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ABSTRACT. In this study, an approach for solving non-smooth optimization problem which

includes sum of finite maximums of smooth functions is proposed. Minimum l1-norm approximations

is a particular case of this problem. In this approach, the problem is reformulated in order to use the

hyperbolic smoothing function and the relationship between the original problem and reformulated

problem are proved. This approach allows us to use conventional smooth optimization methods.
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1. Introduction

In this study, we focus on the following non-smooth optimization problem

(1.1)
minimize f(x) +

m
∑

i=1

max[αihi(x), βihi(x)]

subject to x ∈ R
n

where f(x) and hi(x), i = 1, . . . , m are continuously differentiable. In this problem,

we can assume αi 6= βi for all i = 1, . . . , m. If αi = βi for some i ∈ {1, . . . , m},
then instead of f(x), which is the smooth part of the problem, we can write f(x) +
∑

i∈J αihi(x) where J = {i|αi = βi}.
Problem (1.1) arises Truss Topology Design in [5, 6] as cited in [18], the many im-

portant areas of modern signal/image processing, blind source separation and sparse

decomposition [7, 19, 20]. On the other hand, for Problem (1.1), if αi and βi are

chosen as −1 and 1 respectively and the functions hi(x) are affine, the problem turns:

(1.2)
minimize f(x) + ‖h(x)‖1

subject to x ∈ R
n

where h(x) := [h1(x), . . . , hm(x)]T . This problem is known minimum l1-norm approx-

imations. In this study, we interest in the general case.

These problems are considered to be difficult because of the kinks which are in-

troduced into the part
∑m

i=1
max[αihi(x), βihi(x)] of the objective function in Prob-

lem 1.1 by the presence of the “max” operator. This situation is also valid for all
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other problems containing “max” (or “min”) operators. In order to over come this

difficulties, [17] introduce different functions to smooth the finite maximum function

at the kink points. These kinks cause to fail to reach an optimum for classical al-

gorithms because of the lack of derivatives [12, 14]. This difficulty motivated the

development of smoothing algorithms for some type of nonsmooth problems, which

could be minimized by using well known smooth algorithms.

Although conventional non-smooth optimization algorithms can be used in order

to solve Problem (1.1), for instance variations of the bundle methods [2, 3, 9, 10, 11],

smoothing methods are being studied nowadays to over come the drawback of non-

smooth algorithms. For examples of the drawback of non-smooth algorithms, the

implementation of non-smooth algorithm are generally very complex, and some of

nonsmooth algorithms have poor convergency and need a very large amount of mem-

ory to retain the information on the computer during implementation. On the other

hand, smoothing methods use the smooth algorithms and in smooth algorithms we

have very strong tool “derivatives”. Because of the derivatives, smooth algorithms

find easily descent direction and stopping criteria when comparing nonsmooth algo-

rithms. Thus, smoothing method can be more useful than non-smoothing method for

some type of optimization problems.

In this study, it is aimed to approximate the objective function via hyperbolic

smooth functions. This approximation allows us to use well known smooth algorithms.

On the other hand, although there are some similarities between the proposed method

and the method in [1], this study is completely different from the method given in

[1]. One can easily observe this differences from the structure of the problem.

The structure of this article is as follows. Some concepts which are used in this

study are given in Section 2. In Section 3, Problem 1.1 is reformulated in order to

use the some known facts of hyperbolic smoothing techniques. After that, hyperbolic

function is given which approximate Problem 1.1 smoothly in Section 4. In the next

Section 5, minimization algorithm to solve Problem 1.1 is proposed, which use the

smooth function. Finally, the short conclusion is stated in Section 6.

2. Preliminary

In this section, the definitions of some concepts are given for people who are not

familiar them. The following notations are used in this study. R
n is an n-dimensional

Euclidean space with the inner product 〈u, v〉 =
∑n

i=1
uivi and the associated Eu-

clidean norm ‖ · ‖.
Clark gives the definition of subdifferential for Lipschitz continuous functions

by using generalized directional derivative in [8]. After that, by using the fact that

Lipschitz continuous functions are almost everywhere differentiable, the following set



HYPERBOLIC SMOOTHING METHOD 383

is given as a subdifferential of Lipschitz continuous functions, which more useful than

the definition. For more detail please look [4, 8]. Let f be Lipschitz continuous

function, its subdifferential is

∂f(x) = co
{

v ∈ R
n
∣

∣

∣
∃ (xk ∈ D(f), xk → x when k → ∞)

such that v = lim
k→∞

∇f(xk)
}

where D(f) denotes the set where f is differentiable and co denotes the convex hull

of a set.

Another concept used in this study is regular function. A locally Lipschitz con-

tinuous function f is called regular at a point x, if directional derivative f ′(x, d) exists

and

(2.1) f ′(x, d) = lim sup
y→x, t↓0

f(y + td) − f(y)

t

holds. The right hand side of Equation 2.1 is also known as a generalized directional

derivative of the function f at the point x in the direction d.

3. Reformulation of Problem (1.1)

The hyperbolic function for smoothing the function θ(x) = max {0, x} is given in

[13, 15, 16] as follows:

(3.1) φτ(x) =
x +

√
x2 + τ 2

2
,

where τ > 0 is a precision parameter.

The function φτ(x) has the following properties as reported in [1]:

1. φτ (x) is an increasing convex C∞ function

2. θ(x) < φτ (x) < θ(x) + τ
2

In order to use this fact, the strategy in the next section is applied to problem

(1.1).

Since f(x) is smooth, we focus on
∑m

i=1
max[αihi(x), βihi(x)], which is the non-

smooth part of problem (1.1). The non-smooth part of problem (1.1) can be re-

formulated as maxima of summation of some smooth function in the following way.

Consider the following functions,

m
∑

i=1

(µiαihi(x) + (µi − 1)βihi(x))

where either µi = 1 or µi = 0 for all i = 1, . . . , m. In this way we define 2m

functions, and obviously maximum of these functions equal to the non-smooth part
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of Problem (1.1). In mathematically,

(3.2) max
µi

m
∑

i=1

(µiαihi(x) + (1 − µi)βihi(x)) =
m
∑

i=1

max[αihi(x) , βihi(x)]

where either µi = 1 or µi = 0 for all i = 1, . . . , m. In order to simplify the left hand

side of Equation (3.2), we use the following notation

(3.3) Fj(x) =

m
∑

i=1

(µi(j)αihi(x) + (1 − µi(j))βihi(x))

where j = 1, . . . , 2m and the relation between index j and µi(j)’s for all i = 1, . . . , m

can be given in the following algorithm.

Assume the number m is known.

Algorithm 1. Algorithm to compute coefficients of Fj for all j = 1, . . . , 2m.

Step 1 Set j = 1.

Step 2 If j > 2m, then stop. Otherwise, set k = 1 and j1 = j.

Step 3 If k ≤ m, compute the remainder Rk and the quotient Qk after division of jk

by 2 (i.e. jk = 2Qk + Rk). Otherwise, set j = j + 1 and go to Step 2

Step 4 Set µk(j) = Rk, jk+1 = Qk and k = k + 1. Go to Step 3.

For instance, consider m = 3 and all functions Fj for all j = 1, . . . , 8 are as

follows,

F1(x) = α1h1(x) + β2h2(x) + β3h3(x)

F2(x) = β1h1(x) + α2h2(x) + β3h3(x)

F3(x) = α1h1(x) + α2h2(x) + β3h3(x)

F4(x) = β1h1(x) + β2h2(x) + α3h3(x)

F5(x) = α1h1(x) + β2h2(x) + α3h3(x)

F6(x) = β1h1(x) + α2h2(x) + α3h3(x)

F7(x) = α1h1(x) + α2h2(x) + α3h3(x)

F8(x) = β1h1(x) + β2h2(x) + β3h3(x).

Now, we can rewrite Problem (1.1) as follows,

(3.4)
minimize f(x) + max

j=1,...,2m
{Fj(x)}

subject to x ∈ R
n,

or equivalently

(3.5)
minimize max

j=1,...,2m
{f(x) + Fj(x)}

subject to x ∈ R
n.
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In Problem (3.5), it can be clearly showed that f(x) + Fj(x) are continuously

differentiable fol all j ∈ {1, . . . , 2m}.
Stationary point of Problem (3.5) are defined by using subdifferential as follows.

At a point x ∈ R
n consider sets:

R(x) =

{

j ∈ {1, . . . , 2m}
∣

∣

∣

∣

max
j=1,...,2m

{f(x) + Fj(x)} = f(x) + Fj(x)

}

,

and the subdifferential ∂

(

max
j=1,...,2m

{f(x) + Fj(x)}
)

at the point x is as follows;

∂

(

max
j=1,...,2m

{f(x) + Fj(x)}
)

= co {∇f(x) + ∇Fj(x) |j ∈ R(x)}

where co denotes convex hull of a set. A point x∗ is called a stationary point of

problem (3.5) if and only if 0n ∈ ∂

(

max
j=1,...,2m

{f(x∗) + Fj(x
∗)}
)

.

In order to use equation (3.1), the objective function of problem (3.5) is reformu-

lated. Consider the following function:

(3.6) G(x, t) = t +
∑

j∈J

max {0, f(x) + Fj(x) − t}

where J = {1, . . . , 2m}. For a given (x, t) ∈ R
n × R, the index set J can be divided

into tree distinct sets as follows

J = J1 ∪ J2 ∪ J3

where

J1 = J1(x, t) = {j ∈ J | f(x) + Fj(x) < t}
J2 = J2(x, t) = {j ∈ J | f(x) + Fj(x) = t}
J3 = J3(x, t) = {j ∈ J | f(x) + Fj(x) > t} .

The relations between the function max
j=1,...,2m

{f(x) + Fj(x)} and G(x, t) are stated in

the following propositions.

Proposition 3.1. Let G(x, t) be defined as in (3.6).

(3.7) max
j∈J

{f(x) + Fj(x)} = min
t∈R

G(x, t)

holds.

Proof. For any fixed point x ∈ R
n, there are three cases

Case 1. t > max
j∈J

{f(x) + Fj(x)}
Case 2. t = max

j∈J
{f(x) + Fj(x)}

Case 3. t < max
j∈J

{f(x) + Fj(x)}
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In Case 1, the index sets J2 = J3 = ∅, so G(x, t) = t > max
j∈J

{f(x) + Fj(x)}. In the

next case, the index set J3 = ∅, so G(x, t) = t = max
j∈J

{f(x) + Fj(x)}. In the last case

J3 6= ∅,

(3.8) G(x, t) = t +
∑

j∈J3

(f(x) + Fj(x) − t).

Let j0 = argmax {f(x) + Fj(x)}, that is for the index j0, max
j∈J

{f(x) + Fj(x)} =

f(x) + Fj0(x). Here, j0 may not be unique, in this case we take just one of them as

a j0. Thus,

G(x, t) = f(x) + Fj0(x) +
∑

j∈J3\{j0}

(f(x) + Fj(x) − t).

Obviously,
∑

j∈J3\{j0}
(f(x) + Fj(x) − t) ≥ 0, so G(x, t) ≥ max

j∈J
{f(x) + Fj(x)}.

Consequently, G(x, t) greater and equal to max
j∈J

{f(x) + Fj(x)} for all t and

reaches to the value max
j∈J

{f(x) + Fj(x)} at the point t = max
j∈J

{f(x) + Fj(x)}. In

other words, mint∈R G(x, t) = max
j∈J

{f(x) + Fj(x)}.

Proposition 3.2. (1) If a point x∗ ∈ R
n is a stationary point of the function

max
j∈J

{f(x) + Fj(x)}, then the point (x∗, t∗) ∈ R
n+1 is a stationary point of the func-

tion G(x, t) where t∗ = max
j∈J

{f(x∗) + Fj(x
∗)}.

(2) If a point (x∗, t∗) ∈ R
n+1 is a stationary point of the function G(x, t), then

x∗ ∈ R
n is a stationary point of the function max

j=1,...,2m
{f(x) + Fj(x)}.

Proof. The proof can be found in [1].

Remark 3.3. When observing the proof of Proposition 3.2, which is given in [1], if

(x∗, t∗) is a stationary point of the function G(x, t), then either

t∗ = max
j∈J

{f(x∗) + Fj(x
∗)} or t∗ < max

j∈J
{f(x∗) + Fj(x

∗)}

holds.

Moreover, from the proof we can easily say J3(x
∗, t∗) is a singleton in the latter

case. This implies R(x∗) is also a singleton set, so the function max
j∈J

{f(x) + Fj(x)} is

differentiable at the point x∗. On the other hand, it is known that stationary points of

minimax problems are generally non-differentiable points. Therefore, for the most of

min-max problems t∗ = max
j∈J

{f(x∗) + Fj(x
∗)}. In other words, the stationary points

of G(x, t) is in the form (x∗, max
j∈J

{f(x∗) + Fj(x
∗)}.

The following proposition presents the relation of local minimizer between the

function max
j∈J

{f(x) + Fj(x)} and the function G(x, t).
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Proposition 3.4. (1) If a point x∗ ∈ R
n is a local minimizer of the function

max
j∈J

{f(x) + Fj(x)}, then the point (x∗, t∗) ∈ R
n+1 is a local minimizer of the function

G(x, t) where t∗ = max
j∈J

{f(x∗) + Fj(x
∗)}.

(2) If a point (x∗, t∗) ∈ R
n+1 is a local minimizer of the function G(x, t), then

x∗ ∈ R
n is a local minimize of the function max

j∈J
{f(x) + Fj(x)}.

Proof. The proof can be found in [1].

4. A Hyperbolic Smoothing Function

In this section, a hyperbolic smoothing function of the objective function in

problem (3.5) is given. After that, the relationships of problem (1.1) and (3.5) is

stated. By combining the equations (3.1) and (3.6), it is obtained that

(4.1) Φτ (x, t) = t +
∑

j∈J

f(x) + Fj(x) − t +
√

(f(x) + Fj(x) − t)2 + τ 2

2

in the sense of 0 < Φτ (x, t) − G(x, t) < 2m−1τ as the hyperbolic smoothing of the

function max
j∈J

{f(x) + Fj(x)}.

The gradient of the function Φτ (x, t) is as follows:

∇Φτ (x, t) = (G1τ (x, t), G2τ (x, t))

where

G1τ (x, t) =
1

2

∑

j∈J

(1 + Γjτ(x, t))∇ (f(x) + Fj(x)) ,

G2τ (x, t) = 1 − 2m−1 − 1

2

∑

j∈J

Γjτ (x, t),

Γjτ (x, t) =
f(x) + Fj(x) − t

√

(f(x) + Fj(x) − t)2 + τ 2
.

In this gradient, the first and second components represent derivatives with respect

to the variable x and t respectively.

Before stating the following proposition, it is necessary to give the subdifferential

∂G(x, t). Denote Ψj(x, t) = max {0, f(x) − Fj(x) − t} for all j ∈ J . Then, the

subdifferential of Ψj(x, t) for fixed j is following;

∂ (Ψj(x, t)) =











{0n+1}, j ∈ J1

co{0n+1, (∇f(x) + ∇Fj(x),−1)}, j ∈ J2

{(∇f(x) + ∇Fj(x),−1)}, j ∈ J3
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Since f(x) and Fj for all j ∈ J are regular, Ψj for all j ∈ J are regular too. Thus,

the subdifferential of ∂G(x, t) can be expressed in the following way;

∂G(x, t) = {(0n, 1)} +
∑

j∈J2

co {0n+1, (∇f(x) + ∇Fj(x),−1)}(4.2)

+
∑

j∈J3

{(∇f(x) + ∇Fj(x),−1)} .

Proposition 4.1. Assume that v = limτ→0 ∇Φτ (x, t), then v ∈ ∂G(x, t).

Proof. It is clear that for any x ∈ R
n+1 and t ∈ R,

lim
τ→0

Γiτ (x, t) =











−1, i ∈ J1,

0, i ∈ J2,

1, i ∈ J3.

Then, we have

lim
τ→0

G1τ (x, t) =
∑

j∈J2

1

2
∇ (f(x) + Fj(x)) +

∑

j∈J3

∇ (f(x) + Fj(x))

and

lim
τ→0

G2τ (x, t) = 1 − 2m−1 +
1

2
(|J1| − |J3|)

= 1 − 1

2
|J2| − |J3|.

Therefore,

v = lim
τ→0

∇Φτ (x, t) =

(

∑

j∈J2

1

2
∇ (f(x) + Fj(x)) +

∑

j∈J3

∇ (f(x) + Fj(x)) , 1 − 1

2
|J2| − |J3|

)

.

We can arrange

v = (0n, 1) +
∑

j∈J2

1

2
(∇ (f(x) + Fj(x)) ,−1) +

∑

j∈J3

(∇ (f(x) + Fj(x)) ,−1) .

Obviously, v ∈ ∂G(x, t) from equation (4.2).

Proposition 4.2. Suppose that sequences {xk}, {tk} and {τk} are given such that

xk ∈ R
n, tk ∈ R, tk ≥ f(xk) and τk > 0, k = 1, 2, . . . . Moreover, xk → x, tk → t,

τk → 0 when k → ∞ and

v = lim
k→∞

∇Φτk
(xk, tk).

Then v ∈ ∂G(x, t).

Proof. Since f(x)+Fj(x)−t are continuously differentiable (i.e. Fi(x)−t ∈ C1) for all

i = 1, . . . , m, then the function Φτ is continuously differentiable. This means ∇Φτk
is

continuous, by using aforementioned convergences in the statement of Proposition 4.2,

we have

v = lim
k→∞

∇Φτk
(xk, tk) = lim

k→∞
∇Φτk

(x, t).
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On the other hand, since τk → 0 as k → ∞,

v = lim
τ→0

∇Φτ (x, t).

Using Proposition 4.1, we can conclude that v ∈ ∂G(x, t).

5. Minimization Algorithm

In this section, an algorithm is given to find the solution of problem (1.1) by

using the function in (4.1) via a smooth optimization solver. Replacing problem (1.1)

by the sequence of the following smooth problems:

(5.1)
minimize Φτk

(

x, max
j∈J

{f(x) + Fj(x)}
)

subject to x ∈ R
n,

where τk → 0 as k → 0. In light of the Section (4), smooth optimization solver can

solve problem (5.1) and its minimizer can be used to find the minimizer of problem

(1.1).

Remark 5.1. In Problem (5.1), the precision parameter can be chosen sufficiently

small τ > 0 instead of the sequence {τk}. However, this approach may cause more

computational efforts. The usage of the sequence {τk} may help get rid of this phe-

nomenon.

The following algorithm is proposed for solving problem (1.1). Assume the se-

quences {τk}, {ǫk} are given such that τk, ǫk > 0 and τk, ǫk → 0 as k → ∞.

Algorithm 2. Algorithm to solve problem (1.1).

Step 1 Apply Algorithm 1 to determine Fj for all j = 1, . . . , 2m.

Step 2 Select any starting point x0 ∈ R
n, set k := 0 and compute

t0 = max
j∈J

{f(x0) + Fj(x0)} .

Step 3 Using a smooth optimization solver, solve the problem (5.1) by starting from

the point xk such that for the solution x̄

(5.2)

∥

∥

∥

∥

∇Φτk

(

x̄, max
j∈J

{f(x̄) + Fj(x̄)}
)
∥

∥

∥

∥

< ǫk

holds.

Step 4 Set xk+1 = x̄, tk+1 = max
j∈J

{f(x̄) + Fj(x̄)}, k := k + 1 and go to Step 3.

Remark 5.2. In Algorithm 2, the choice of sequences {τk}, {ǫk} has important role

on the behavior of the problem. If the sequence {τk} converges to 0 quickly, then

the problem get ill-conditioned behavior. In addition, a large number of iteration

may be needed to satisfy the condition (5.2). In order to overcome this situation, the

convergency of the sequence {τk} should be slower than the sequence {ǫk}.
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Now, we give a proposition which guarantees that Algorithm 2 terminates finitely

many steps. First, the following set which is used in next proposition is defined:

L(x0) =

{

x ∈ R
n

∣

∣

∣

∣

max
j∈J

{f(x) − Fj(x)} ≤ max
j∈J

{f(x0) − Fj(x0)}
}

.

Proposition 5.3. Assume that the set L(x0) is bounded for any starting point x0 ∈
R

n. Then any accumulation point of the sequence {xk} generated by Algorithm 2 is

a stationary point of problem (1.1).

Proof. Since all point xk generated by Algorithm 2 are solution of the sequence of the

smooth problems (5.1), xk ∈ L(x0) for all k. On the other hand, L(x0) is bounded by

the assumption, so the sequence {xk} has at least one accumulation point. Let say

this accumulation point is x∗. In other words, assume xk → x∗ as k → ∞. According

to Step 2 of Algorithm 2, consider t∗ = max
j∈J

{f(x∗) + Fj(x
∗)}. Since the sequence

{ǫk} converges to 0, 0n+1 = Φτk

(

x∗, max
j∈J

{f(x∗) + Fj(x
∗)}
)

. By Proposition 4.2,

0n+1 ∈ ∂G(x, t), that is (x∗, t∗) is a stationary point of G(x, t). Consequently, by

applying Proposition 3.2, we have that x∗ is a stationary point of problem (1.1).

As a result, by using Algorithm 2 with any conventional smooth solver, the main

problem 1.1 can be solved.

6. Conclusions

In this study, a new approach is proposed to solve the non-smooth optimization

problem which is written as a sum of smooth function and the sum of maximum

of smooth functions. Because of this approach, one can use well-known optimization

solver for smooth problems instead of non-smooth solvers. It means that it is possible

to avoid some known drawbacks of non-smooth solvers, which are mentioned in the

introduction. On the other hand, this strategy can be used for aforementioned areas

of Mathematics and Engineering.
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[3] A. M. Bagirov, B. Karasözen, and M. Sezer. Discrete gradient method: derivative-free method

for nonsmooth optimization. J. Optim. Theory Appl., 137(2):317–334, 2008.

[4] Adil Bagirov, Napsu Karmitsa, and Marko M. Mäkelä. Introduction to nonsmooth optimization.
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