DIFFERENTIAL EQUATIONS ARISING FROM BELL-CARLITZ POLYNOMIALS AND COMPUTATION OF THEIR ZEROS

C. S. RYOO, R. P. AGARWAL, AND J. Y. KANG*

Department of Mathematics, Hannam University, Daejeon, Republic of Korea Department of Mathematics, Texas A & M University, Kingsville, USA Department of Mathematics, Texas A & M University, Kingsville, USA

ABSTRACT. In this paper, we study differential equations arising from the generating functions of the Bell-Carlitz polynomials. We give explicit identities for the Bell-Carlitz polynomials. Finally, we investigate the zeros of the Bell-Carlitz polynomials by using computer.

Key Words Differential equations, Bell polynomials, Bell-Carlitz polynomials,

AMS(MOS) Subject Classification 05A19, 11B83, 34A30, 65L99

1. Introduction

Recently, many mathematicians have studied in the area of the Bernoulli numbers, Euler numbers, Genocchi numbers, and tangent numbers (see [2, 3, 4, 6, 7, 8, 9, 10]). The Bell-Carlitz polynomials $B_n^c(x)$ $(n \ge 0)$, were introduced by Alain M. Robert (see [5]).

The Bell-Carlitz polynomials $B_n^c(x)$ are defined by the generating function:

(1.1)
$$F = F(t, x) = \sum_{n=0}^{\infty} B_n^c(x) \frac{t^n}{n!} = e^{(xt+e^t-1)} \text{ (see [5])}.$$

First few examples of Bell-Carlitz polynomials are

$$B_0^c(x) = 1, \quad B_1^c(x) = 1 + x, \quad B_2^c(x) = 2 + 2x + x^2,$$

$$B_3^c(x) = 5 + 6x + 3x^2 + x^3,$$

$$B_4^c(x) = 15 + 20x + 12x^2 + 4x^3 + x^4,$$

$$B_5^c(x) = 52 + 75x + 50x^2 + 20x^3 + 5x^4 + x^5,$$

$$B_6^c(x) = 203 + 312x + 225x^2 + 100x^3 + 30x^4 + 6x^5 + x^6,$$

$$B_7^c(x) = 877 + 1421x + 1092x^2 + 525x^3 + 175x^4 + 42x^5 + 7x^6 + x^7.$$

It is well known, the Bell numbers B_n are given by the generating function

(1.3)
$$e^{(e^t-1)} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}, \text{ (see [5])}.$$

Received August 2, 2016

1061-5369 \$15.00 ©Dynamic Publishers, Inc.

From (1.1), we see that

(1.4)

$$\sum_{n=0}^{\infty} B_n^c(x) \frac{t^n}{n!} = e^{(xt+e^t-1)}$$

$$= e^{(e^t-1)} e^{xt}$$

$$= \left(\sum_{k=0}^{\infty} B_k \frac{t^k}{k!}\right) \left(\sum_{m=0}^{\infty} x^m \frac{t^m}{m!}\right)$$

$$= \sum_{n=0}^{\infty} \left(\sum_{k=0}^n \binom{n}{k} B_k x^{n-k}\right) \frac{t^n}{n!}.$$

Comparing the coefficients on both sides of (1.4), we obtain

(1.5)
$$B_n^c(x) = \sum_{k=0}^n \binom{n}{k} B_k x^{n-k} \quad (n \ge 0).$$

Recently, nonlinear differential equations arising from the generating functions of special polynomials are studied by many authors in order to give explicit identities for special polynomials (see [3, 4, 7]). In this paper, we study differential equations arising from the generating functions of Bell-Carlitz polynomials. We give explicit identities for the Bell-Carlitz polynomials. In addition, we investigate the zeros of the Bell-Carlitz polynomials using numerical methods.

2. Differential equations associated with Bell-Carlitz polynomials

In this section, we study linear differential equations arising from the generating functions of Bell-Carlitz polynomials.

Let

(2.1)
$$F = F(t, x) = e^{(xt+e^t-1)} = \sum_{n=0}^{\infty} B_n^c(x) \frac{t^n}{n!}.$$

Then, by (2.1), we have

(2.2)
$$F^{(1)} = \frac{d}{dt}F(t,x) = \frac{d}{dt}\left(e^{xt+e^t-1}\right) = e^{(xt+e^t-1)}(x+e^t)$$
$$= (x+e^t)F,$$

(2.3)

$$F^{(2)} = \frac{d}{dt}F^{(1)} = e^{t}F + (x + e^{t})F^{(1)}$$

= $e^{t}F + (x + e^{t})^{2}F = (x^{2} + (2x + 1)e^{t} + e^{2t})F$,
and
$$F^{(3)} = \frac{d}{dt}F^{(2)} = (x^{3} + (3x^{2} + 3x + 1)e^{t} + (2x + 3)e^{2t} + e^{3t})F.$$

Continuing this process, we can guess that

(2.4)
$$F^{(N)} = \left(\frac{d}{dt}\right)^N F(t,x) = \left(\sum_{i=0}^N a_i(N,x)e^{it}\right) F, \quad (N = 0, 1, 2, \ldots).$$

Differentiating (2.4) with respect to t, we have

$$F^{(N+1)} = \frac{dF^{(N)}}{dt} = \left(\sum_{i=0}^{N} ia_i(N, x)e^{it}\right)F + \left(\sum_{i=0}^{N} a_i(N, x)e^{it}\right)F^{(1)}$$

$$= \left(\sum_{i=0}^{N} ia_i(N, x)e^{it}\right)F + \left(\sum_{i=0}^{N} a_i(N, x)e^{it}\right)(x+e^t)F$$

$$= \left\{\sum_{i=0}^{N} (x+i)a_i(N, x)e^{it} + \sum_{i=0}^{N} a_i(N, x)e^{(i+1)t}\right\}F$$

$$= \left\{\sum_{i=0}^{N} (x+i)a_i(N, x)e^{it} + \sum_{i=1}^{N+1} a_{i-1}(N, x)e^{it}\right\}F.$$

Now replacing N by N + 1 in (2.4), we find

(2.6)
$$F^{(N+1)} = \left(\sum_{i=0}^{N+1} a_i(N+1,x)e^{it}\right)F.$$

Comparing the coefficients on both sides of (2.5) and (2.6), we obtain

(2.7)
$$a_0(N+1,x) = xa_0(N,x), \quad a_{N+1}(N+1,x) = a_N(N,x),$$

and

(2.8)
$$a_i(N+1,x) = a_{i-1}(N,x) + (x+i)a_i(N,x), (1 \le i \le N).$$

In addition, by (2.4), we have

(2.9)
$$F = F^{(0)} = a_0(0, x)F,$$

which gives

$$(2.10) a_0(0,x) = 1.$$

It is not difficult to show that

(2.11)
$$(x+e^t)F = F^{(1)} = \left(\sum_{i=0}^1 a_i(1,x)e^{it}\right)F \\ = a_0(1,x)F + a_1(1,x)e^tF.$$

Thus, by (2.11), we also find

(2.12)
$$a_0(1,x) = x, \quad a_1(1,x) = 1.$$

From (2.7), we note that

(2.13)
$$a_0(N+1,x) = xa_0(N,x) = x^2a_0(N-1,x) = \dots = x^Na_0(1,x) = x^{N+1},$$

455

and

(2.14)
$$a_{N+1}(N+1,x) = a_N(N,x) = a_{N-1}(N-1,x) = \dots = a_1(1,x) = 1.$$

For i = 1, 2, 3 in (2.8), we have

(2.15)
$$a_1(N+1,x) = \sum_{k=0}^{N} (x+1)^k a_0(N-k,x),$$

(2.16)
$$a_2(N+1,x) = \sum_{k=0}^{N-1} (x+2)^k a_1(N-k,x),$$

and

(2.17)
$$a_3(N+1,x) = \sum_{k=0}^{N-2} (x+3)^k a_2(N-k,x).$$

Continuing this process, we can deduce that, for $1 \le i \le N$,

(2.18)
$$a_i(N+1,x) = \sum_{k=0}^{N-i+1} (x+i)^k a_{i-1}(N-k,x).$$

Note that, here the matrix $a_i(j)_{0 \le i,j \le N+1}$ is given by

(2.19)
$$\begin{pmatrix} 1 & x & x^2 & x^3 & \cdots & x^{N+1} \\ 0 & 1 & \cdot & \cdot & \cdots & \cdot \\ 0 & 0 & 1 & \cdot & \cdots & \cdot \\ 0 & 0 & 0 & 1 & \cdots & \cdot \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

Now, we give explicit expressions for $a_i(N + 1, x)$. By (2.15), (2.16), and (2.17), we have

(2.20)

$$a_{1}(N+1,x) = \sum_{k_{1}=0}^{N} (x+1)^{k_{1}} a_{0}(N-k_{1},x) = \sum_{k_{1}=0}^{N} (x+1)^{k_{1}} x^{N-k_{1}},$$

$$a_{2}(N+1,x) = \sum_{k_{2}=0}^{N-1} (x+2)^{k_{2}} a_{1}(N-k_{2},x)$$

$$= \sum_{k_{2}=0}^{N-1} \sum_{k_{1}=0}^{N-1-k_{2}} (x+2)^{k_{2}} (x+1)^{k_{1}} x^{N-k_{2}-k_{1}-1},$$
and
$$a_{3}(N+1,x) = \sum_{k_{3}=0}^{N-2} (x+3)^{k_{3}} a_{2}(N-k_{3},x)$$

$$= \sum_{k_{3}=0}^{N-2} \sum_{k_{2}=0}^{N-2-k_{3}} \sum_{k_{1}=0}^{N-2-k_{3}-k_{2}} (x+3)^{k_{3}} (x+2)^{k_{2}} (x+1)^{k_{1}} x^{N-k_{3}-k_{2}-k_{1}-2}.$$

ar

Continuing this process, we get

(2.21)
$$a_i(N+1,x) = \sum_{k_i=0}^{N-i+1} \sum_{k_{i-1}=0}^{N-i+1-k_i} \cdots \sum_{k_1=0}^{N-i+1-k_i-\dots-k_2} \left(\prod_{l=1}^i (x+l)^{k_l}\right) x^{N-i+1-\sum_{l=1}^i k_l}.$$

Thus, by (2.21), the following theorem follows.

Theorem 1. For N = 0, 1, 2, ..., the differential equation

$$F^{(N)} = \left(\sum_{i=0}^{N} a_i(N, x)e^{it}\right)F$$

 $has \ a \ solution$

$$F = F(t, x) = e^{(xt+e^t-1)}$$

where

$$a_0(N,x) = x^N,$$

$$a_i(N,x) = \sum_{k_i=0}^{N-i} \sum_{k_{i-1}=0}^{N-i-k_i} \cdots \sum_{k_1=0}^{N-i-k_i-\dots-k_2} \left(\prod_{l=1}^i (x+l)^{k_l}\right) x^{N-i-\sum_{l=1}^i k_l}, (1 \le i \le N).$$

From (2.1), we note that

(2.22)
$$F^{(N)} = \left(\frac{d}{dt}\right)^N F(t,x) = \sum_{k=0}^{\infty} B^c_{k+N}(x) \frac{t^k}{k!}.$$

From Theorem 1 and (2.22), we can derive the following equation:

(2.23)

$$\sum_{k=0}^{\infty} B_{k+N}^{c}(x) \frac{t^{k}}{k!} = F^{(N)} = \left(\sum_{i=0}^{N} a_{i}(N,x)e^{it}\right) F$$

$$= \sum_{i=0}^{N} a_{i}(N,x) \left(\sum_{l=0}^{\infty} i^{l} \frac{t^{l}}{l!}\right) \left(\sum_{m=0}^{\infty} B_{m}^{c}(x) \frac{t^{m}}{m!}\right)$$

$$= \sum_{i=0}^{N} a_{i}(N,x) \left(\sum_{k=0}^{\infty} \sum_{m=0}^{k} \binom{k}{m} i^{k-m} B_{m}^{c}(x) \frac{t^{k}}{k!}\right)$$

$$= \sum_{k=0}^{\infty} \left(\sum_{i=0}^{N} \sum_{m=0}^{k} \binom{k}{m} i^{k-m} a_{i}(N,x) B_{m}^{c}(x)\right) \frac{t^{k}}{k!}.$$

Now comparing the coefficients on both sides of (2.23), we obtain the following theorem.

Theorem 2. For k, N = 0, 1, 2, ..., we have

$$B_{k+N}^{c}(x) = \sum_{i=0}^{N} \sum_{m=0}^{k} \binom{k}{m} i^{k-m} a_{i}(N, x) B_{m}^{c}(x),$$

where

$$a_0(N,x) = x^N,$$

$$a_i(N,x) = \sum_{k_i=0}^{N-i} \sum_{k_i=0}^{N-i-k_i} \cdots \sum_{k_1=0}^{N-i-k_i-\dots-k_2} \left(\prod_{l=1}^i (x+l)^{k_l}\right) x^{N-i-\sum_{l=1}^i k_l}, (1 \le i \le N).$$

If we take k = 0 in Theorem 2, then we have the following corollary.

Corollary 3. For N = 0, 1, 2, ..., we have

$$B_N^c(x) = \sum_{i=0}^N a_i(N, x).$$

3. Zeros of the Bell-Carlitz polynomials

This section aims to demonstrate the benefit of using numerical investigation to support theoretical prediction and to discover new interesting pattern of the zeros of the Bell-Carlitz polynomials $B_n^c(x)$. By using computer, the Bell-Carlitz polynomials $B_n^c(x)$ can be determined explicitly. We display the shapes of the Bell-Carlitz polynomials $B_n^c(x)$ and investigate the zeros of the Bell-Carlitz polynomials $B_n^c(x)$. For n = 1, ..., 10, we can draw a plot of the Bell-Carlitz polynomials $B_n^c(x)$, respectively. This shows the ten plots combined into one. We display the shape of $B_n^c(x)$, $-5 \le x \le 5$. (Figure 1).

FIGURE 1. Curve of the Bell-Carlitz polynomials $B_n^c(x)$

We investigate the beautiful zeros of the Bell-Carlitz polynomials $B_n^c(x)$ by using a computer. We plot the zeros of the $B_n^c(x)$ for n = 5, 10, 15, 20 and $x \in \mathbb{C}$ (Figure 2). In Figure 2(top-left), we choose n = 5. In Figure 2(top-right), we choose n = 10. In Figure 2(bottom-left), we choose n = 15. In Figure 2(bottom-right), we choose

FIGURE 2. Zeros of $B_n^c(x)$

n = 20. It is expected that $B_n^c(x), x \in \mathbb{C}$, has Im(x) = 0 reflection symmetry analytic complex functions (see Figure 2).

Stacks of zeros of the Bell-Carlitz polynomials $B_n^c(x)$ for $1 \le n \le 20$ from a 3-D structure are presented (Figure 3).

FIGURE 3. Stacks of zeros of $B_n^c(x), 1 \le n \le 20$

Our numerical results for approximate solutions of real zeros of the Bell-Carlitz polynomials $B_n^c(x)$ are displayed (Tables 1, 2).

degree n	real zeros	complex zeros
1	1	0
2	0	2
3	1	2
4	0	4
5	1	4
6	0	6
7	1	6
8	0	8
9	1	8
10	0	10
11	1	10
12	0	12
13	1	12
14	0	14

Table 1. Numbers of real and complex zeros of $B_n^c(x)$

Since *n* is the degree of the polynomial $B_n^c(x)$, the number of real zeros $R_{B_n^c(x)}$ lying on the real plane Im(x) = 0 is then $R_{B_n^c(x)} = n - C_{T_n(x)}$, where $C_{B_n^c(x)}$ denotes complex zeros. See Table 1 for tabulated values of $R_{B_n^c(x)}$ and $C_{B_n^c(x)}$. We expect that the numbers of real zeros $R_{B_n^c(x)}$ of $B_n^c(x)$, $Im(x) \neq 0$ is

(3.1)
$$R_{B_n^c(x)} = \begin{cases} 1, & \text{if } n = \text{ odd,} \\ 0, & \text{if } n = \text{ even} \end{cases}$$

The plot of real zeros of $B_n^c(x)$ for $1 \le n \le 30$ structure are presented (Figure 4).

FIGURE 4. Real zeros of $B_n^c(x)$ for $1 \le n \le 20$

We observe a remarkable regular structure of the complex roots of the Bell-Carlitz polynomials $B_n^c(x)$. We also hope to verify a remarkable regular structure of the complex roots of the Bell-Carlitz polynomials $B_n^c(x)$ (Table 1). Next, we calculated an approximate solution satisfying $B_n^c(x) = 0, x \in \mathbb{C}$. The results are given in Table 2.

degree n	x
1	-1
2	-1.0000 - 1.0000i, -1.0000 + 1.0000i
3	-1.3222, -0.8389 - 1.7544i, -0.8389 + 1.7544i
4	-1.3824 - 0.7286i, -1.3824 + 0.7286i,
	-0.6176 - 2.4003i, -0.6176 + 2.4003i
5	-1.6184, -1.3232 - 1.3458i, -1.3232 + 1.3458i,
	-0.3675 - 2.9807i, -0.3675 + 2.9807i
6	-1.6981 - 0.6049i, -1.6981 + 0.6049i, -1.2004 - 1.8999i,
	-1.2004 + 1.8999i, -0.1015 - 3.5156i, -0.1015 + 3.5156i
7	-1.8936, -1.6881 - 1.1431i, -1.6881 + 1.1431i, -1.0391 - 2.4115i,
	-1.0391 + 2.4115i, 0.1740 - 4.0163i, 0.1740 + 4.0163i
8	1.9813 - 0.5334i, -1.9813 + 0.5334i, -1.6216 - 1.6377i,
	-1.6216 + 1.6377i, -0.8526 - 2.8915i, -0.8526 + 2.8915i,
	0.4556 - 4.4903i, 0.4556 + 4.4903i

Table 2. Approximate solutions of $B_n^c(x) = 0, x \in \mathbb{C}$

For $N = 0, 1, 2, \ldots$, the functional equation

(3.2)
$$F^{(N)} = \left(\sum_{i=0}^{N} a_i(N, x)e^{it}\right)F$$

has a solution

(3.3)
$$F = F(t, x) = e^{(xt+e^t-1)}$$

In Figure 5(left), we plot of the surface for this solution. In Figure 5(right), we show a higher-resolution density plot of the solution.

FIGURE 5. The surface for the solution F(t, x)

Finally, we consider the more general problems. How many zeros does $B_n^c(x)$ have? We are not able to decide if $B_n^c(x) = 0$ has *n* distinct solutions (see Table 2). We would also like to know the number of complex zeros $C_{B_n^c(x)}$ of $B_n^c(x)$, $Im(x) \neq 0$. Since *n* is the degree of the polynomial $B_n^c(x)$, the number of real zeros $R_{B_n^c(x)}$ lying on the real line Im(x) = 0 is then $R_{B_n^c(x)} = n - C_{B_n^c(x)}$, where $C_{B_n^c(x)}$ denotes complex zeros. See Table 1 for tabulated values of $R_{B_n^c(x)}$ and $C_{B_n^c(x)}$. The authors have no doubt that investigations along these lines will lead to a new approach employing numerical method in the research field of the Bell-Carlitz polynomials $B_n^c(x)$ which appear in mathematics and physics. The reader may refer to [6, 7, 8, 9] for the details.

REFERENCES

- A. Bayad, T. Kim, Higher recurrences for Apostal-Bernoulli-Euler numbers, Russ. J. Math. Phys., 19(1), (2012), 1–10.
- [2] A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, Vol 3. New York: Krieger, 1981.
- [3] T. Kim, D. S. Kim, C. S. Ryoo, H. I. Kwon, Differential equations associated with Mahler and Sheffer-Mahler polynomials, submitted for publication.
- [4] T. Kim, D. S. Kim, Identities involving degenerate Euler numbers and polynomials arising from non-linear differential equations, J. Nonlinear Sci. Appl., 9 (2016), 2086–2098.
- [5] A. M. Robert, A Course in p-adic Analysis, Graduate Text in Mathematics, Volume 198, Springer, 2000.
- [6] C. S. Ryoo, Analytic Continuation of Euler Polynomials and the Euler Zeta Function, Discrete Dynamics in Nature and Society, Volume 2014(2014), Article ID 568129, 6 pages.
- [7] C.-S. Ryoo, Differential equations associated with tangent numbers, J. Appl. Math. & Informatics 34(5-6) (2016), 487-494.
- [8] C. S. Ryoo, T. Kim and R. P. Agarwal, The structure of the zeros of the generalized Bernoulli polynomials, *Neural Parallel Sci. Comput.*, 13 (2005), 371–379.
- C. S. Ryoo, T. Kim, R. P. Agarwal, A numerical investigation of the roots of q-polynomials, Inter. J. Comput. Math., 83(2) (2006), 223–234.
- [10] S. Roman, The umbral calculus, Pure and Applied Mathematics, 111, Academic Press, Inc. [Harcourt Brace Jovanovich Publishes]. New York, 1984.