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ABSTRACT. In this study, unsteady natural convection heat transfer of water-based nanofluid

in a square cavity with heat source at the left vertical wall is studied by solving the equation

of conservation of mass, momentum and energy. Stream function-vorticity form of the governing

equations are solved by using the differential quadrature method (DQM). Vorticity transport and

energy equations are transformed to the form of modified Helmholtz equations by discretizing the

time derivative terms first. This procedure eliminates the need of another time integration scheme

in vorticity transport and energy equations, and has the advantage of using large time increments.

The computational results are obtained for Rayleigh number values between 103 and 106, volume

fraction of nanoparticles changing from 0 to 0.2 and the length of the heater varying from 0.25 to

1.0. Also, two types of nanoparticles (Al2O3 and Cu) are tested. The results are show that the type

of the nanoparticles and the length of the heat source affect the flow and temperature flow.

Key Words DQM, Natural convection flow, Nanofluid.

1. INTRODUCTION

In many engineering applications such as building heating and cooling systems,

heat exchangers, cooling of electronic components etc. natural convection heat trans-

fer has an importance and it has been analyzed using many different numerical meth-

ods. Heat exchanger devices which are used in many different industries should be

small and light. Beside this, they must provide higher performance. Conventional

heat transfer fluids such as water and engine oil are used as a base fluid but they

have low thermal conductivity. There are different kinds of techniques to enhance

their heat transfer capacities. One of them is the use of mixture of base fluid and

nanoparticles which is introduced by Choi [5]. They proposed that heat transfer fluids

with high heat transfer properties can be obtained by adding metallic nanoparticles

in conventional heat transfer fluids with low heat transfer properties. Xuan and Li

[16] developed a method about preparation of nanofluid which contains nanophase

powders and a base fluid. Eastman et al. [6] showed that ethylene glycol with cop-

per nanometer-sized particles has a higher thermal conductivity than nanoparticle-

containing fluids or nanofluids containing oxide particle.
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A numerical study on buoyancy-driven heat transfer enhancement in a two-

dimensional enclosure utilizing nanofluids is presented by Khanafer et al. [11]. Finite

volume method along with the alternating direct method is used as a numerical

method for transport equations. Another numerical study for the natural convection

heat transfer enhancement filled with nanofluids is done by Jou and Tzeng in [10].

In the computations, they used finite difference method for stream function-vorticity

formulation of transport equations. The effect of Rayleigh number and aspect ration

are examined and obtained results show that when the Rayleigh number and vol-

ume fraction of nanoparticles increase the average heat transfer coefficient increase.

Tiwari and Das [15] numerically studied a two-sided lid-driven differentially heated

square cavity by investigating the behavior of nanofluids and computational results

are obtained using finite volume method. The study of Oztop and Abu-Nada [13]

represented a numerical study for natural convection in partially heated rectangular

enclosure using finite volume method. In this study, they obtained nanofluids using

different kind of nanoparticles. Aminossadati and Ghasemi numerically studied nat-

ural convection of water-based nanofluids in an enclosure localised heat source at the

bottom and in an inclined enclosure in [3] and [8], respectively. Finite volume ap-

proach using SIMPLE algorithm is used as a numerical method and results are given

to show that the influence of pertinent parameters. Another numerical study for

steady-state natural convection of water-based nanofluids in an inclined enclosure is

given by Büyük Öğüt in [4]. In the study, DQM solutions are given by considering five

types of nanoparticles. Dual reciprocity boundary element method (DRBEM) proce-

dure is used in the solution of unsteady natural convection of water-based nanofluids

in [9] and they used implicit Euler scheme for the time integration. A mathematical

model of natural convection boundary layer flow along an inverted cone is analyzed

in [7].

In this paper, we consider DQM solution of two-dimensional unsteady natural

convection heat transfer of water-based nanofluid. In the governing equations, stream

function, vorticity and temperature variables are used. The need of a time integration

scheme is eliminated by converting the vorticity transport and temperature equations

to the modified Helmholtz equations. The same idea was used by Alsoy-Akgün and

Tezer-Sezgin in [1] and [2], and in these studies, natural convection and natural con-

vection under a magnetic field problems were solved by using DRBEM and DQM,

respectively. Also, unknown vorticity boundary condition are approximated by using

DQM. In the computations, polynomial based DQM is used with Gauss-Chebyshev-

Lobatto (GCL) mesh points which cluster through to end points and lead to more

stable results compared with uniform mesh points. All the results are given for vary-

ing values of Rayleigh number, volume fraction, heater length and for two type of

nanoparticles. The results are compared with previous studies in the literature.
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Figure 1. Boundary conditions for the problem.

2. GOVERNING EQUATIONS

The physical system considered in the present study is described in Figure 1.

Two dimensional square enclosure filled with a nanofluid which is Newtonian, incom-

pressible and laminar. The left wall is heated with a thermally insulated heat source

which is placed at the center of the wall and the length of the heater is changed by

using a parameter. The right wall is cooled and the adiabatic boundary conditions are

imposed on the top and bottom walls. The water-based nanofluid contains different

type of nanoparticles (Al2O3 and Cu) and they are assumed to have a uniform shape

and size. Also, the fluid and the nanoparticles are in thermal equilibrium and no slip

occur between them. The thermophysical properties of the nanoparticles and base

fluid (water) are given in Table 1. The thermophysical properties of the nanofluid

are assumed to be constant except for the density variation in the buoyancy forced

which is determined by using the Boussinesq approximation.

The governing equations for non-dimensional natural convection flow equations

in two-dimensional Cartesian coordinates can be written in terms of stream function-

vorticity-temperature (ψ − w − T ) [3, 9] as follows,

(2.1)

∇2ψ = −w,

µnf

ρnfαf

∇2w =
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
− RaPr

(ρβ)nf

ρnfβf

∂T

∂x
,

αnf

αf

∇2T =
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
,
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Table 1. Thermophysical properties of base fluid nanoparticles [4, 13].

Physical properties Fluid phase (Water) Cu Al2O3

Cp(J/kgK) 4179 385 765

ρ(kg/m3) 997.1 8933 3970

k(W/mK) 0.613 400 40

β × 10−5(1/K) 21 1.67 2.4

α× 107(m2/s) 1.47 1163.1 131.7

where velocity components u, v and vorticity w are defined as

(2.2) u =
∂ψ

∂y
, v = −

∂ψ

∂x
, w =

∂v

∂x
−
∂u

∂y
,

where Pr and Ra are Prandtl number and Rayleigh number, respectively. The pa-

rameters αnf and ρnf are thermal diffusivity and effective density of the nanofluid,

respectively, and they are defined as [13]

αnf =
keff

(ρCp)nf

, ρnf = (1 − ϕ)ρf + ϕρs,

where keff is the effective thermal conductivity, Cp is the specific heat at constant

pressure and ϕ is nanoparticle volume fraction. The subscripts ‘nf ’, ‘f ’ and ‘s’ refer

to nanofluid, fluid and solid, respectively. For spherical nanoparticles, the Maxwell-

Garnett’s model of the effective thermal conductivity of nanofluid is approximated as

[13]
keff

kf

=
ks + 2kf − 2ϕ(kf − ks)

ks + 2kf + ϕ(kf − ks)
.

The heat capacitance of nanofluid and the thermal expansion coefficient of the nanofluid

which is the part of the Boussinesq term can be given as [3, 4]

(ρCp)nf = (1 − ϕ)(ρCp)f + ϕ(ρCp)s, (ρβ)nf = (1 − ϕ)(ρβ)f + ϕ(ρβ)s.

Here, ρ, k and α represent density, thermal conductivity and thermal diffusivity

of fluid or solid, respectively. The viscosity of nanofluid is obtained by using the

approximation [13]

µnf =
µf

(1 − ϕ)2.5
,

where µf is the dynamic viscosity of the fluid.

The average Nusselt number (Nuav)is determined by integrated local Nusselt

number (Nu) along the heat source and they are defined as [4]

Nu =
keff

kf

1

Ts(y)
, Nuav =

1

ε

∫ ε

0

Nudy,

where Ts(y) is local dimensionless temperature.
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3. SOLUTION PROCEDURE

Natural convection flow of water-based nanofluid equations are given in a two-

dimensional square region and proper wall conditions are specified. No-slip condi-

tions on the walls imply the zero value for stream function on the boundary (ψ(0) =

ψ(x, y, t0) = 0). Vorticity boundary conditions are not known and obtained from

vorticity definition (2.2), and for the temperature either Dirichlet type (cooled wall)

or adiabatic boundary conditions are assigned on the boundary.

The time derivatives in the vorticity transport and energy equations are approx-

imated at the beginning of the solution procedure using the forward finite difference

approximation

(3.1)
∂w

∂t
=
w(n+1) − w(n)

∆t
and

∂T

∂t
=
T (n+1) − T (n)

∆t
,

where w(n) = w(x, y, tn), T
(n) = T (x, y, tn), tn = n∆t and ∆t is the time step.

Vorticity and temperature in the Laplace terms are also approximated at the two

time levels by using relaxation parameters θw and θT as

w(n+1) = θww
(n+1) + (1 − θw)w(n) and T (n+1) = θTT

(n+1) + (1 − θT )T (n),

in order to smooth the values between two consecutive time levels. These give two

modified Helmholtz equations for the vorticity transport and energy equations. Thus,

the following equations are used iteratively for solving natural convection flow of

water-based nanofluid

∇2ψ(n+1) = −w(n),

∇2w(n+1) − λ2
ww

(n+1) =
(θw − 1)

θw

∇2w(n) − λ2
ww

(n)

+
ρnfαf

µnfθw

(

∂ψ(n+1)

∂y

∂w(n)

∂x
−
∂ψ(n+1)

∂x

∂w(n)

∂y

)

− RaPr
(ρβ)nfαf

βfµnfθw

∂T (n)

∂x
,(3.2)

∇2T (n+1) − λ2
TT

(n+1) =
(θT − 1)

θT

∇2T (n) − λ2
TT

(n)

+
αf

αnfθT

(

∂ψ(n+1)

∂y

∂T (n)

∂x
−
∂ψ(n+1)

∂x

∂T (n)

∂y

)

,

where λ2
w =

ρnf αf

µnf ∆tθw
and λ2

T =
αf

αnf ∆tθT
, and n indicates iteration number. Then, DQM

can be used for the solution of the governing equations.

4. DQM FORMULATION OF THE PROBLEM

The main idea of the DQM, the derivative of the function f(x), which is suffi-

ciently smooth in the domain, can be approximated by using linear sum of all the
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functional values in the whole domain such as [14]

f(xi) =

N
∑

k=1

lk(x)f(xk), f (1)(xi) =

N
∑

k=1

aikf(xk), f (2)(xi) =

N
∑

k=1

bikf(xk),

where xi’s are a grid point, N is the number of the grid points, lk(x)’s are weight-

ing coefficients, aik = l
(1)
k (xi) and bik = l

(2)
k (xi). These coefficients are computed by

employing some explicit formulations in [14]. If the Lagrange interpolation polyno-

mials are taken as set of weighting coefficients, then it is called polynomial base of

differential quadrature (PDQ) method.

The discretized equations employing the DQM corresponding to stream function,

vorticity and temperature equations (3.2) are

N
∑

k=1

bikψ
(n+1)
kj +

M
∑

k=1

b̄jkψ
(n+1)
ik = −w

(n)
ij ,(4.1a)

N
∑

k=1

bikw
(n+1)
kj +

M
∑

k=1

b̄jkw
(n+1)
ik − λ2

ww
(n+1)
ij = b1,(4.1b)

N
∑

k=1

bikT
(n+1)
kj +

M
∑

k=1

b̄jkT
(n+1)
ik − λ2

TT
(n+1)
ij = b2,(4.1c)

where

b1 =

(

θw − 1

θw

)(

N
∑

k=1

bikw
(n)
kj +

M
∑

k=1

b̄jkw
(n)
ik

)

− λ2
ww

(n)
ij

+
ρnfαf

µnfθw

(

M
∑

k=1

ājkψ
(n+1)
ik

N
∑

k=1

aikw
(n)
kj −

N
∑

k=1

aikψ
(n+1)
kj

M
∑

k=1

ājkw
(n)
ik

)

− RaPr
(ρβ)nfαf

βfµnfθw

N
∑

k=1

aikT
(n)
kj ,

b2 =

(

θT − 1

θT

)(

N
∑

k=1

bikT
(n)
kj +

M
∑

k=1

b̄jkT
(n)
ik

)

− λ2
TT

(n)
ij

+
αf

αnfθT

(

M
∑

k=1

ājkψ
(n+1)
ik

N
∑

k=1

aikT
(n)
kj −

N
∑

k=1

aikψ
(n+1)
kj

M
∑

k=1

ājkT
(n)
ik

)

.

Here, i = 1, . . . , N , j = 1, . . . ,M , and N and M represent the total number of grid

points in x- and y-directions, respectively. For the DQ method, a non-uniform grid

point distribution is used which is expressed in [12] and [2].

Due to the no-slip boundary condition for velocity, the Dirichlet type boundary

conditions for the stream function which is zero are inserted to the equation (4.1a)

directly as ψ1j = 0, ψNj = 0, ψi1 = 0, and ψiM = 0, for i = 1, . . . , N and j = 1, . . . ,M .

The boundary conditions for the vorticity can be obtained from (2.2) and can also be
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approximated by the DQ method as follows

w
(n+1)
1j =

N
∑

k=1

a1kv
(n+1)
kj −

M
∑

k=1

ājku
(n+1)
1k , w

(n+1)
Nj =

N
∑

k=1

aNkv
(n+1)
kj −

M
∑

k=1

ājku
(n+1)
Nk ,

w
(n+1)
i1 =

N
∑

k=1

aikv
(n+1)
k1 −

M
∑

k=1

ā1ku
(n+1)
ik , w

(n+1)
iM =

N
∑

k=1

aikv
(n+1)
kM −

M
∑

k=1

āMku
(n+1)
ik ,

where j = 1, . . . ,M , i = 2, . . . , N − 1 and the velocity components are obtained from

(2.2), and their DQ approximations are

u
(n+1)
ik =

M
∑

k=1

ājkψ
(n+1)
ik , v

(n+1)
ik = −

N
∑

k=1

aikψ
(n+1)
kj .

These equations are added to the equation (4.1b) resulting in an over-determined

system. The Dirichlet temperature boundary conditions can be inserted directly to

the equation (4.1c), but the Neumann boundary conditions (adiabatic conditions) are

also expanded bu using DQM and added to the equation (4.1c) resulting in an over-

determined system. Over-determined equations for vorticity and energy equations

(4.1b, 4.1c) are going to be solved by using least squares method, whereas stream

function equation (4.1a) is a square linear system of equations. These three equations

are solved iteratively.

5. NUMERICAL RESULTS

In this work, we simulated unsteady natural convection heat transfer of water

based nanofluid in a partially heated square cavity. The computational results of the

problem are given for Rayleigh number values between 103 and 106, volume fraction of

nanoparticles changing from 0 to 0.2, the length of the heater varying from 0.25 to 1.0

and two different type of nanoparticles (Cu and Al2O3). Due to the no-slip boundary

conditions for the velocity, the boundary conditions of the stream function are taken

zero. The vorticity boundary conditions are obtained from the vorticity definition in

(2.2) by using the DQM approximations. The right wall is cooled (T = 0) whereas

adiabatic boundary conditions are imposed on the top and bottom walls. The value

of heat flux at the left wall is changing with the parameter ε. The stopping criteria

to obtain the steady-state results is taken as ǫ = 10−5 for all variables.

At the beginning of the study, the results are obtained by changing the number

of mesh points and the time increments (∆t) to obtain minimal acceptable numbers

of the grid points. The computations are done by taking Ra = 104, ϕ = 0.0 and

ε = 0.25 for Cu-based nanofluid. Necessary iteration numbers are given in Table 2

and the streamlines, isotherms and vorticity contours are drawn for each cases in

Figure 2. From the table and figure one can see that when the number of the grid

point increases we get better results but we need small time increment and more
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Table 2. Iteration numbers and time increment (∆t) of Cu-based

nanofluid when Ra = 104, ϕ = 0.0 and ε = 0.25.

Grid distribution ∆t Iteration number

16 × 16 0.01 139

19 × 19 0.005 173

20 × 20 0.005 262

22 × 22 0.003 416

Table 3. Validation of the method

Ra = 104 Ra = 105 Ra = 106

Nuav 2, 224 4, 501 8,792

iteration to reach steady-state solutions. After comparing all results, we can say that

the results for 20 × 20 grid points are better than the results for 19 × 19 grid points

and close the results for 22 × 22 grid points. Since there is no significant difference

between the solutions 20× 20 grid points and 22× 22 grid points, we continue to the

rest of the computations for Ra = 104 with 20 × 20 grid points. At the rest of the

study, we used minimal acceptable numbers of grid points and time increment for all

other cases. Also obtained numerical result is validated by comparing the average

Nusselt numbers for the left wall with the study of Öğüt [4]. From the Table 3 that

DQM results are good agreement with the ones given in this study.

To show the effect of the Rayleigh number on nanofluids, numerical experiment

were performed, as given in Figure 3. The results are given at steady-state for Ra =

103 − 106 with ϕ = 0.2 and ε = 0.25. From the figure one can say that, for low

Rayleigh number there is not enough convection in the system, so the viscous forces

are dominating the system. When Ra = 103, the vortex of the streamlines takes the

shape of a circle and the minimum value is obtained at the center of the cavity. From

the vorticity contour lines it can be seen that a circular vortex occur at the center of

the cavity. At the right side of the cavity, the isotherms are perpendicular to the top

and the bottom walls due to the adiabatic boundary conditions but near the heater

they tend to develop loops. When Rayleigh number increases, the circular vortex of

streamlines becomes an ellipse in the clockwise direction and boundary layer occur

near the vertical walls. The center vortex of the vorticity starts divide two parts and

these two new vortices move towards the right bottom and left upper corners. Also,

boundary layer occur with the increase of the value of vorticity near the vertical walls.

Due to the high value of Rayleigh number the isotherms become horizontal and form

boundary layer take place near the heater and right wall. Therefore, these behavior
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indicating that the convection forces starts to dominate the system over the viscous

forces. These results are physically expected behaviors and they are good agreement

with the ones in [4].

The effect of volume fraction and the heater length on streamline, vorticity and

temperature for different values of Rayleigh number are given in Figure 4 and Figure 5.

In the analysis Cu is used as nanoparticle. The presence of the nanoparticle has an

important effect on the flow and temperature patterns. When the volume fraction

increases, the energy change increasing. Thus, flow and isotherm strength increases

but vorticity is not effected as much as the others. It is clear that streamlines,

vorticity and temperature contourlines are influenced by the changing of the heater

length. When the length of the heater increases, because there is more heat transfer,

the temperature of the system increases.

Also, in order to show that the effects of type of nanoparticle, the same analysis

is done by using Al2O3 as a nanoparticle and results are given in Figure 6. When the

heat transfer rates of Cu-based nanofluid and Al2O3-based nanofluid are compared

one can see that greater heat transfer rate is obtained by using Cu-based nanofluid.

This is expected behavior because Cu has higher thermal conductivity than Al2O3.

All these behaviors are observed in [4] and [13].

6. CONCLUSION

In this paper, unsteady natural convection of water-based nanofluid in a partially

heated square enclosure from the left wall is numerically studied using DQM. In the

DQM procedure, solutions and their derivatives are interpolated by using polyno-

mials. Therefore, it is quite simple in terms of computation and enables us to use

considerably small number of the grid points. At the beginning of the solution pro-

cedure, the forward finite difference approximations are used for the time derivatives.

Vorticity and temperature variables which are located in the Laplace terms are ap-

proximated with relaxation parameters. Thus, two modified Helmholtz equations are

obtained for vorticity transport and temperature equations. By using this procedure,

the need of a time integration scheme is eliminated. Computational results are ob-

tained to show the effects of Rayleigh number, volume fraction, heater length and

type of nanoparticle. It is observed that the heat rate transfer can be increased by

using nanoparticles. In particular, the heat transfer rate can be increased by using

Cu as a nanoparticle. Also, heat transfer can be increased using higher values of

Rayleigh number and increasing the heater length.
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Figure 2. Cu-based nanofluid for grid distribution: 16× 16, 19× 19,

20 × 20 and 22 × 22 when Ra = 104, ϕ = 0.0 and ε = 0.25.
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Figure 3. Cu-based nanofluid for several Rayleigh numbers when ϕ =

0.2 and ε = 0.25.
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Figure 4. Cu-based nanofluid for several Rayleigh numbers and ϕ

when ε = 0.5.
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Figure 5. Cu-based nanofluid for several Rayleigh numbers and ϕ

when ε = 1.
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Figure 6. Al2O3-based nanofluid for several Rayleigh numbers and ϕ

when ε = 0.25.


