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ABSTRACT. In this paper we study a MAP/PH/1 retrial queueing model in which the server is
subject to taking vacations and serving at a lower rate during vacation. The service is returned to
normal rate whenever the vacation gets over. If an arriving customer finds the server busy he joins a
finite buffer. If the buffer is also full he joins a pool of unsatisfied customers called orbit. There from
he makes retrial for a place in the server or buffer. Inter-retrial times are exponentially distributed
with intensity independent of the number of customers in the orbit. The model is analyzed in steady
state using matrix analytic methods. Illustrative numerical examples are presented.
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1. Introduction

In a retrial queueing system, customers entering a busy service system join a

group of blocked customers called orbit. From the orbit each unit tries to access a

free server independent of the other after a random amount of time. Such systems

occur in communication and computer networks. For a nearly exhaustive account of

development up to 2008 in this area we refer to surveys by Yang and Templeton [31]

and Falin [12], bibliographic works Artalejo [1], [2] and the books Falin and Templeton

[13] and Artalejo and Gomez-Corral [3].

In classical retrial queueing systems server idle time is very high. In the modern

scenario it is not desirable from the service system’s point of view to have a long

idle time. To this end Artalejo et al. [4] introduced a new technique called orbital

search where the server looks out for potential customers from the orbit after every

service completion. Dudin et al. [11] and Krishnamoorthy et al. [15] also consider

orbital search with different arrival streams and different service time distributions.
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Chakravarthy et al. [8] considers the multi server case. Retrial models have tremen-

dous applications in communication systems. An application of retrial queueing model

with finite buffer to Internet data traffic has been given in [5].

But even with the search option systems may not be able to utilize the entire

server idle time because there may be situations when the orbit is empty. It is from

this point of view one explores the possibility of retrial queueing systems with vaca-

tions and working vacations. During vacations the idle server may attend some less

urgent secondary task.We may also consider the notion of working vacation depending

upon the nature of the secondary job attended. In the latter case the server returns

to attend the primary job as and when a customer arrives in the system. In this

paper we consider a retrial queueing model with working vacations and with a finite

buffer for customers (primary as well as orbital). This enhances the server utilization

to the extent that the server in this retrial model has no idle time at all.

Queues with vacations have been extensively studied by several authors. Doshi

[10] provides an exhaustive survey of such work through 1985. Since then the vaca-

tion models have been studied in different contexts. Among these include stochastic

decomposition of queue length and that of stationary waiting time and we refer the

reader to the recent book by Tian and Zhang [27] for details. Recently vacation

models have gained significance in telecommunication networks. However compared

to continuous time models discrete time models are more appropriate for modelling

computer and telecommunication systems. Servi and Finn [25] introduced a working

vacation model with the idea of offering services but at a lower rate whenever the

server is on vacation. Their model was generalized to the case of M/G/1 in ([14],

[30]), and to GI/M/1 model in [6]. A survey of working vacation models with em-

phasis on the use of matrix analytic methods is given in Tian and Li [28] . Working

vacation models have a number of applications in practice. Two such examples are

given in [28].

Recently, Li and Tian [18] studied an M/M/1 queue with working vacations in

which vacationing server offers services at a lower rate for the first customer arriving

during a vacation. Upon completion of the service at a lower rate the server will (a)

continue the current vacation (if not finished) or take another vacation (if the working

vacation expired) if there are no customers waiting; or (b) resume at a normal rate

(irrespective of whether the vacation expired or not) if there are customers waiting.

Resuming services at a normal rate while the vacation is still in progress corresponds

to the vacation being interrupted. Sreenivasan et al. [26] analyzed MAP/PH/1 queue

with working vacations, vacation interruptions and N policy. M/M/1 retrial queue

with working vacations has been discussed by Van Do [29]. But to the best of our

knowledge no attempt has been there so far to analyze a MAP/PH/1 retrial queuing
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model with working vacations and a finite buffer for the primary arrivals and orbital

customers.

For use in the sequel, let e(r), ej(r) and Ir denote respectively the column vector

of dimension r consisting of 1’s, column vector of dimension r with 1 in the jth position

and 0 elsewhere and an identity matrix of dimension r. When there is no need to

emphasize the dimension of these vectors we will suppress the suffix. Thus, e will

denote a column vector of 1’s of appropriate dimension. The notation ⊗ will stand

for the Kronecker product of two matrices. Thus, if A is a matrix of order m×n and

if B is a matrix of order p × q, then A ⊗ B will denote a matrix of order mp × nq
whose (i, j)th block matrix is given by aijB. If A and B are square matrices of order

m and n respectively we define the Kronecker sum of A and B as A⊗In+Im⊗B. In

the forthcoming analysis of the model, in the absence of a suffix, the identity matrix

which appears as the first factor in a Kronecker product is always of order n and that

appears as the second factor is of order m. For more details on Kronecker products,

we refer the reader to [20] and [21].

In most the earlier works in this topic the input process is assumed to be poisson.

But the traffic in modern communication network is highly irregular. Of late to

model systems with repeated calls and bursty arrivals MAP is used. The MAP

is a tractable class of point processes which is in general non renewal. However by

choosing the parameters of the MAP appropriately the underlying arrival process

can be made a renewal process. The MAP can represent a variety of processes which

includes, as special cases, the Poisson process, the phase- type renewal processes, the

Markov Modulated Poisson Process and superpositions of these. A brief discussion

of MAP is given below.

A MAP is a Markov process {N(t), J(t)} with state space {(i, j) : i ≥ 0, 1 ≤ j ≤
m} with infinitesimal generator Q∗ having the structure

Q∗ =


D0 D1 0 0 . . .

0 D0 D1 0 . . .

0 0 D0 D1 . . .
...

...
...

...
. . .

 ,

HereD0 andD1 are square matrices of orderm, D0 has negative diagonal elements and

non negative off-diagonal elements, D1 has non negative elements and (D0 +D1)em =

0. We define an arrival process associated with this Markov process as follows. An

arrival occurs whenever a level state transition occurs into a state in the D1 block,

and there is no arrival otherwise. Here N(t) represents the number of arrivals in

(0,t], and J(t) the phase of the Markov process at time t. Let δ be the stationary

probability vector of the generator D = D0 + D1. Then the constant λ = δD1em is
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referred to as the fundamental rate gives the expected number of arrivals per unit

time in the stationary version of the MAP .

Often, in model comparisons, it is convenient to select the time scale of the MAP

so that the stationary arrival rate λ has a certain value. That is accomplished, in

the continuous MAP case, by multiplying the coefficient matrices D0 and D1, by the

appropriate common constant. For further details on MAP and their usefulness in

stochastic modelling, we refer to [19], [23], [24] and for a review and recent work on

MAP we refer the reader to [7] and [9].

This paper is organized as follows. In Section 2 model description is provided.In

Section 3 the steady state analysis of the model is presented. In Section 4 we discuss

a few illustrative examples.

2. Mathematical Model

We consider a single server retrial queueing system in which customers arrive

according to a markovian arrival process (MAP) with parameter matrices D0 and D1

of dimension m. An arriving primary customer who finds the server free, immediately

occupies the server and obtains service. On the other hand if the arriving customer

finds the server busy he joins a finite buffer of capacity L. If an arrival finds the buffer

full he moves to an orbit of infinite size. Each customer in the orbit makes retrial

at the rate β for a place in the server or buffer. The service times follow phase type

distribution with representation (α, T ) of order n. The server takes vacation when

the customer being served depart from the system and no customers are left in the

buffer. Duration of vacation is exponentially distributed with parameter η. During

vacation if a customer (primary or orbital) arrives it interrupts the vacation. However

the customers who arrive during the vacation is served only at a lower rate compared

to the regular service. Precisely the vacation mode service times are also phase type

distributed with representation (α, θT ), with 0 < θ ≤ 1. Even when the vacation is

interrupted by a customer vacation clock continues to tick so that on completion of

this service if the vacation clock is not expired, the server continues on vacation in

the absence of a customer in the buffer. At the end of each vacation the server takes

another vacation if the buffer is empty.

2.1. The QBD process. The model discussed in Section 2 can be studied as a quasi-

birth-and-death (QBD) process. First, we set up necessary notations. Let µ denote

the service rate and it is easy to verify that µ = [α(−T )−1e]−1. Let θ, 0 < θ ≤ 1,

denote the factor by which the normal service rate will be reduced when the server is

serving during vacation mode. That is, when the server is serving during the vacation

mode, the rate of service is given by θµ.
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At time t, define

N1(t) = The number of customers in the orbit,

N2(t) = The number of customers in the buffer,

S1(t) =

{
0, if the server is not working,

j, if the server is busy in phase j, 1 ≤ j ≤ n,

If S1(t) 6= 0 then

S2(t) =

{
0, if the service is in vacation mode,

1, if the service is in normal mode,

and M(t) to be the phase of the arrival process at time t. It is easy to verify that

{(N1(t), N2(t), S1(t), S2(t),M(t)) : t ≥ 0} is a quasi-birth-and-death process (QBD)

with state space

Ω =
∞⋃

i1=0

l(i1)

where

l(i1) = {(i1, i2, j1, j2, k) : i1 ≥ 0, 0 ≤ i2 ≤ L, 0 ≤ j1 ≤ n, j2 = 0 or 1, 1 ≤ k ≤ m}.

Note that whenS1(t) = 0, S2(t) does not play any role and will not be tracked.

The generator Q of the QBD process under consideration is of the form

Q =


B0 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .

 ,

where the (block) matrices appearing in Q are as follows.

B0 =


D0 α⊗D1 O O O

θT0 ⊗ I θT ⊕D0 − ηI ηI C1 O

T0 ⊗ I O T ⊕D0 O C1

O eL ⊗ θT0α⊗ I O C2 ηI

O O eL ⊗T0α⊗ I O C3


with C1 =

[
I ⊗D1 O

]
; C2 has the block matrix θT ⊕D0−ηI along the diagonal,

I ⊗ D1 along the superdiagonal and O matrices elsewhere; and the matrix C3 has

the block matrix T ⊕D0 along the diagonal, I ⊗D1 along the superdiagonal and O
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matrices elsewhere.

A0 =


O O O O O

O O O O O

O O O O O

O O O eL(L)e′L(L)⊗ I ⊗D1 O

O O O O eL(L)e′L(L)⊗ I ⊗D1

 ;

A1 =


D0 − βI α⊗D1 O O O

θT0 ⊗ I F1 ηI F4 O

T0 ⊗ I O F2 O F4

O F3 O E1 ηI

O O F5 O E2

 ;

where F1 = θT ⊕ D0 − ηI − βI, F2 = T ⊕ D0 − βI, F3 = eL ⊗ θT0α ⊗ I, F4 =

e′L(1)⊗ I ⊗D1, F5 = eL⊗T0α⊗ I. The matrix E1 has the block θT ⊕D0−βI − ηI
along the diagonal except for the last block which is θT ⊕D0 − ηI as retrials do not

make any difference in the system state when the buffer is full, I ⊗ D1 along the

superdiagonal and O matrices elsewhere. E2 has T ⊕ D0 − βI along the diagonal

except for the last block which is T ⊕ D0, I ⊗ D1 along the superdiagonal and O

blocks elsewhere.

A2 =


O β(α⊗ I) O O O

O O O H1 O

O O O O H1

O O O H2 O

O O O O H2


with H1 =

[
βI O

]
; H2 has the block matrix βI along the superdiagonal and O

blocks elsewhere.

3. Steady state analysis

In this section we will discuss the steady state analysis of the model under study.

3.1. Stability condition. Define A = A0 + A1 + A2. Let π = (π0,π1,π2,π3,π4)

be the steady state probability vector of A, where π0 is of dimension m, π1,π2 are

of dimension mn and π3, π4 are of are of dimension Lmn. Note that π is the unique

vector satisfying the condition πA = 0 and πe = 1. For stability of the queueing

model we must have πA0e < πA2e, (see [22]) which simplifies to (π3 + π4)eL(L) ⊗
(en⊗D1em) < β(π0em + (π1 + π2)emn +

∑Lmn−1
j=1 (π3j + π4j)). The last inequality

suggests that for stability of the queueing system discussed here it is required that

the rate of inflow in to the orbit is less than the effective retrial rate.



RETRIAL QUEUE WITH WORKING VACATIONS AND A FINITE BUFFER 113

3.2. Steady state probability vector. Let x , partitioned as x = (x0,x1,x2, . . .),

be the steady state probability vector of Q. Note that xj is of dimension m+ 2mn+

2Lmn for j ≥ 0. The vector x satisfies the condition xQ = 0 and xe = 1. Apparently

when the stability condition is satisfied the sub vectors of x , corresponding to the

different level states are given by the equation x(j) = x0R
j, j ≥ 1, where R is the

minimal non negative solution of the matrix quadratic equation R2A2+RA1+A0 = 0,

(see [22]). The sub vector x0 is obtained by solving the equations

x0(B1 +RA2) = 0

subject to the normalizing condition

x0(I −R)−1e = 1.

The computation of R matrix can be carried out using a number of well known

methods such as logarithmic reduction. We list here only the main steps involved

in logarithmic reduction algorithm for computation of R. For full details of the

logarithmic reduction algorithm we refer the reader to [16].

Logarithmic Reduction Algorithm for R:

Step 0: H ← (−A1)
−1A0, L← (−A1)

−1A2, G = L, and T = H.

Step 1:

U = HL+ LH

M = H2

H ← (I − U)−1M

M ← L2

L← (I − U)−1M

G← G+ TL

T ← TH

Continue Step 1 until ||e−Ge||∞ < ε.

Step 2: R = −A0(A1 + A0G)−1

Remark: In a model like this it is very significant to know what should be the

ideal size of the buffer. Such a discussion invariably depends on how often the buffer

overfows and how often the server goes on vacation as the buffer becomes empty.

However, it is practically impossible to study these when the orbit level changes. It

is in this context we study the following characteristic of the model.

3.3. Busy server versus empty orbit. Let TB be the duration for which the service

goes on with no customer in the orbit. It is the duration for which the service goes

on once it is started in vacation mode with the arrival of a customer into the empty

system. Now TB can end either by the server taking another vacation as the buffer

becomes empty at a departure epoch or as a customer moves to the orbit when the

buffer becomes full. Thus TB can be interpreted as the time until absorption in a
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finite state continous time Markov chain with two absorbing states. The process

starts according to the probability vector γM given by

γM = c(α⊗ x∗0D1,0),

where x∗0 is the row vector formed by the firstm components of x0 and the normalising

constant c is given by c = [x∗0D1em]−1. The matrix M of transient states given by

M =


θT ⊕D0 − ηI ηI C1 O

O T ⊕D0 O C1

eL ⊗ θT0α⊗ I O C2 ηI

O eL ⊗T0α⊗ I O C3


is obtained by omitting the first m rows and columns of the block matrix B0 of Q.

Also let

M0
1 =


θ(T0 ⊗ em)

T0 ⊗ em

0

0

 , M0
2 =


0

en ⊗D1em

0

en ⊗D1em

 ,

where each 0 in M0
1 has dimension Lmn and the first and second 0 ’s in M0

2 have di-

mensions (L+1)mn and (L−1)mn respectively. Hence the probability that the server

goes on vacation before the buffer overflows is given by pv = γM(−M)−1M0
1. Equiv-

alently the probability that the buffer overflows before the server taking a vacation is

given by pb = γM(−M)−1M0
2. Clearly pb = 1− pv.

In the general context, that is if the orbit is not empty, retrials will also come

into picture. Natuarally pv tends to decrease and pb tends to increase. Hence given

the input parameters, the above values of pv and pb are respectively the upper and

lower bounds for pv and pb.

3.4. Key system performance measures. In this section we list a number of key

system performance measures to bring out the qualitative aspects of the model under

study. The measures are listed below along with their formulae for computation.

1. Probability that the orbit is empty: POTY = x0e.

2. Probability that the buffer is empty: PBUFTY =
∑∞

i1=0 xi10em+2mn.

3. The probability that the server is on vacation: PV ACN =
∑∞

i1=0

∑m
k=1 xi100.k.

4. The probability that the server is busy in vacation mode:

PBV M =
∑∞

i1=0

∑L
i2=0

∑n
j1=1

∑m
k=1 xi1i2j10k.

5. Probability that the server completes a service in vacation mode: PSCSLO =

P (service time in slow mode < an exponentially distributed random variable

with parameter η) = α(ηI − θT )−1θT0

6. The probability that the server is busy in normal mode:

PBNM =
∑∞

i1=0

∑L
i2=0

∑n
j1=1

∑m
k=1 xi1i2j11k.
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7. The mean number of customers in the orbit:

µMNOBT =
∑∞

i1=1 i1xi1e = x0R(I −R)−2e

8. The mean number of customers in the buffer: µBUF =
∑∞

i1=1

∑L
i2=1 i2xi1i2e2mn

9. Probability of a successful retrial:

PSRT = β/(β + λ)
∑∞

i1=1

∑m
k=1(

∑L−1
i2=1

∑n
j1=1

∑1
j2=0 xi1i2j1j2k + xi100.k).

4. Numerical Results

In order to bring out the qualitative nature of the model under study, we present

a few representative examples in this section. For the arrival process we consider the

following five sets of matrices for D0 and D1.

1. Erlang (ERA)

D0 =


−5 5

−5 5

−5 5

−5 5

−5

 D1 =


5


2. Exponential (EXA)

D0 = (−1), D1 = (1)

3. Hyperexponential (HEA)

D0 =

(
−10 0

0 −1

)
D1 =

(
9 1

0.9 0.1

)
4. MAP with negative correlation (MNA)

D0 =

 −2 2 0

0 −2 0

0 0 −450.5

 D1 =

 0 0 0

0.02 0 1.98

445.995 0 4.505


5. MAP with positive correlation (MPA)

D0 =

 −2 −2 0

0 −2 0

0 0 −450.5

 D1 =

 0 0 0

1.98 0 0.02

4.505 0 445.995


These five MAP processes are qualitatively different in that they have different vari-

ance and correlation structure. The first three arrival processes, namely ERA, EXA,

and HEA, correspond to renewal processes and so the correlation is 0. The arrival

process labelled MNA has correlated arrivals with correlation between two successive

inter-arrival times given by −0.4889 and the arrival process corresponding to the one

labelled MPA has a positive correlation with value 0.4889. The ratio of the standard

deviations of the inter-arrival times of these five arrival processes to that of ERA

are respectively 1, 2.2361, 5.0194, 3.1518, and 3.1518. Since the mean arrival rate

(and hence the mean interarrival time) is taken to be the same for all five MAP

processes the coefficients of variation (CV ) of the interarrival times of the processes
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ERA, EXA, HEA, MNA, MPA are in the ratio 1, 2.2361, 5.0194, 3.1518, 3.1518

respectively.

For the service time distribution we consider the following three phase type dis-

tributions.

1. Erlang (ERS)

α = (1, 0) T =

(
−2 2

0 −2

)
2. Exponential (EXS)

α = 1.0, T = −1.0

These two phase type distributions have a service rate of 1. Note that these are

qualitatively different in that they have different variances. The ratio of the standard

deviation of EXS to that of ERS is 1.4142. Since the mean service time is the same

for these two processes the ratios of CV of the service times of ERS and EXS are 1

and 1.4142 respectively.

ILLUSTRATIVE EXAMPLE 1: Here we examine the effect of the vacation

parameter η on pv, the probability that the sever goes on vacation before the buffer

overflows, given that the orbit is empty. We fix λ = 0.9, µ = 1, θ = 0.6 and L = 3.

Table 1: The probability pv

Erlang services Exponential services

η ERA EXA HEA MNA MPA ERA EXA HEA MNA MPA

0.1 0.892 0.798 0.605 0.730 0.974 0.861 0.795 0.650 0.719 0.964

0.2 0.925 0.829 0.637 0.765 0.977 0.89 0.820 0.673 0.749 0.969

0.3 0.944 0.849 0.659 0.789 0.979 0.908 0.837 0.69 0.770 0.973

0.4 0.955 0.863 0.677 0.807 0.98 0.92 0.849 0.703 0.786 0.975

0.5 0.962 0.873 0.690 0.820 0.981 0.928 0.858 0.714 0.798 0.976

As η increases the mean duration of vacation decreases. Hence the server switches

from slow service to normal service earlier and hence clears out the customers at a

faster rate. Due to this pv decreases as η increases. From the table it is clear that ERS

gives the larger values for pv than EXS. Thus as CV of the service time increases

the value of pv decreases. Among the renewal arrival processes ERA has the greatest

value and HEA has the least value for pv. This again is the effect of CV of the

interarrival times of these processes. Among the correlated arrival processes MPA

has the larger value for pv compared to MNA. This shows the difference positive and

negative correlation producing on pv.

ILLUSTRATIVE EXAMPLE 2: We analyze the effect of change in the buffer

size on the measure ‘probability of successful retrials PSRT ’, for different arrival and
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Figure 1. Probability of successful retrials - Erlang services

service processes. Figure 1 analyzes the effect of the buffer size with Erlang service

and Figure 2 explains its effect with exponential service. We fix λ = 0.9, µ = 1,

η = 0.5, θ = 0.6 and β = 1.

• As the buffer size increases more primary arrivals occupy the buffer. This re-

duces the flow of customers to the orbit and the chance of successful retrial.

From the figures it is clear that PSRT increases with CV of the interarrival times

of distributions. Note that both MNA and MPA have the same CV for inter-

arrival times, but this measure is higher for MPA compared to MNA. Observe

that MPA has a positive correlation and MNA has a negative correlation. This

shows the effect of correlation on this measure.

ILLUSTRATIVE EXAMPLE 3: In this example we study the effect of the pa-

rameter η on the measure probability of a service completion in slow mode (PSCSLO).

Fix λ = 0.9, µ = 1, β = 1 and θ = 0.6 and L = 3.

• From the expression for PSCSLO in subsection 3.4, it is clear that this measure

is independent of the inter arrival time distributions and that it decreases as

η increases. So we compare the values for PSCSLO for the two service time

distributions. From figure 3, it is clear that PSCSLO increases with the variance

of the service time distributions.
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Figure 2. Probability of successful retrials - Exponential services
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Figure 3. Probability of a service completion in slow mode
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