
Neural, Parallel, and Scientific Computations 24 (2016) 369-380

AN APPLICATION OF ANNS ON POWER SERIES METHOD FOR

SOLVING FRACTIONAL FREDHOLM TYPE

INTEGRO-DIFFERENTIAL EQUATIONS

AHMAD JAFARIAN AND SAFA MEASOOMY NIA

Department of Mathematics,Urmia Branch

Islamic Azad University, Urmia, Iran

Department of Mathematics, Science and Research Branch, Islamic Azad

University, Urmia, Iran

ABSTRACT. For the last decade, several authors demonstrated the performance of artificial neu-

ral network models over other traditional testing methods. The current research, aimed to present a

global optimization technique based on combination of neural networks approach and power series

method for the numerical solution of a fractional Fredholm type integro-differential equation involv-

ing the Caputo derivative. The mentioned problem to be solved approximately for the unknown

series coefficients via a three-layer feed-forward neural architecture. In other words, an accurate

truncated power series representation of the solution function is achieved when a suitable learning

algorithm is used for the suggested neural architecture. As applications of the present iterative

approach, some kinds of integro-differential equations are investigated. The achieved simulations

are compared with the results obtained by some existing algorithms.

Key Words Fractional Fredholm type integro-differential equation, Generalized power series ex-

pansion, ANNs approach, Caputo fractional derivative, Approximate solution.

1. Introduction

Fractional Fredholm integro-differential equations are extensively appeared in

mathematical modeling of real life problems. On the other hand, the analytical solu-

tions of these kinds of equations can not be found easily, thus there has been growing

interest in the proposition of alternative numerical methods. The most commonly

used ones are, fixed point method [19, 1], Adomian decomposition method [13, 17],

upper and lower solutions method [12], Chebyshev wavelet method [20], Variational

iteration and Homotopy perturbation methods [14], Taylor expansion method [5].

Among these methods, the series expansion technique is more attractive and gives a

closed form solution for a linear fractional integro-differential equation.

In this study, a combinative iterative procedure will be proposed for the solution

of fractional Fredholm type integro-differential equations. The present technique uses

a modification of the power series method for transforming the origin problem to a

Received April 3, 2016 1061-5369 $15.00 c©Dynamic Publishers, Inc.

370 A. JAFARIAN AND S. M. NIA

non-linear algebraic equations system that can be solved with an usual method. There

are a lot of optimization algorithms attainable to solve the resulting system. Among

diversity of the theoretical studies, we employe an implementation of one-hidden-layer

feed-forward neural net architecture to complete this procedure. In our recent works,

different architecture of artificial neural networks (ANNs) have been widely applied

to approximate solutions of various types of integral equations (see [6, 7, 8, 9, 10]).

To begin the optimization process, a training set of collocation points is built by

discretization of the differential interval into arbitrary length subintervals. Assuming

that the equation has an unique solution, the unknown series coefficients are quantified

randomly to obtain a primary approximate solution. The gradient descent based

back-propagation learning algorithm is then used to achieve the unknown coefficients

which were considered as network parameters. The patterns are used for training

the network incrementally one by one to reduce the output error. At each learning

stage, the network parameters are updated and the global network error is reduced

to within the indicated tolerance. The organization of this paper proceeds as follows.

In the following section, we first review some basic concepts and definitions of neural

networks and then extend in detail the ANNs approach for solving the mentioned

type integro-differential equation. Some numerical examples with comparison to some

offered algorithms are given in section 4. Obtained simulative experimental results

show that the approach has the potentiality to become an effective method. The final

section contains conclusions and directions for future research.

2. Illustration of the method

In this section, we will mainly concentrate on the solution of both linear and

nonlinear fractional Fredholm type integro-differential equations (F-FIDEs). As we

know, all of the methods discussed in the last section are also valid, but we are

interested in the proposition of a general scheme in which can be easily implemented

for various classes of fractional equations. For this aim, the approximate solution is

represented by means of a modification of the so called power series method, whose

coefficients are estimated by training an appropriate neural network architecture.

This work yields a truncated power series representation of the solution function,

which usually is enough for obtaining approximation to it. We start by presenting

some commonly used fundamental concepts.

2.1. A brief introduction to ANNs. In this part we deal with essential concepts

in which will be used further on. It is not an exaggeration to say that research in

the field of artificial neural networks has been growing attention in the last ten years

than ever before. First of all, we make a cursory review to neural network surrogate

DIFFERENTIAL INCLUSIONS 371

modeling for the numerical solution of a given problem. For more information in this

issue, refer to [3, 4].

Here, we focus on a simple neural network architecture in which can be easily

transformed to get an efficient iterative scheme for estimating solution of the men-

tioned fractional order Fredholm integro-differential equation. The proposed three-

layer feed-forward neural network framework shown in Figure 1, contains one external

input, n hidden neurons and an output signal. This architecture shows how a power

series expansion can be performed as a neural net. Let v and w denote the 1 × n

weight vectors, and also b is bias term. In the present architecture, the input signal

which is represented by the mathematical symbol x, when multiplied by connection

weight vi, gives a weighted input. In this case, this product is fed through the acti-

vation function f to generate a result. Net output N(x) is computed by multiplying

the output of neuron i in the hidden layer with the weight parameter wi and then

adding to the bias signal b. The input-output relation of each unit in the proposed

neural architecture can be summarized as follows:

• Input unit:

(2.1) o1 = x.

• Hidden units:

(2.2) o2
i = f(neti),

neti = x.vi, i = 1, . . . , n.

• Output unit:

(2.3) N(x) =

n
∑

i=1

(o2
i wi) + b.

1

i

n

x N(x)

Input

neuron

Output

neuron

Hidden

neurons

v1

vi

vn

f

f

f

w1

wi

wn
b

Fig. 1. Illustration of the represented neural architecture.

372 A. JAFARIAN AND S. M. NIA

2.2. Solving the F-FIDE problem. In this study, we restrict our attention to the

nonlinear initial value fractional integro-differential equation of the form:

(2.4) cD
α
x [u(x)] = φ1(x, u(x)) + λ

∫ 1

0

ξ(x, t)φ2(u(t))dt, 0 ≤ x ≤ 1,

subject to the initial condition u(0) = β. Here, cD
α
x denotes the Caputo differential

operator of order α ∈ (0, 1], λ is a real known parameter, φ1, φ2 ∈ L2([0, 1]) and

ξ ∈ L2([0, 1]2) are given functions, and u(x) is the unknown to be determined.

Definition 1. Let u(x) is continuously differentiable function on finite interval [a, b]

up to order k. The Caputo fractional derivative operator cD
α
x of order α > 0 is defined

by:

(2.5) cD
α
x [u(x)] =

{

dku(x)
dxk , α = k ∈ N,

1
Γ(k−α)

∫ x

c

u(k)(τ)
(x−τ)α−k+1 dτ, x > c, 0 ≤ k − 1 < α < k,

where Γ(·) denotes the Gamma function. Recall that for the Caputo sense, derivative

of a constant is zero and the following useful property holds:

(2.6) cD
α
x [xk] =

{

0, k ∈ N, k < ⌈α⌉
Γ(k+1)

Γ(k+1−α)
xk−α, x > c, k ∈ N, k ≥ ⌈α⌉

,

where the ceiling function ⌈α⌉ denotes smallest integer greater than or equal to α.

For more details and mathematical properties of fractional calculus, please refer to

[18]. The reminder of this paper is organized into two segments: the solution function

is represented by a truncated power series expansion, and using the purposed neural

network configuration to determine the values of the series coefficients. Sufficient

and necessary conditions for existence and uniqueness of solutions of the mentioned

fractional problems are given in [2].

2.2.1. Discretization of the problem. The generalized power series expansion is a pow-

erful tool which has been developed for the numerical solution of different kinds of

fractional equations. This method decomposes the solution u(x) into a rapidly con-

vergent series of solution components. In our study, we will approximate the solution

function u(x) by following series:

(2.7) u(x) =
∞
∑

i=0

aix
iα,

for fractional order α ∈ (0, 1] (see, [11, 15]). Under initial condition, we take a0 = β.

Thus, Eq. (2.7) is written as:

(2.8) u(x) = β +
∞
∑

i=1

aix
iα.

DIFFERENTIAL INCLUSIONS 373

Now, we replace u(x) with the introduced power series by substituting (2.8) into (2.6),

and find its fractional derivative to find a relation among the coefficients, as:

(2.9)
∞
∑

i=1

ai

Γ(i + 1)

Γ(i + 1 − α)
x(i−1)α = φ1

(

x, β +

∞
∑

i=1

aix
iα

)

+λ

∫ 1

0

ξ(x, t)φ2

(

β +

∞
∑

i=1

ait
iα

)

dt.

For positive integer m, consider a partition of interval [0, 1] with the node points

xj = j

m
, (for j = 0, . . . , m). Now, let us put the collocation point xj into the Eq. (2.9).

After some simplifications and grouping, we obtain the following relation:

∞
∑

i=1

ai

Γ(i + 1)

Γ(i + 1 − α)
x

(i−1)α
j = φ1

(

xj , β +

∞
∑

i=1

aix
iα
j

)

(2.10)

+ λ

∫ 1

0

ξ(xj, t)φ2

(

β +
∞
∑

i=1

ait
iα

)

dt, j = 0, . . . , m.

Now, we look at the technique which will allow us to approximate desired values of

the coefficients ai (for i ∈ N).

2.2.2. Proposed criterion function. To achieve a particular goal, only the first (n+1)

terms of defined power series (2.8) are used. As a result, if we express the solution

function as a truncated generalized power series, so it can be easily approximated

by finding the free coefficients ai, (for i = 1, 2, . . . , n). This means, we intend to

approximate solution u(x) by the truncated series un(x) = β +
∑n

i=1 aix
iα. Below, we

use the notations vi = xi−1, wi = ai, f(x) = xα and b = β. Whit these assumptions,

it can easily be argued that the output of the designed neural network is equivalent

to the mentioned truncated generalized power series.

In order to train this network over the space of connection weights, the parameter

ai must be changed in such a way that the network error is reduced. This error

function evaluates the degree of estimate for any given set of network parameters.

To implement this procedure, the well known commonly used mean squared error

function is formulated after presentation of the j-th input pattern. Here, one starts

with the criterion function:

Ej =
1

2

(

n
∑

i=1

ai

Γ(i + 1)

Γ(i + 1 − α)
x

(i−1)α
j − φ1

(

xj , β +

n
∑

i=1

aix
iα
j

)

(2.11)

− λ

∫ 1

0

ξ(xj, t)φ2

(

β +
n
∑

i=1

ait
iα

)

dt

)2

, j = 0, . . . , m.

Throughout next part, an attempt will be made to see how the defined error function

can be minimized over the set of node points. For this aim, the weights are to be

optimized via a gradient descent optimization process. This supplement, known as

back error propagation in which will be considered in following. Further details in

this respect can be found in [15].

374 A. JAFARIAN AND S. M. NIA

2.2.3. Proposed learning algorithm. Before offering specific learning rule, it should be

noted that learning in an artificial neural network implements a local search mecha-

nism to obtain optimal weight values which decrease global network error. Now, we

try to train the neural architecture by modifying the connecting weights according

to the defined set points that can be formulated as an learning algorithm. Through-

out this part, an attempt is made to construct an incremental learning process as

a self learning mechanism for minimizing the predefined criterion function. Since,

this function is analytical one, the gradient descent method will naturally lead to a

capable learning rule. We illustrate the above idea by deriving a unsupervised back-

propagation learning algorithm for adjusting the weight parameters such that the

above target is minimized over the space of weight settings. The performance of this

algorithm is well summarized in the following paragraph.

First, he initial weight parameters ai (for i = 1, . . . , n) are selected randomly to

begin the procedure. Then, the set of node points are used to successively adjust the

connection weights by moving a small step in direction in which correctly optimize

the objective function. To complete the derivation of back-propagation for the output

layer weights, we perform gradient descent rule on the criterion function (2.11). This

standard algorithm works as follows:

(2.12) ai(r + 1) = ai(r) + ∆ai(r), i = 1, . . . , n,

(2.13) ∆ai(r) = −η ·
∂Ej

∂ai

+ γ · ∆ai(r − 1),

where η and γ are the small constant learning rate and the momentum term constant,

respectively. Due to its gradient descent nature, back propagation is very sensitive

to the values of learning rate and momentum constant. If the choice of these initial

quantities, then the learning convergence will be slow. Here, the index r in ai(r)

refers to the iteration number and the subscript j in xj is the label of the training

node point. To complete the derivation of desired learning rule for the hidden layer

weights, the above partial derivative is to be calculated using the Chain rule as:

∂Ej

∂ai

=

(

n
∑

i=1

ai

Γ(i + 1)

Γ(i + 1 − α)
x

(i−1)α
j − φ1

(

xj , β +
n
∑

i=1

aix
iα
j

)

− λ

∫ 1

0

ξ(xj , t)φ2(β +

n
∑

i=1

ait
iα)dt

)

×

(

Γ(i + 1)

Γ(i + 1 − α)
x

(i−1)α
j − xiα

j φ′

1

(

xj , β +

n
∑

i=1

aix
iα
j

)

− λ

∫ 1

0

tiαξ(xj, t)φ
′

2(β +
n
∑

i=1

ait
iα)dt

)

.

DIFFERENTIAL INCLUSIONS 375

Therefore, if a solution exists, it is approximated after sufficient training. Due to

gradient descent nature of the method, back-propagation is very sensitive to the values

of learning rate and momentum constant. If the choice of these initial quantities are

inaccurate, then the learning convergence will be slow. Network learning via the

whole training node points once is usually called cycling. Generally speaking, more

than one cycle through the set points is needed to conclude an appropriate solution

vector.

3. Numerical examples

In order to show the performance of the proposed neural networks approach in

solving fractional integro-differential equation problems, two numerical examples are

carried out in this section. A comparison is made between the proposed combinative

algorithm and other methods presented in [16]. All calculations are achieved by

using the mathematical software Matlab v7.10. Below, we use the specifications as

following:

1) Learning rate: η = 0.1,

2) Momentum constant: γ = 0.05.

Also, for better comparison the root mean square error is employed as:

Emid = ‖u − un‖ =

(

1

m + 1

m
∑

j=0

(u(xj) − un(xj))
2

)
1
2

.

Example 3.1. Consider the following integro-differential equation:

cD
α
x [u(x)] + 3u(x) = φ1(x, u(x)) +

3π

2

∫ 1

0

xt2 sin(πu(t))dt, 0 ≤ x ≤ 1,

where

φ1(x, u(x)) = 3x3 +
Γ(4)

Γ(7
2
)
x

5
2 − x,

with the initial condition u(0) = 0 and the exact solution u(x) = x3. As indicated,

the solution function can be uniformly approximated on that interval by (2.8) to

any degree of accuracy. The objective here is to adaptively update the hidden layer

weights ai (for i = 1, . . . , 10), by attempting to optimize the associated criterion

function over the set of m+1 training points X = {x0, x1, . . . , xm}. For this aim, the

weights are first normally initialized to small random values and then the learning

rule considered in previous section is employed. The root mean square errors for

different number of iterations and node points are presented in Table 1. Figure 2

shows the cost functions on the different number of iterations. It is noticeable that

by increasing the learning steps, the criterion function goes to zero. The approximate

and exact solutions are plotted and compared in Figure 3, and also absolute error are

plotted in Figure 4 for r = 100.

376 A. JAFARIAN AND S. M. NIA

r Emid

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

m = 10 m = 20 m = 30 m = 40

100 0.0008745 0.0007344 0.0006383 0.0005617

200 0.0006194 0.0004625 0.0003832 0.0003463

300 0.0004083 0.0002940 0.0002334 0.0002172

400 0.0003140 0.0002077 0.0001835 0.0001702

500 0.0002801 0.0001756 0.0001587 0.0001427

Table 1. Numerical results for Example 4.1.

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

The mumber of iterations

T
he

 c
ri

te
ri

on
 f

un
ct

io
n

5 10 15
0.01

0.015

0.02

0.025

0.03

0.035

0.04

m=10 m=20 m=30 m=40

Fig. 2. The cost curves with different step sizes for Example 4.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Exact solution
m=10
m=20
m=30
m=40

0.3

0.0005

0.0008

0.0025

Fig. 3. The exact and approximate solutions for Example 4.1.

DIFFERENTIAL INCLUSIONS 377

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

x

A
bs

ol
ut

e
er

ro
r

m=10 m=20 m=30 m=40

Fig. 4. The absolute error between exact and approximate solutions for Example 4.1.

Example 3.2. The following fractional equation is considered:

cD
α
x [u(x)] = 1 −

x

4
+

∫ 1

0

xt[u(t)]2dt, 0 ≤ x ≤ 1,

with initial condition u(0) = 0. Note that the exact solution of this problem for α = 1,

is u(x) = x. This equation is studied in [16] by using the rationalized Haar functions

(RHF). The numerical results for m = 10 and r = 1000 with comparison are presented

in Table 2. Based on the results, it can be concluded that our numerical simulations

are in good agreement with the solutions reported in the literature. Therefore, it

easily can be seen the approximate solutions for α = 0.25, α = 0.5 and α = 0.75 are

reliable. Figures 5 and 6 simulate the cost function and absolute error criterion for

α = 1, respectively. Since the exact solution of the above problem is available when

α = 1, so we are only able to show the criteria of mean absolute error for this value.

As can be seen, the estimated solution is in high concurrence with the exact solution.

α = 0.25 α = 0.5

x −−−−−−−−−−−−−−− −−−−−−−−−−−−−−−

ANN RHF ANN RHF

0.1 0.650960 0.650962 0.362259 0.362260

0.2 0.821677 0.821678 0.525360 0.525361

0.3 0.959522 0.959520 0.657181 0.657181

0.4 1.084528 1.084520 0.774341 0.774336

0.5 1.203268 1.203260 0.883181 0.883175

0.6 1.131835 1.131827 0.986274 0.986267

0.7 1.431320 1.431310 1.085718 1.085710

0.8 1.543181 1.543170 1.182468 1.182460

0.9 1.654432 1.654420 1.277279 1.277270

1.0 1.765433 1.765420 1.370730 1.370720

378 A. JAFARIAN AND S. M. NIA

α = 0.75 α = 1

x −−−−−−−−−−−−−−− −−−−−−−−−−−−−−−

ANN RHF ANN RHF

0.1 0.194153 0.194154 0.099997 0.099998

0.2 0.329896 0.329896 0.199994 0.199995

0.3 0.450541 0.450540 0.299990 0.299988

0.4 0.563053 0.563051 0.399979 0.399978

0.5 0.670476 0.670474 0.499968 0.499966

0.6 0.774076 0.774073 0.599954 0.599951

0.7 0.875052 0.875049 0.699936 0.699934

0.8 0.973944 0.973941 0.799912 0.799913

0.9 1.071224 1.071220 0.899893 0.899890

1.0 1.167254 1.167250 0.999867 0.999864

0 50 100 150 200 250
0

20

40

60

80

T
he

 c
os

t f
un

ct
io

n

250 300 350 400 450 500
0

1

2

3

4
x 10

−3

500 550 600 650 700 750
1.2

1.4

1.6

1.8

x 10
−4

The number of iterations

T
he

 c
os

t f
un

ct
io

n

750 800 850 900 950 1000

1.11

1.12

1.13

1.14

1.15

1.16

x 10
−4

The number of iterations

Fig. 5. The cost curve for Example 4.2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

A
bs

ol
ut

e
er

ro
r

x

m=10

Fig. 6. The absolute error between exact and approximate solutions for Example 4.2.

DIFFERENTIAL INCLUSIONS 379

4. Conclusion

Fractional equations have gained increasing importance due to their several ap-

plications in the field of real world problems. As indicated, these kind of equations are

very difficult to handle analytically, so we have to usually get approximate solutions.

This paper explained how a combination of the power series method and neural net-

works approach can be developed as an iterative technique for the numerical solution

of a fractional Fredholm type integro-differential equation. The proposed methodol-

ogy, employed a three-layer feed-forward neural network architecture for finding the

power series coefficients of the solution function. From a practical point of view, tow

numerical examples were investigated to demonstrate the applicability of the pre-

sented iterative method. Moreover, the obtained simulation results were compared

with exact solutions and also with the solutions obtained by two another works. For

the future works, we are going to develop our proposed method for solving high order

integro-differential equations.

REFERENCES

[1] A. Anguraj, P. Karthikeyan, M. Rivero, J. J. Trujillo, On new existence results for fractional

integro-differential equations with impulsive and integral conditions, 66(12) (2014) 2587–2594.

[2] B. Bandyopadhyay, S. Kamal, Stabilization and control of fractional order systems: A sliding

mode approach, 317, 2015.

[3] D. Graupe, Principles of artificial neural networks (2nd Edition), World Scientific Publishing,

2007.

[4] M. Hanss, Applied Fuzzy Arithmetic: An introduction with engineering applications, Springer-

Verlag, Berlin, 2005.

[5] L. Huang, X. F. Li, Y. L. Zhao, X. Y. Duan, Approximate solution of fractional integro-

differential equations by Taylor expansion method, Comput. Math. Appl., 62(3) (2011) 1127–

1134.

[6] A. Jafarian, S. Measoomy Nia, S. Abbasbandy, Artificial neural networks based modeling for

solving linear Volterra integral equations system, Applied Soft Computing, 27 (2015) 391–395.

[7] A. Jafarian, S. Measoomy Nia, Artificial neural network approach to the fuzzy Abel integral

equation problem, Journal of Intelligent and Fuzzy Systems, DOI:10.3233/IFS-130980.

[8] A. Jafarian, S. Measoomy Nia, New itrative method for solving linear Fredholm fuzzy integral

equations of the second kined, International Journal of Industrial Mathematics, 5(3) (2013)

10 pages.

[9] A. Jafarian, S. Measoomy Nia, Feed-back neural network method for solving linear Volterra

integral equations of the second kind, Int. J. Mathematical Modelling and Numerical Optimi-

sation, 4(3) (2013) 225–237.

[10] A. Jafarian, S. Measoomy Nia, Utilizing feed-back neural network approach for solving linear

Fredholm integral equations system, Applied Mathematical Modelling, 37(7) (2013) 5027–5038.

[11] G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of nondifferen-

tiable functions further results, Comput. Math. Appl. 51 (2006).

380 A. JAFARIAN AND S. M. NIA

[12] S. M. Momani, S. B. Hadid, Some comparison results for integro-fractional differential inequal-

ities, J. Fract. Calc. 24 (2003) 37–44.

[13] S. Momani, M. Noor, Numerical methods for fourth order fractional integro-differential equa-

tions, Appl. Math. Comput., 182 (2006) 754–60.

[14] Y. Nawaz, Variational iteration method and homotopy perturbation method for fourth-order

fractional integro-differential equations, Comput. Math. Appl., 61(8) (2011) 2330–2341.

[15] Z. Odibat, N. Shawagfeh, Generalized Taylor’s formula, Appl. Math. Comput., 186(1) (2007)

286–293.

[16] Y. Ordokhani, N. Rahimi, Solving fractional nonlinear Fredholm integro-differential equations

via hybrid of rationalized Haar functions, Journal of Information and Computing Science, 9(3)

(2014) 169–180.

[17] S. S. Ray, Analytical solution for the space fractional diffusion equation by two-step Adomian

decomposition method, Commun. Nonlinear. Sci. Numer Simulat., 14 (2009) 129–306.

[18] X. J. Yang, Advanced local fractional calculus and its applications, World Science Publisher,

New York, USA, 2012.

[19] L. Zhanga, B. Ahmadb, G. Wanga, R. P. Agarwal, Nonlinear fractional integro-differential

equations on unbounded domains in a Banach space, Journal of Computational and Applied

Mathematics, 249 (2013) 51–56.

[20] L. Zhu, Q. Fan, Solving fractional nonlinear Fredholm integro-differential equations by the

second kind Chebyshev wavelet, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012) 2333–

2341.

