the edge and

a n-doping at the core and a p-doping at the shell. The rectangular NW had 96 Si

atoms and 42 H atoms. Our first-principles calculations were based on DFT with

local density approximation (LDA) as implemented in DMol3. The calculation was

done using an all-electrons potential with double numerical plus polarization (DNP)

as the basis set. A 7 supercell was used to eliminate the interaction with neighbor-

ing wires. The energy was allowed to converge up to 2 × 105 eV. Nanowires were

optimized using the Monkhorst sampling of 1 × 1× 6 k -point grid.

In Figure 5, we plotted the change density for the top of the valence band for the

pristine nanowire as well as the doped SiNW. As it can be seen the pristine nanowire

has states that are mostly localized in the core. When the core was doped with B

and the shell with P, the states became more confined towards the core as in the case

of the central well. On the other side, when the doping was reversed, we observe a

reverse in the confinement effect: the charge became localized in the nanowire’s shell.

This is a prototype of a particle with a central barrier.

3. CONCLUSION

An analytical approach to the effective mass method has been developed for

heterostructured cylindrical quantum wire systems. The model involves a potential

well/barrier reminiscent of the band offset effect, and an infinite barrier height at the

edge of the nanowire. We have studied the confinement effect in one dimension and

two dimensional systems. For each case we derived a secular equation needed to solve

the particle in the box problem. We presented the charge density for different level of

confinement. It was shown that a central barrier confines charges near the shell while

a central well confines states in the core. We also presented a model for a p-i-n/n-i-p

doped nanowire and presented how charges are localized in this particular case. It is

shown that the SINWs follow the model presented.
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