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ABSTRACT. In this paper, we study differential equations arising from the generating functions

of the Bell-Carlitz polynomials. We give explicit identities for the Bell-Carlitz polynomials. Finally,
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1. Introduction

Recently, many mathematicians have studied in the area of the Bernoulli num-

bers, Euler numbers, Genocchi numbers, and tangent numbers (see [2, 3, 4, 6, 7,

8, 9, 10]). The Bell-Carlitz polynomials Bc
n(x) (n ≥ 0), were introduced by Alain

M. Robert (see [5]).

The Bell-Carlitz polynomials Bc
n(x) are defined by the generating function:

(1.1) F = F (t, x) =
∞
∑

n=0

Bc
n(x)

tn

n!
= e(xt+et−1) (see [5]).

First few examples of Bell-Carlitz polynomials are

(1.2)

Bc
0(x) = 1, Bc

1(x) = 1 + x, Bc
2(x) = 2 + 2x + x2,

Bc
3(x) = 5 + 6x + 3x2 + x3,

Bc
4(x) = 15 + 20x + 12x2 + 4x3 + x4,

Bc
5(x) = 52 + 75x + 50x2 + 20x3 + 5x4 + x5,

Bc
6(x) = 203 + 312x + 225x2 + 100x3 + 30x4 + 6x5 + x6,

Bc
7(x) = 877 + 1421x + 1092x2 + 525x3 + 175x4 + 42x5 + 7x6 + x7.

It is well known, the Bell numbers Bn are given by the generating function

(1.3) e(et−1) =

∞
∑

n=0

Bn

tn

n!
, (see [5]).
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From (1.1), we see that

(1.4)

∞
∑

n=0

Bc
n(x)

tn

n!
= e(xt+et−1)

= e(et−1)ext

=

(

∞
∑

k=0

Bk

tk

k!

)(

∞
∑

m=0

xm tm

m!

)

=
∞
∑

n=0

(

n
∑

k=0

(

n

k

)

Bkx
n−k

)

tn

n!
.

Comparing the coefficients on both sides of (1.4), we obtain

(1.5) Bc
n(x) =

n
∑

k=0

(

n

k

)

Bkx
n−k (n ≥ 0).

Recently, nonlinear differential equations arising from the generating functions of

special polynomials are studied by many authors in order to give explicit identities

for special polynomials (see [3, 4, 7]). In this paper, we study differential equations

arising from the generating functions of Bell-Carlitz polynomials. We give explicit

identities for the Bell-Carlitz polynomials. In addition, we investigate the zeros of

the Bell-Carlitz polynomials using numerical methods.

2. Differential equations associated with Bell-Carlitz polynomials

In this section, we study linear differential equations arising from the generating

functions of Bell-Carlitz polynomials.

Let

(2.1) F = F (t, x) = e(xt+et−1) =

∞
∑

n=0

Bc
n(x)

tn

n!
.

Then, by (2.1), we have

(2.2)
F (1) =

d

dt
F (t, x) =

d

dt

(

ext+et−1)
)

= e(xt+et−1)(x + et)

= (x + et)F,

(2.3)

F (2) =
d

dt
F (1) = etF + (x + et)F (1)

= etF + (x + et)2F = (x2 + (2x + 1)et + e2t)F,

and F (3) =
d

dt
F (2) =

(

x3 + (3x2 + 3x + 1)et + (2x + 3)e2t + e3t
)

F.
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Continuing this process, we can guess that

(2.4) F (N) =

(

d

dt

)N

F (t, x) =

(

N
∑

i=0

ai(N, x)eit

)

F, (N = 0, 1, 2, . . .).

Differentiating (2.4) with respect to t, we have

(2.5)

F (N+1) =
dF (N)

dt
=

(

N
∑

i=0

iai(N, x)eit

)

F +

(

N
∑

i=0

ai(N, x)eit

)

F (1)

=

(

N
∑

i=0

iai(N, x)eit

)

F +

(

N
∑

i=0

ai(N, x)eit

)

(x + et)F

=

{

N
∑

i=0

(x + i)ai(N, x)eit +
N
∑

i=0

ai(N, x)e(i+1)t

}

F

=

{

N
∑

i=0

(x + i)ai(N, x)eit +

N+1
∑

i=1

ai−1(N, x)eit

}

F.

Now replacing N by N + 1 in (2.4), we find

(2.6) F (N+1) =

(

N+1
∑

i=0

ai(N + 1, x)eit

)

F.

Comparing the coefficients on both sides of (2.5) and (2.6), we obtain

(2.7) a0(N + 1, x) = xa0(N, x), aN+1(N + 1, x) = aN (N, x),

and

(2.8) ai(N + 1, x) = ai−1(N, x) + (x + i)ai(N, x), (1 ≤ i ≤ N).

In addition, by (2.4), we have

(2.9) F = F (0) = a0(0, x)F,

which gives

(2.10) a0(0, x) = 1.

It is not difficult to show that

(2.11)
(x + et)F = F (1) =

(

1
∑

i=0

ai(1, x)eit

)

F

= a0(1, x)F + a1(1, x)etF.

Thus, by (2.11), we also find

(2.12) a0(1, x) = x, a1(1, x) = 1.

From (2.7), we note that

(2.13) a0(N + 1, x) = xa0(N, x) = x2a0(N − 1, x) = · · · = xNa0(1, x) = xN+1,



456 C. S. RYOO, R. P. AGARWAL, AND J. Y. KANG

and

(2.14) aN+1(N + 1, x) = aN (N, x) = aN−1(N − 1, x) = · · · = a1(1, x) = 1.

For i = 1, 2, 3 in (2.8), we have

(2.15) a1(N + 1, x) =

N
∑

k=0

(x + 1)ka0(N − k, x),

(2.16) a2(N + 1, x) =
N−1
∑

k=0

(x + 2)ka1(N − k, x),

and

(2.17) a3(N + 1, x) =

N−2
∑

k=0

(x + 3)ka2(N − k, x).

Continuing this process, we can deduce that, for 1 ≤ i ≤ N,

(2.18) ai(N + 1, x) =

N−i+1
∑

k=0

(x + i)kai−1(N − k, x).

Note that, here the matrix ai(j)0≤i,j≤N+1 is given by

(2.19)























1 x x2 x3 · · · xN+1

0 1 · · · · · ·

0 0 1 · · · · ·

0 0 0 1 · · · ·
...

...
...

...
. . .

...

0 0 0 0 · · · 1























Now, we give explicit expressions for ai(N + 1, x). By (2.15), (2.16), and (2.17),

we have

(2.20)

a1(N + 1, x) =

N
∑

k1=0

(x + 1)k1a0(N − k1, x) =

N
∑

k1=0

(x + 1)k1xN−k1 ,

a2(N + 1, x) =
N−1
∑

k2=0

(x + 2)k2a1(N − k2, x)

=
N−1
∑

k2=0

N−1−k2
∑

k1=0

(x + 2)k2(x + 1)k1xN−k2−k1−1,

and a3(N + 1, x) =

N−2
∑

k3=0

(x + 3)k3a2(N − k3, x)

=

N−2
∑

k3=0

N−2−k3
∑

k2=0

N−2−k3−k2
∑

k1=0

(x + 3)k3(x + 2)k2(x + 1)k1xN−k3−k2−k1−2.
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Continuing this process, we get

(2.21)

ai(N + 1, x)

=

N−i+1
∑

ki=0

N−i+1−ki
∑

ki−1=0

· · ·

N−i+1−ki−···−k2
∑

k1=0

(

i
∏

l=1

(x + l)kl

)

xN−i+1−
P

i

l=1
kl.

Thus, by (2.21), the following theorem follows.

Theorem 1. For N = 0, 1, 2, . . . , the differential equation

F (N) =

(

N
∑

i=0

ai(N, x)eit

)

F

has a solution

F = F (t, x) = e(xt+et−1),

where

a0(N, x) = xN ,

ai(N, x) =

N−i
∑

ki=0

N−i−ki
∑

ki−1=0

· · ·

N−i−ki−···−k2
∑

k1=0

(

i
∏

l=1

(x + l)kl

)

xN−i−
P

i

l=1
kl, (1 ≤ i ≤ N).

From (2.1), we note that

(2.22) F (N) =
( d

dt

)N
F (t, x) =

∞
∑

k=0

Bc
k+N(x)

tk

k!
.

From Theorem 1 and (2.22), we can derive the following equation:

(2.23)

∞
∑

k=0

Bc
k+N(x)

tk

k!
= F (N) =

(

N
∑

i=0

ai(N, x)eit

)

F

=
N
∑

i=0

ai(N, x)

(

∞
∑

l=0

il
tl

l!

)(

∞
∑

m=0

Bc
m(x)

tm

m!

)

=

N
∑

i=0

ai(N, x)

(

∞
∑

k=0

k
∑

m=0

(

k

m

)

ik−mBc
m(x)

tk

k!

)

=

∞
∑

k=0

(

N
∑

i=0

k
∑

m=0

(

k

m

)

ik−mai(N, x)Bc
m(x)

)

tk

k!
.

Now comparing the coefficients on both sides of (2.23), we obtain the following the-

orem.

Theorem 2. For k, N = 0, 1, 2, . . . , we have

Bc
k+N(x) =

N
∑

i=0

k
∑

m=0

(

k

m

)

ik−mai(N, x)Bc
m(x),
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where

a0(N, x) = xN ,

ai(N, x) =
N−i
∑

ki=0

N−i−ki
∑

ki−1=0

· · ·

N−i−ki−···−k2
∑

k1=0

(

i
∏

l=1

(x + l)kl

)

xN−i−
P

i

l=1
kl, (1 ≤ i ≤ N).

If we take k = 0 in Theorem 2, then we have the following corollary.

Corollary 3. For N = 0, 1, 2, . . . , we have

Bc
N(x) =

N
∑

i=0

ai(N, x).

3. Zeros of the Bell-Carlitz polynomials

This section aims to demonstrate the benefit of using numerical investigation to

support theoretical prediction and to discover new interesting pattern of the zeros

of the Bell-Carlitz polynomials Bc
n(x). By using computer, the Bell-Carlitz polyno-

mials Bc
n(x) can be determined explicitly. We display the shapes of the Bell-Carlitz

polynomials Bc
n(x) and investigate the zeros of the Bell-Carlitz polynomials Bc

n(x).

For n = 1, . . . , 10, we can draw a plot of the Bell-Carlitz polynomials Bc
n(x), respec-

tively. This shows the ten plots combined into one. We display the shape of Bc
n(x),

−5 ≤ x ≤ 5. (Figure 1).

-4 -2 0 2 4

-50 000

0

50 000

100 000

150 000

x

Bn
cHxL

Figure 1. Curve of the Bell-Carlitz polynomials Bc
n(x)

We investigate the beautiful zeros of the Bell-Carlitz polynomials Bc
n(x) by using

a computer. We plot the zeros of the Bc
n(x) for n = 5, 10, 15, 20 and x ∈ C (Figure 2).

In Figure 2(top-left), we choose n = 5. In Figure 2(top-right), we choose n = 10.

In Figure 2(bottom-left), we choose n = 15. In Figure 2(bottom-right), we choose
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Figure 2. Zeros of Bc
n(x)

n = 20. It is expected that Bc
n(x), x ∈ C, has Im(x) = 0 reflection symmetry analytic

complex functions (see Figure 2).

Stacks of zeros of the Bell-Carlitz polynomials Bc
n(x) for 1 ≤ n ≤ 20 from a 3-D

structure are presented (Figure 3).

-2

0
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4

ReHxL

-5

0

5ImHxL

5

10

15

20

n

Figure 3. Stacks of zeros of Bc
n(x), 1 ≤ n ≤ 20
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Our numerical results for approximate solutions of real zeros of the Bell-Carlitz

polynomials Bc
n(x) are displayed (Tables 1, 2).

Table 1. Numbers of real and complex zeros of Bc
n(x)

degree n real zeros complex zeros

1 1 0

2 0 2

3 1 2

4 0 4

5 1 4

6 0 6

7 1 6

8 0 8

9 1 8

10 0 10

11 1 10

12 0 12

13 1 12

14 0 14

Since n is the degree of the polynomial Bc
n(x), the number of real zeros RBc

n(x)

lying on the real plane Im(x) = 0 is then RBc
n(x) = n − CTn(x), where CBc

n(x) denotes

complex zeros. See Table 1 for tabulated values of RBc
n(x) and CBc

n(x). We expect that

the numbers of real zeros RBc
n(x) of Bc

n(x), Im(x) 6= 0 is

(3.1) RBc
n(x) =

{

1, if n = odd,

0, if n = even.

The plot of real zeros of Bc
n(x) for 1 ≤ n ≤ 30 structure are presented (Figure 4).

-3
-2 -1

ReHxL

5

10

15

n

Figure 4. Real zeros of Bc
n(x) for 1 ≤ n ≤ 20
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We observe a remarkable regular structure of the complex roots of the Bell-

Carlitz polynomials Bc
n(x). We also hope to verify a remarkable regular structure

of the complex roots of the Bell-Carlitz polynomials Bc
n(x) (Table 1). Next, we

calculated an approximate solution satisfying Bc
n(x) = 0, x ∈ C. The results are

given in Table 2.

Table 2. Approximate solutions of Bc
n(x) = 0, x ∈ C

degree n x

1 −1

2 −1.0000 − 1.0000i,−1.0000 + 1.0000i

3 −1.3222, −0.8389 − 1.7544i,−0.8389 + 1.7544i

4 −1.3824 − 0.7286i,−1.3824 + 0.7286i,

−0.6176 − 2.4003i,−0.6176 + 2.4003i

5 −1.6184,−1.3232 − 1.3458i,−1.3232 + 1.3458i,

−0.3675 − 2.9807i,−0.3675 + 2.9807i

6 −1.6981 − 0.6049i,−1.6981 + 0.6049i,−1.2004− 1.8999i,

−1.2004 + 1.8999i,−0.1015− 3.5156i,−0.1015 + 3.5156i

7 −1.8936,−1.6881− 1.1431i,−1.6881 + 1.1431i,−1.0391− 2.4115i,

−1.0391 + 2.4115i, 0.1740− 4.0163i, 0.1740 + 4.0163i

8 1.9813 − 0.5334i,−1.9813 + 0.5334i,−1.6216− 1.6377i,

−1.6216 + 1.6377i,−0.8526 − 2.8915i,−0.8526 + 2.8915i,

0.4556 − 4.4903i, 0.4556 + 4.4903i

For N = 0, 1, 2, . . . , the functional equation

(3.2) F (N) =

(

N
∑

i=0

ai(N, x)eit

)

F

has a solution

(3.3) F = F (t, x) = e(xt+et−1).

In Figure 5(left), we plot of the surface for this solution. In Figure 5(right), we

show a higher-resolution density plot of the solution.
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Figure 5. The surface for the solution F (t, x)

Finally, we consider the more general problems. How many zeros does Bc
n(x)

have? We are not able to decide if Bc
n(x) = 0 has n distinct solutions (see Table 2).

We would also like to know the number of complex zeros CBc
n(x) of Bc

n(x), Im(x) 6= 0.

Since n is the degree of the polynomial Bc
n(x), the number of real zeros RBc

n(x) lying

on the real line Im(x) = 0 is then RBc
n(x) = n−CBc

n(x), where CBc
n(x) denotes complex

zeros. See Table 1 for tabulated values of RBc
n(x) and CBc

n(x). The authors have no

doubt that investigations along these lines will lead to a new approach employing

numerical method in the research field of the Bell-Carlitz polynomials Bc
n(x) which

appear in mathematics and physics. The reader may refer to [6, 7, 8, 9] for the details.

REFERENCES

[1] A. Bayad, T. Kim, Higher recurrences for Apostal-Bernoulli-Euler numbers, Russ. J. Math.

Phys., 19(1), (2012), 1–10.

[2] A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, H igher Transcendental Functions,

Vol 3. New York: Krieger, 1981.

[3] T. Kim, D. S. Kim, C. S. Ryoo, H. I. Kwon, Differential equations associated with Mahler and

Sheffer-Mahler polynomials, submitted for publication.

[4] T. Kim, D. S. Kim, Identities involving degenerate Euler numbers and polynomials arising

from non-linear differential equations, J. Nonlinear Sci. Appl., 9 (2016), 2086–2098.

[5] A. M. Robert, A Course in p-adic Analysis, Graduate Text in Mathematics, Volume 198,

Springer, 2000.

[6] C. S. Ryoo, Analytic Continuation of Euler Polynomials and the Euler Zeta Function, Discrete

Dynamics in Nature and Society, Volume 2014(2014), Article ID 568129, 6 pages.

[7] C.-S. Ryoo, Differential equations associated with tangent numbers, J. Appl. Math. & Infor-

matics 34(5–6) (2016), 487–494.

[8] C. S. Ryoo, T. Kim and R. P. Agarwal, The structure of the zeros of the generalized Bernoulli

polynomials, Neural Parallel Sci. Comput., 13 (2005), 371–379.

[9] C. S. Ryoo, T. Kim, R. P. Agarwal, A numerical investigation of the roots of q-polynomials,

Inter. J. Comput. Math., 83(2) (2006), 223–234.

[10] S. Roman, The umbral calculus, Pure and Applied Mathematics, 111, Academic Press, Inc.

[Harcourt Brace Jovanovich Publishes]. New York, 1984.


