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ABSTRACT. How to sell tickets optimally for a sporting event is a challenging problem in sports

management. At Claflin University, we have regular sport events on campus. In our sport man-

agement, the goals are to maximize the income from selling tickets, and to attract more people to

attend the sporting event, but we may not be able to realize these two goals at the same level. We

are able to affect the tickets sale by increasing or decreasing its price. Furthermore, we have several

constraints, like the capacity of a gymnasium or stadium, the acceptable price of tickets to sellers

and buyers, etc. Based on the properties of this problem, the optimal control model will be adopted

to help design selling strategy for some sport event. The typical solution method for optimal control

model is based on solving Pontryagin Maximum Principle. Because of its nonlinearity, we analyze

the Principle for our model, and develop a numerical algorithm to solve it. And at last, based on

the numerical results, applicable strategy for selling tickets has been given.

AMS (MOS) Subject Classification. 35K60, 35K57

1. INTRODUCTION

In sports management, one of common and challenging problems is how to sell

tickets optimally. As to different sport events, the managers may have different

goals, which will be decided by the characteristics of sport events. In this paper, we

studied the sport events happened on campus of Claflin University. It is basketball

games between Claflin school team and other school teams. As to selling tickets for

this type of sport event, the specific goals are to maximize the income from selling

tickets, and to attract more people to attend the sporting event. Since we may not

be able to realize these two goals at the same level, there will be different focuses

between these two goals, which will be considered in our investigation. In the process

of selling tickets, the sale of tickets is dynamic. It is driven by inherent economic

and marketing law. It can also be affected by specific marketing strategies, which

is called controls in our investigation. Thus, we are facing to optimize some goals

in a controlled dynamic system, which implies optimal control model is a proper

mathematics model in our investigation. Furthermore, in the modeling process we

will consider other constraints, like the capacity of a gymnasium or stadium, the
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acceptable price of tickets to sellers and buyers, etc. The typical solution method for

optimal control model is based on solving Pontryagin Maximum Principle. However,

in reality because of the nonlinearity of optimal control models, it is difficult to solve

it analytically. In our investigation, we will develop numerical methods to solve it.

And at last, based on the numerical results, applicable strategy for selling tickets has

been given. Following is the key theoretic parts within optimal control models we

used in the investigation.

Dynamical system is a concept in mathematics where a fixed rule describes the

time dependence of a point in a geometrical space. Dynamics are used to describe

the ‘changing’ of states, which are mathematically modeled as differential equations

representing various components and the interactions between them. we can apply

‘control’ to affect the evolution of the dynamical system, which is called controlled

dynamics:
{

ẋ(t) = f(x(t), u(t), t), t > 0

x(0) = x0

where controls u(·) are measurable functions, but it will be approximated by piece-

wised functions, which is general practice in numerical experiments. As to any ad-

missible controls, and its associated state trajectories, we can define the payroll func-

tional:

J [u(t)] =

∫ tf

t0

r(x(t), u(t), t)dt

without loss of generality, the decision maker’s goal is to find a control u∗(t), which

maximizes the payoff:

J [u(t)] ≤ J [u∗(t)]

for all admissible controls. Optimizing above functional subject to controlled dynam-

ics are Optimal Control models.

(1.1)

Maxu∈CJ(u) =
∫ tf

t0
f(x(t), u(t), t)dt

subject to










ẋ = g(x(t), u(t), t)

x(t0) = α

C = {u : [t0, t1] → U ⊂ Rk}

After an optimal control model has been constructed, we should investigate the major

mathematical issues of optimal control theory: (a) The existence of optimal control.

(b) How to characterize optimal control mathematically? (c) How to construct an

optimal control.

Optimal control models (1.1) are usually solved by Pontryagin Maximum Prin-

ciple [6], which is necessary optimality condition. We define following function:

(λ0, λ) = (λ0, λ1, . . . , λn) : [t0, t1] → R
n+1,
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with λ0 constant, which is called costate variable. We define the Hamiltonian function

H : [t0, t1] × R
n × R

k × R × R
n → R by

H(t, x, u, λ0, λ) = λ0f(t, x, u) + λg(t, x, u)

The following result is fundamental necessary condition for optimal control:

Theorem 1 (Pontryagin). Let us consider the problem (1) with f ∈ C1([t0, t1]×R
n+k)

and g ∈ C1([t0, t1] × R
n+k). Let u∗ be an optimal control and x∗ be the associated

trajectory. Then there exists a multiplier (λ∗
0, λ

∗) with

1. λ∗
0 constant

2. λ∗ : [t0, t1] → R
n continuous

such that (λ∗
0, λ

∗) 6= (0, 0) and

1. Pontryagin Maximum Principle(PMP) for allτ ∈ [t0, t1] we have

u∗(τ) ∈ argmaxv∈UH(τ, x∗(τ), v, λ∗

0, λ
∗(τ))

H(τ, x∗(τ), u∗(τ), λ∗

0, λ
∗(τ)) = max

v∈U
H(τ, x∗(τ), v, (τ), λ∗

0, λ
∗(τ))

2. Adjoint equation(AE) in ∈ [t0, t1] we have

λ∗ = −∇xH

3. Transversality condition(TC)

λ∗(t1) = 0

4. λ∗
0 = 1

One of the main result about the sufficient conditions for a control to be optimal

is due to Mangasarian (O. L. Mangasarian [12]).

Theorem 2 (Mangasarian). As to the maximum problem (1) with f ∈ C1 and g ∈ C1.

Let the control set U be convex. Let u∗ be a normal extremal control, x∗ the associated

trajectory andλ∗ = (λ∗
1, . . . , λ

∗
n) the associated multiplier. Consider the Hamiltonian

function H and let us suppose that the function (x, u) 7→ H(t, x, u, λ∗) is, for every

t ∈ [t0, t1], concave. Then u∗ is optimal.

A further sufficient condition for the following particular situation of the problem

is due to Arrow:

(1.2)

Maxu∈CJ(u) =
∫ tf

t0
f(x(t), u(t), t)dt

subject to










ẋ = g(x(t), u(t), t)

x(t0) = α

C = {u : [t0, t1] → U ⊂ KC}

with U ⊂ R
k. Let the function U(t, x, λ) = argmaxu∈UH(t, x, u, λ), where H(t, x, u, λ) =

f(t, x, u)+λg(t, x, u) is the Hamiltonian. Define the maximized Hamiltonian function



424 W. WAN, Y. PENG, AND B. I. KING

H0(t, x, λ) = H(t, x,U(t, x, λ), λ). The following result is from by Arrow (K. J. Arrow

[1]).

Theorem 3 (Arrow). As to the maximum problem (2) with f ∈ C1 and g ∈ C1. Let

u∗ be a normal extremal control, x∗ the associated trajectory and λ∗ = (λ∗
1, . . . , λ

∗
n)

the associated multiplier. Consider the Hamiltonian function H0 and let us suppose

that, for every t ∈ [t0, t1] × R
n, the function x 7→ H0(t, x, λ∗) is concave. Moreover,

we suppose that the function U along the curve t 7→ (t, x∗(t), λ∗(t)) is equal to u∗, i.e.

u∗(t) = U(t, x∗(t), λ∗(t)) ∀t ∈ [t0, t1]. Then u∗ is optimal.

2. Modeling

2.1. Analysis of Modeling background. As to the sporting event manager, his

problem is (1) to maximize the income from selling tickets, and (2) to attract more

people to attend the sporting event, which implies he wants to keep the sale to a

certain level. We are assuming that the population is kept unchanged in current

market. And the population could be divided into three subgroups:

• Group 1: The people who have bought the tickets; the rate of change of the

population of this group is x1(t). Thus, x1(t) is equivalent to sales rate of

tickets.

• Group 2: The people who have not bought the tickets, but they may or may not

buy. The rate of change of the population of this group is x2(t).

• Group 3: The people who will never buy the tickets. They have ”immunization”

to sport event. The rate of change of the population of this group is x3(t).

From Figure 1, we exhibit the immigration of population between these three

groups. The rationality of migration is as follow. Group 2 could buy tickets and

migrate to Group 1. Group 2 could also refuse to join this sport event and migrate to

Group 3. People of Group 1 could return tickets and migrate to Group 3. The rule

Figure 1. Immigration of population

and driving force for this immigration are as follows:

• Rule 1: The growing rate of Group 1 is proportional to the product of Group 1

and Group 2, and Group 1 also keeps same rate of migrating to Group 3, which
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is proportional to the population of Group 1.

ẋ1(t) = r12x1(t)x2(t) − r13x1(t)

• Rule 2: Group 2 will migrate to Group 1. Group 2 will also migrate to Group

3, and the rate is proportional to the population of Group 2.

ẋ2(t) = −r12x1(t)x2(t) − r23x2(t)

Thus, the rate of change of Group 3 is:

ẋ3(t) = r13x1(t) − r23x2(t)

• Rule 3: The sporting event manager could use their control (advertisement and

promotion) to affect the interaction between Group 1 and Group 2. Thus,

r12 = α + βu(t)

Furthermore, based on above state variables the objective function is:

MaxuJ(u) =

∫ t1

t0

px1(t) − cu(t)2dt − w(x1(tf ) − v)2

where

p is the price of the ticket.

c is the cost of controls

w is the weight between two objectives.

v is the ideal ticket sale rate the manager wants

The rationality of construction of objective function is:

• Net profits are given by income from selling tickets - cost of advertisement, i.e.

px1(t) − cu(t)2.

• The sports manager wants to keep the sale x1(t) to a certain level v in the end

of event, so he needs to minimize (x1(tf) − v)2.

• Parameter w is the key to express the manager’s preference between these two

objectives.

2.2. Models. Based on above analysis of modeling background, we set up optimal

control model as follows:

(2.1)

Maxu∈CJ(u) =
∫ t1

t0
px1(t) − cu(t)2dt − w(x1(t) − v)2

subject to






















ẋ1(t) = r12x1(t)x2(t) − r13x1(t)

ẋ2(t) = −r12x1(t)x2(t) − r23x2(t)

ẋ3(t) = r13x1(t) − r23x2(t)

x1(t0) = 1, x2(t0) = 10, x3(t0) = 3
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Taken into account of computing, above model can be reduced to following optimal

control model since ẋ1(t) + ẋ2(t) + ẋ3(t) = 0:

(2.2)

Maxu∈CJ(u) =
∫ t1

t0
px1(t) − cu(t)2dt − w(x1(t) − v)2

subject to










ẋ1(t) = r12x1(t)x2(t) − r13x1(t)

ẋ2(t) = −r12x1(t)x2(t) − r23x2(t)

x1(t0) = 1, x2(t0) = 10, x3(t0) = 3

3. Solution Methods

The existence of optimal control is guaranteed by the convexity of objective

function. We would like to solve above model and construct optimal control by

Pontryagin Maximum Principle in Theorem 1. We first write out the Hamiltonian

for Optimal Control model (2.2) as follows:

H = cu2 − px1 + p1[(α+βu)x1(t)x2(t)− r13x1(t)]+ p2[−(α+βu)x1(t)x2(t)− r23x2(t)]

Pontryagin Maximum Principle will be written explicitly as follows. State equations:
{

ẋ1(t) = r12x1(t)x2(t) − r13x1(t)

ẋ2(t) = −r12x1(t)x2(t) − r23x2(t)

Co-State equations:
{

ṗ1(t) = p − p1(t)((α + βu(t))x1(t) − r13) + p2(t)(α + βu(t))x2(t)

ṗ2(t) = −p1(t)((α + βu(t))x1(t) + p2(t)(α + βu(t))x1(t) + r23

Optimal control:

2cu(t) + (p1(t) − p2(t))βx1(t)x2(t) = 0

⇒

u(t) =
1

2c
(p2(t) − p1(t))βx1(t)x2(t)

Boundary conditions:






















x1(t0) = 1

x2(t0) = 10

p1(tf) = 2w(x1(tf) − v)

p2(tf) = 0

Because above Hamiltonian is convex function of control, we obtain optimal control

using ∂H
∂u

= 0. In above system there are 2 equations with 2 given initial conditions

and 2 co-state equations with 2 terminal conditions and 1 equation for the control.

We develop and revise the iterative algorithm ([3], [11]) to solve above system. The

basic steps are expressed in the following process:

• Step 1 Generate initial controls from admissible controls randomly ;
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• Step 2 Use control from step 1 to solve the state equations forward by Runge-

Kutta;

• Step 3 Use xi(tf) solved in second step we proceed to get pi(tf ). Then we find

the co-state equations by solving the state and co-state equations backwards by

Runge-Kutta methods.

• Step 4 Use the values of state and co-state variables we check if ∂H
∂u

= 0 is

satisfied. If yes, we have the optimal control strategies; if not, using steepest

descent algorithm to get new control trajectories, repeat the above steps starting

with the first step.

Based on above process, we developed the following revised steepest descent algorithm

to solve optimal control model:

Step 1: Generate randomly a discrete approximation to the controls u(t), t ∈

[t0, tf ], that is:

u1(t) = u1(tk), t ∈ [tk, tk+1], k = 1, 2, . . . , N

Step 2: use u(t) to integrate the state equation forward with initial condition of

state variables. The resulting state trajectory is stored as piecewise-constant

vector.

Step 3: calculate pi(tf ) using xi(tf) from pi(tf ) = ∂
∂x

h(x(tf )) and integrate the

co-state equations backward.

Step 4: Use the discrete value of state and co-state variables xi(t), pi(t) to evaluate
∂H
∂u

.

Step 5: If ‖ ∂H
∂u

‖≤ ǫ, where ‖ ∂H
∂u

‖2=
∫ tf

t0
(∂H

∂u
)T (∂H

∂u
), then terminate the iterative

procedure and output the optimal state and control. If the stopping criterion

is not satisfied, generate a new pair of piecewise constant controls given by line

search:

u(tk+1) = u(tk) − ∆
∂H

∂u
(tk), k = 1, 2, . . . , N,

where step length ∆ will be chosen by Armijo Rule to decrease H. Then go back

to Step 2.

4. Results

We realized above algorithm with Matlab. In our experiment, We are interested

in studying the changes of objective function values, state trajectories, and controls

of sport event manager, which were brought by different preference between those two

goals. We realized the different preference by choosing different values for weight w.

Different values of w implies the decision maker’ preference between total incoming

and final sales rate. In numerical experience, we solve the model for

w = 0, 2, 4, 6, 8
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And other parameters’ values are as follows:

c = 1.2; v = 7.5; p = 2; α = 1; β = 0.5; r13 = 1; r23 = 0.4

From numerical results (Table 1), we can see that the value of state variable

(sale rate) at the end is increasing as w increases, which are expected since he wants

the sale rate closer to what he planned. From the graph, and numerical results, we

can also see that the control becomes bigger and bigger as w increases. This simply

means the he needs to invest more controls to push up sales rate. Furthermore, in the

Table 1 we can see the when w increases, the objective function value J decreases.

This is what we expected, since bigger w implies the decision maker places more

importance on final sales rate than on net profits, and he has to invest more in

controls/advertisement.

Table 1. Objective Values and Terminal State Values

w = 0 w = 2 w = 4 w = 6 w = 8

J 5.76 5.72 5.64 5.53 5.42

x1(tf ) 7.092 7.145 7.187 7.2231 7.25

In following graphs, Figure 2 are comparison of convergence trajectories of ob-

jective functions. Figure 3 are comparison of optimal control trajectories. Figure 4

are comparison of the trajectories of state variables.
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Figure 2. Convergence Trajectories of Objective Function
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Figure 3. Optimal Control Trajectories
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Figure 4. State Variables Trajectories
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