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ABSTRACT. A numerical method is proposed to solve fourth order linear or nonlinear fractional
integro-differential equation. The Legendre wavelets have been used as basis in approximation of a
function. It converts the integro-differential equation into a linear or nonlinear system of algebraic
equations which can be solved easily. The application of method is illustrated with the help of test
examples. The main advantage of the proposed numerical method is that after discretization, the
coefficient matrix of algebraic equation becomes sparse. The wavelet method is computer friendly,
thus solving higher order fractional integro-differential equation becomes a matter of dimension
increasing.
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1. INTRODUCTION

In last few years, considerable attention has been given to fractional differential

equations due to their numerous applications in the areas of science and engineering.

Finding an analytical solution for fractional differential equation is not an easy task

as no general method is available for the solution of fractional differential equation

[1, 2]. Numerical methods for approximating fractional integrals and derivatives have

been studied by many authors. Few among the recent methods involves fractional

differential transform method [3], Homotopy analysis method [4], Variational iteration

method, Homotopy perturbation method [5] and collocation method [6, 7].

Recently wavelets based methods has been getting considerable interest to solve

ordinary differential equations as well as integral equations [8, 9, 10]. And, this

development of wavelets method have been led to the solution of fractional differential

equations and fractional integro-differential equations by using Haar wavelets [11],

CAS wavelets [12], Chebyshev wavelets [13, 14], Legendre wavelets [15] etc. The

construction and application of wavelet numerical method has typically focused on

the selection of different wavelets and the derivation of wavelet-based discrete forms.
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In this paper, the Legendre wavelets [16] is implemented to derive an approximate

solutions to linear and nonlinear boundary value problems for fourth-order fractional

integro-differential equations [17]. The standard form of the fourth-order fractional

integro-differential equation (1.1) can be written in terms of operator forms as

(1.1)

Dαy(x) = f(x) + γy(x) +

∫ x

0

[g(t)y(t) + h(t)F (y(t))]dt; 0 < x < 1, 3 < α ≤ 4

with the boundary conditions y(0) = γ0, y
′′(0) = γ2, y(1) = β0, y

′′(1) = β2, where

Dα indicates the Caputo fractional derivative of order α, and F (y(x)) is a linear or

nonlinear continuous function, γ, γ0, γ2, β0 and β2 are real constants, f , g and h are

known functions.

2. WAVELETS

Wavelets form a family of functions constructed from dilation and translation of

a single function which is called as the mother wavelet [18]. When the dilation param-

eter ‘ν’ and the translation parameter ‘ω’ vary continuously, we have the following

family of continuous wavelets: Ψν,ω(x) = |ν|−1/2Ψ(x−ω
ν

), ν, ω ∈ R, ν 6= 0.

If we restrict the parameters ‘ν’ and ‘ω’ to discrete values as ν = a−k0 , ω = nb0a
−k
0 ,

a0 > 1, b0 > 0 and n, k are positive integers, we have the following family of discrete

wavelets Ψk,n(x) = |a0|k/2Ψ(ak0x− nb0), where Ψk,n(x) form an orthonormal basis.

2.1. LEGENDRE WAVELETS. Legendre wavelets Ψn,m(x) = Ψ(k, n̂,m, x) have

four arguements: n̂ = 2n− 1, n = 1, 2, 3, . . . , 2k−1, k can assume any positive integer,

m is the order of Legendre polynomials and t is the normalized time [19]. They are

defined on the interval [0, 1) as

(2.1) Ψn,m(x) =

{
(2m+ 1)

1
2 2

k
2Lm(2kx− 2n+ 1), n−1

2k−1 ≤ x < n
2k−1

0, elsewhere.

where k = 2, 3, . . . , n = 1, 2, 3, . . . 2k−1, m = 0, 1, 2, 3, . . .M − 1, M is fixed positive

integer. Lm(x) are Legendre polynomials of degree m such that

L0(x) = 1,

L1(x) = x,

Lm+1(x) =
2m+ 1

m+ 1
xLm(x)− m

m+ 1
Lm−1(x),

where m = 1, 2, . . . .
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2.2. FUNCTION EXPANSION WITH WAVELETS. A function f(x) ∈ L2[0, 1)

may be expanded by using legendre wavelets [19] as

(2.2) f(x) =
∞∑
n=1

∞∑
m=0

cn,mΨn,m(x)

where cn,m = 〈f(x),Ψn,m(x)〉 =
∫ 1

0
f(x)Ψn,m(x)dx in which 〈·, ·〉 denotes the inner

product in L2[0, 1).

If the infinite series is truncated, then it can be written as

(2.3) f(x) ≈
2k−1∑
n=1

M−1∑
m=0

cn,mΨnm(x) = CTΨ(x)

where C = [c1,0, . . . , c1,(M−1), c2,0, . . . , c2,(M−1), . . . , c2k−1,0, . . . , c2k−1,(M−1)] and Ψ(t) =

[Ψ1,0, . . . ,Ψ1,(M−1),Ψ2,0, . . . ,Ψ2,(M−1), . . . ,Ψ2k−1,0, . . . ,Ψ2k−1,(M−1)].

3. PRELIMINARIES OF FRACTIONAL CALCULUS

There are various definitions of a fractional derivative of order α > 0. The two

commonly used definitions are Riemann-Liouville fractional derivative and Caputo

fractional derivative. Each definition [1, 2] uses Riemann-Liouville fractional integra-

tion and derivatives of whole order. The Riemann-Liouville fractional integration of

order α is defined as

(3.1) Jαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt, x > 0, J0f(x) = f(x),

and the Caputo fractional derivatives of order α is defined as

(3.2) Dαf(x) = Jm−αDmf(x),

where Dm is the usual integer differential operator of order m and Jm−α is the

Riemann-Liouville integral operator of order m− α and m− 1 < α ≤ m.

The relation between the Riemann-Liouville operator and Caputo operator is

given by the following lemma [1, 2]:

Lemma: If m− 1 < α ≤ m; m ∈ N , then DαJαf(x) = f(x) and

JαDαf(x) = f(x)−
m−1∑
k=0

f (k)(0+)
xk

k!
, x > 0.

4. METHODOLOGY FOR THE SOLUTION

Consider the approximation of fractional derivative Dαy(x) by using Legendre

wavelet as

(4.1) Dαy(x) = CTΨ(x), 3 < α ≤ 4,

where CT is as defined in equation (2.3).
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Operating Jα on both sides, we get

(4.2) Jα(Dαy)(x) = Jα(CTΨ(x)), 3 < α ≤ 4.

And, using the lemma defined in last section, we obtain

y(x)−
3∑

k=0

y(k)(0)
(x)k

k!
= CTPαΨ(x),

which implies

(4.3) y(x) =
3∑

k=0

y(k)(0)
(x)k

k!
+ CTPαΨ(x),

where Pα is the fractional operational matrix of Legendre wavelets [19]. Legendre

wavelets can be also expanded into an m′-term of Block Pulse function [20] as:

(4.4) Ψn,m(x) ∼=
m′∑
k=1

hkΦk(x),

hence we get

(4.5) Ψ(x) ∼= ψm′×m′ϕm′(x),

where ψm′×m′ is the coeffient matrix and ϕm′ = [φ1, φ2, . . . , φm′ ].

Kilicman and Zhour have given the block pulse operational matrix of fractional

integration Fα as follows [20]:

(4.6) Jαϕm′(x) ∼= Fαϕm′(x),

where

(4.7) Fα =
1

m′αΓ(α + 2)



1 ξ1 ξ2 ξ3 · · · ξm′−1

0 1 ξ1 ξ2 · · · ξm′−2

0 0 1 ξ1 · · · ξm′−3

· · · · · · · ...

0 0 · · 1
...

0 0 0 · · · · 1


,

and ξk = (k + 1)(α+1) − 2k(α+1) + (k − 1)(α+1).

Now on operating fractional integral operator of order α on Legendre wavelets,

we get

(4.8) JαΨ(x) ∼= Jαψm′×m′ϕm′ ∼= ψm′×m′F
αϕm′(x).

Also, Pα denotes the fractional operational matrix of Legendre wavelets which implies

(4.9) PαΨ(x) ∼= ψm′×m′F
αϕm′(x)
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hence we obtained the fractional operational matrix of Legendre wavelets by using

block-pulse functions as

(4.10) Pα ∼= ψm′×m′F
αψ−1

m′×m′ .

First we have used the equations (4.1), (4.3) in equation (1.1) and the boundary

conditions are also incorporated. Further, on substituting m collocation points be-

tween 0 and 1 given by xi = 2i−1
2(m−2)

, i = 1, 2, . . . ,m = 2k−1M , finally we get m + 2

number of linear or nonlinear equations. On solving these, the values of unknown

coefficients CT are found which in turn are used to find the approximate solution of

the fractional integro-differential equation (1.1).

5. ILLUSTRATION WITH EXAMPLES

5.1. Example 1. Consider the following linear fourth-order fractional integro-differential

equation :

(5.1) Dαy(x) = x(1 + ex) + 3ex + y(x)−
∫ x

0

y(t)dt, 0 < x < 1, 3 < α ≤ 4,

subject to the following boundary conditions:

y(0) = 1, y′′(0) = 2,

y(1) = 1 + e, y′′(1) = 3e.

For α = 4, the exact solution in this example is known and is given by

(5.2) y(x) = 1 + xex.

Figure 1 represents the exact solution for Example 1 while Figure 2 represents

the corresponding approximate solutions with the help of Legendre wavelets by using

different number of basis functions. Figure 3 shows the error in the approximation

by using Legendre wavelets with different number of basis functions.
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Figure 1. Exact solution for Example 1.
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Figure 2. Approximate solutions for Example 1 for different values of

k and M
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Figure 3. Absolute errors for Example 1 for different values of k and M

5.2. Example 2. Consider the following nonlinear fourth-order fractional integro-

differential equation:

(5.3) Dαy(x) = 1 +

∫ x

0

e−ty2(t)dt, 0 < x < 1, 3 < α ≤ 4,

subject to the following boundary conditions:

y(0) = 1, y′′(0) = 1,

y(1) = e, y′′(1) = e.

For α = 4, the exact solution in this example is known and is given by

(5.4) y(x) = ex.

Figure 4 shows the exact solution for Example 2 while Figure 5 represents the

corresponding approximate solutions with the help of Legendre wavelets by using
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Figure 4. Exact solution for Example 2.
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Figure 5. Approximate solutions for Example 2 for different values of

k and M
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Figure 6. Absolute errors for Example 2 for different values of k and M
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different number of basis functions. Figure 6 shows the error in the approximation

by using Legendre wavelets with different number of basis functions.

6. CONCLUSIONS

The proposed method is easy to implement. One of advantage of Legendre

wavelets over similar kind of wavelet like Chebyshev wavelet is that Legendre poly-

nomial involve less computational cost than Chebyshev polynomial. Since the weight

function for Legendre polynomial over the interval [−1, 1] is 1 while for Chebyshev

polynomial is
√

1− t2. Further, it is noted from Figure 3 and Figure 6 that as the

number of basis functions are increased, the error is decreased for both linear as well

as nonlinear problem. So any desired accuracy can be easily obtained by considering

more number of Legendre wavelet basis functions in the approximation.
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