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ABSTRACT. In this paper, we study differential equations arising from the generating functions
of the Bell-Carlitz polynomials. We give explicit identities for the Bell-Carlitz polynomials. Finally,

we investigate the zeros of the Bell-Carlitz polynomials by using computer.
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1. Introduction

Recently, many mathematicians have studied in the area of the Bernoulli num-
bers, Euler numbers, Genocchi numbers, and tangent numbers (see [2, 3, 4, 6, 7,
8, 9, 10]). The Bell-Carlitz polynomials BS(z) (n > 0), were introduced by Alain
M. Robert (see [5]).

The Bell-Carlitz polynomials B¢ (x) are defined by the generating function:

(1.1) F=F(t,o)=Y B;(z)g — bt (oo [5)).

First few examples of Bell-Carlitz polynomials are
Bi(z) =1, Bf(z)=1+2x, BS(x)=2+2x+ 2%
BS(x) =5+ 6z + 32° + 2°,
B§(z) = 15+ 20z + 122* + 42° + 2%,
(12) BE(x) = 52 + 75z + 5022 + 202° + 52 + 25
BS(z) = 203 + 312z + 2252% 4+ 1002” + 302" + 62° + 2°
BS(x) = 877 + 1421z + 109222 + 5252° + 1752 + 422° + 72° + 27

It is well known, the Bell numbers B,, are given by the generating function
(1.3) ZB -, (see [5]).
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From (1.1), we see that
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Comparing the coefficients on both sides of (1.4), we obtain

(1.5) Bi(x) = kZ:O (Z) Bpx™™*  (n >0).

Recently, nonlinear differential equations arising from the generating functions of
special polynomials are studied by many authors in order to give explicit identities
for special polynomials (see [3, 4, 7]). In this paper, we study differential equations
arising from the generating functions of Bell-Carlitz polynomials. We give explicit
identities for the Bell-Carlitz polynomials. In addition, we investigate the zeros of

the Bell-Carlitz polynomials using numerical methods.

2. Differential equations associated with Bell-Carlitz polynomials

In this section, we study linear differential equations arising from the generating

functions of Bell-Carlitz polynomials.

Let

, > tn
2.1 F=Ft )=t =1 =N " pe(p) .
(2.1) (t,z) =e ;;n@%!

Then, by (2.1), we have

FO = iF(t,x) _d (e”*et—l)) = @ D (g 4 ¢f)

(2.2) dt dt
= (v +e"F,

(2.3)

d

ﬂ%:EszéF+@+aﬁm
=e'F+ (v +e")?F = (2* + (22 + 1)e' + ) F,

d

and F® = —F® = (2 4+ (32® + 3z + 1)e’ + (2z + 3)e™ + ) F.

dt
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Continuing this process, we can guess that

N

(2.4) FW) = (%)NF(t,x) = (Z a;(N, x)e“> F, (N=0,1,2,...).

1=0

Differentiating (2.4) with respect to ¢, we have

vy _ AFY - = 1)
F =—= ZZCLZ(N z)e' | F+ Zale F
] 1=0

1=0
<Zza, (N,z)e )F+ <Za, (N,z)e ) (r+eF
1=0
(2.5) N N
— {Z(l’ +)a; (N, z)e’ + Z a;(N, :)s)e(”l)t} F
1=0 1=0
N+1
:{Z T+ 1)a;( Na:e’t%—Zaz (N, z)é! }F
7 1=1
Now replacing N by N + 1 in (2.4), we find
N+1
(2.6) FW+D — (Z a;(N + 1,x)e“> F.
i=0
Comparing the coefficients on both sides of (2.5) and (2.6), we obtain
(2.7) ao(N + 1,2) = zap(N,z), any1(N+1,2)=an(N,z),
and
(2.8) a;(N+1,2) = a;—1(N,z) + (x +i)a;(N,z), (1 <i < N).

In addition, by (2.4), we have
(2.9) F =F9 =40, 2)F,

which gives

(2.10) ap(0,z) = 1.
It is not difficult to show that
1
z+e)F=FY = a;(1,z)e | F
- (v +€) > it

=ap(1,2)F + as(1,z)e'F.
Thus, by (2.11), we also find
(2.12) ap(l,z) =z, a1(l,2) =1.
From (2.7), we note that

(2.13)  ag(N 4+ 1,2) = wag(N, ) = 2%ag(N — 1,2) = - -- = 2Vag(1,2) = 2V 1,
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and
(2.14) an+1(N+1,2) =an(N,z) =ay_1(N —1,z) =---=a;(1,2) = L.

For i =1,2,3 in (2.8), we have

WE

(2.15) a(N+1,2) =Y (x4 1)*a(N —k, z),
k=0
N-1

(2.16) ax(N+1,2) =Y (z+2)*ai(N -k, ),
k=0

and
N—-2

(2.17) az(N+1,2) = Y (z+3)ay(N — k, ).
k=0

Continuing this process, we can deduce that, for 1 <7 < N,

N—it1
(2.18) a;(N+1,z)= Z (z +i)*a;_ (N — k, x).
k=0

Note that, here the matrix a;(j)o<i j<n+1 1S given by

1 = 22 23 LN+
01

519 00 1

(2.19) 00 0 1
00 0 0 - 1

Now, we give explicit expressions for a;(N + 1, z). By (2.15), (2.16), and (2.17),

we have

(2.20)
N N
a(N+1Lx)=> (z+)Fag(N = ko) = (z+ 1)Fah,
k1=0 k1=0
N-1
as(N +1,2) = (z +2)*2a, (N — ky, x)
k2=0
N—1 N—1—k;
— (ZL’—I—Q)kZ(ZL'—I-l)kl N—ko—ki1—1
ko=0 k1=0
N—2
and  a3(N +1,2) = (z +3)2ay(N — ks, )
k3 =0
N—2 N—2—ks N—2—ky—k»
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Continuing this process, we get

az(N + 1a ZE')
N—i+1 N—i+1—k; N—it+1—k;—-—ko i
(2.21) _ Z Z Z <H(l, + l)kl> xN—iJrl—Zf:lkz.
ki=0  k;j_1=0 k1=0 =1

Thus, by (2.21), the following theorem follows.

Theorem 1. For N =0,1,2,..., the differential equation

N
FWN) = (Z a;(N, :)3)6“) F
i=0
has a solution
F = F(t,z) = e+ =1,
where

aog(N, x) =z

N—i N—i—k; N—i—ki—m—k2< 7

a,-(N,:B):Z Z Z

k‘i:O k‘i,1=0 k1=0

From (2.1), we note that
d\n - th
(N) _ _ c
(2.22) FY = (_dt) F(t,z) = ];:0 Bk+N($)_k!-

From Theorem 1 and (2.22), we can derive the following equation:
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Now comparing the coefficients on both sides of (2.23), we obtain the following the-

oremn.

Theorem 2. For k,N =0,1,2,..., we have
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where
ag(N,x) = N,

N—i N—i—k; N—i—ki—~~~—k2< 7

e S R Sl |1 (200 e

k'L:O ki,1:0 k1:0 =1
If we take £ = 0 in Theorem 2, then we have the following corollary.

Corollary 3. For N =0,1,2,..., we have

Bi(x) =) a;(N,x).

i=0
3. Zeros of the Bell-Carlitz polynomials

This section aims to demonstrate the benefit of using numerical investigation to
support theoretical prediction and to discover new interesting pattern of the zeros
of the Bell-Carlitz polynomials B¢(z). By using computer, the Bell-Carlitz polyno-
mials B¢ (x) can be determined explicitly. We display the shapes of the Bell-Carlitz
polynomials B¢ (x) and investigate the zeros of the Bell-Carlitz polynomials B (z).
For n=1,...,10, we can draw a plot of the Bell-Carlitz polynomials B¢(z), respec-
tively. This shows the ten plots combined into one. We display the shape of B¢(x),
—5 <z < 5. (Figure 1).

isooc0f T T T T T T ey

100 000

50000 —

Br°(x)

—-50000

FIGURE 1. Curve of the Bell-Carlitz polynomials BS(x)

We investigate the beautiful zeros of the Bell-Carlitz polynomials B¢(x) by using
a computer. We plot the zeros of the B¢ (x) for n = 5,10,15,20 and = € C (Figure 2).
In Figure 2(top-left), we choose n = 5. In Figure 2(top-right), we choose n = 10.
In Figure 2(bottom-left), we choose n = 15. In Figure 2(bottom-right), we choose
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FIGURE 2. Zeros of BS(x)

n = 20. It is expected that BS(x), x € C, has Im(x) = 0 reflection symmetry analytic

complex functions (see Figure 2).
Stacks of zeros of the Bell-Carlitz polynomials BS(x) for 1 < mn < 20 from a 3-D

structure are presented (Figure 3).

FIGURE 3. Stacks of zeros of BS(z),1 <n <20



460

C. S. RYOO, R. P. AGARWAL, AND J. Y. KANG

Our numerical results for approximate solutions of real zeros of the Bell-Carlitz

polynomials B¢ (x) are displayed (Tables 1, 2).

Table 1. Numbers of real and complex zeros of BS(x)

degree n | real zeros complex zeros
1 1 0
2 0 2
3 1 2
4 0 4
5 1 4
6 0 6
7 1 6
8 0 8
9 1 8
10 0 10
11 1 10
12 0 12
13 1 12
14 0 14

Since n is the degree of the polynomial Bf(x), the number of real zeros Rpe (a)

lying on the real plane I'm(x) = 0 is then Rpe(s) = n — Cr,, (), Where Cpe ;) denotes

complex zeros. See Table 1 for tabulated values of Rpe () and Cp.(,). We expect that

the numbers of real zeros Rpe(y) of B (x), Im(x) # 0 is

(3.1)

Rpg (@) = {

L,
0,

if n = odd,

if n = even.

The plot of real zeros of BS(x) for 1 < n < 30 structure are presented (Figure 4).

15

10

FIGURE 4.

Re(x)

Real zeros of BS(x) for 1 <n <20
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We observe a remarkable regular structure of the complex roots of the Bell-
Carlitz polynomials BS(z). We also hope to verify a remarkable regular structure
of the complex roots of the Bell-Carlitz polynomials B¢(z) (Table 1). Next, we
calculated an approximate solution satisfying BS(z) = 0,2 € C. The results are

given in Table 2.

Table 2. Approximate solutions of BS(z) = 0,2 € C

degree n x
1 -1
2 —1.0000 — 1.00007, —1.0000 + 1.0000%
3 —1.3222, —0.8389 — 1.75447, —0.8389 + 1.75441
4 —1.3824 — 0.7286¢, —1.3824 + 0.72861,

—0.6176 — 2.40037, —0.6176 + 2.4003:

5 —1.6184, —1.3232 — 1.34587, —1.3232 + 1.34581,

—0.3675 — 2.98077, —0.3675 + 2.9807:

6 —1.6981 — 0.60497, —1.6981 + 0.60497, —1.2004 — 1.8999¢,

—1.2004 + 1.8999¢, —0.1015 — 3.51561, —0.1015 + 3.51561

7 —1.8936, —1.6881 — 1.14317, —1.6881 4 1.1431z, —1.0391 — 2.4115¢,

—1.0391 + 2.41152,0.1740 — 4.01637, 0.1740 + 4.0163¢

8 1.9813 — 0.53344, —1.9813 + 0.53341¢, —1.6216 — 1.63771,
—1.6216 + 1.63777, —0.8526 — 2.89157, —0.8526 + 2.89151,

0.4556 — 4.49031, 0.4556 + 4.4903¢

For N =0,1,2,..., the functional equation

(3.2) FY) = (Z a;(N, :L')e”> F

1=0

has a solution
(3.3) F = F(t,z) = e+ =1,

In Figure 5(left), we plot of the surface for this solution. In Figure 5(right), we
show a higher-resolution density plot of the solution.
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FIGURE 5. The surface for the solution F'(t, )

Finally, we consider the more general problems. How many zeros does B¢(x)

have? We are not able to decide if BS(x) = 0 has n distinct solutions (see Table 2).

We would also like to know the number of complex zeros Cpe () of BS(x), Im(x) # 0.

Since n is the degree of the polynomial B (x), the number of real zeros Rpe (5 lying

on the real line I'm(x) = 0 is then Rpe () = n— Cpe (), where Cpe () denotes complex

zeros. See Table 1 for tabulated values of Rpec(,) and Cpe(,). The authors have no

doubt that investigations along these lines will lead to a new approach employing

numerical method in the research field of the Bell-Carlitz polynomials B¢ (z) which

appear in mathematics and physics. The reader may refer to [6, 7, 8, 9] for the details.
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