
Neural, Parallel, and Scientific Computations 24 (2016) 29-44

COMPUTABILITY POWER OF AN EXTENDED PETRI NET
MODEL (APN)

ZVI RETCHKIMAN KONIGSBERG

Centro de Investigacion en Computacion, Instituto Politecnico Nacional,
Mexico D.F, MEXICO

ABSTRACT. The notion of computability has its origin in the works of the logicians Church,
Gödel, Kleene, Post and Turing. Several approaches of computation were proposed: recursive
functions, Post programs, lambda calculus, Turing machines, register machines, to mention some. It
was shown that all these models were equivalent in terms of its computability power. In this paper
a new computational paradigm called arithmetic Petri nets (APN) is introduced. APN are Petri
nets with inhibitor arcs that perform three types of arithmetical operations; increment, decrement
and test for zero. Its equivalence to Turing and therefore to all the other approaches was shown
to be true by simulation of a register machine. In this paper a different path is proposed by first
proving that all recursive functions are APN computable. The opposite implication is obtained
from Kleene’s normal form theorem for APN . The normal form theorem was introduced by Kleene
for the general recursive computation paradigm in terms of system of equations. The proof for the
APN computational paradigm is based on the idea of computation tree, where each node of such
a tree will tell us how a value needed for the arithmetical operations can be inductively obtained.
Then, using arithmetization plus course of value recursion a primitive recursive predicate is defined
from which by means of a primitive recursive function the desired characterization for the value of
the output function is established.

AMS (MOS) Subject Classification: 03D78, 03D60, 03D20, 03D10.

Key words: Computability Power, Petri Nets, Inhibitor Arcs, Arithmetical Petri Nets, Normal

Form Theorem, Arithmetization, Recursive Functions, Computation Tree.

1. Introduction

The notion of computability has its origin in the works of the logicians Church,

Gödel, Kleene, Post and Turing. Several approaches of computation were proposed:

recursive functions, Post programs, lambda calculus, Turing machines, register ma-

chines, to mention some. It was shown that all these models were equivalent in

terms of its computability power. In this paper a new computational paradigm called

arithmetic Petri nets (APN) is introduced. APN are Petri nets with inhibitor arcs

(an extension of Petri nets, see [3], and [7], [8] for some modeling applications) that

Received December 12, 2015 1061-5369 $15.00 c©Dynamic Publishers, Inc.

30 Z. R. KONIGSBERG

perform three types of arithmetical operations; increment, decrement and test for

zero.

It is a well known result that APN are equivalent to Turing machines and there-

fore inherit all their properties. The equivalence proof follows by noticing that APN

simulate register machines and register machines, result to be Turing equivalent, as

was shown by Sheperdson and Sturgis (see [2]). However, this is not for free, an in-

crease in computational power, results in a decrease in decision power. In this paper

a different path is proposed by first proving that all recursive functions are APN

computable. The opposite implication is obtained from Kleene’s normal form theo-

rem for APN . The normal form theorem was introduced by Kleene for the general

recursive computation paradigm in terms of system of equations [1]. The proof for

the APN computational paradigm is based on the idea of computation tree, where

each node of such a tree will tell us how a value needed for the arithmetical operations

can be inductively obtained. Then, using arithmetization plus course of value recur-

sion a primitive recursive predicate is defined from which by means of a primitive

recursive function the desired characterization for the value of the output function is

established. The proposed approach results to be original and elegant. In general,

the equivalence between APN and Turing machines is given for granted, however is

not easy to find a proof of it, even today with the power of the Internet. The paper

is organized as follows: in section 2, all the preliminaries and information needed to

understand and access the proof are given. It is also shown that all recursive functions

are APN computable. In section three, the opposite implication is shown to be true.

Some consequences are also addressed.

2. Preliminaries

NOTATION: N = {0, 1, 2, . . . }, N+
n0

= {n0, n0 + 1, . . . , n0 + k, . . . } , n0 ≥ 0.

A Petri net (PN) is a 5-tuple, PN = {P, T, F,W,M0} where: P = {p1, p2, . . . , pm}
is a finite set of places, T = {t1, t2, . . . , tn} is a finite set of transitions (represented

respectively by circles and bars), F ⊂ (P ×T)∪ (T ×P) is a set of arcs, W : F → N+
1

is a weight function, M0: P → N is the initial marking, P ∩ T = ∅ and P ∪ T 6= ∅.

Notice that if W (p, t) = α or W (t, p) = β, then, this is often represented graphically

by α or β arcs from p to t or t to p (through arrowheads) each with no numeric label.

Let Mk(pi) denote the marking (i.e., the number of tokens) at place pi ∈ P at time

k and let Mk = [Mk(p1), . . . ,Mk(pm)]T denote the marking (state) of PN at time

k. A transition tj ∈ T is said to be enabled at time k if Mk(pi) ≥ W (pi, tj) for all

pi ∈ P such that (pi,tj) ∈ F . If a transition is enabled then, it can fire. If an enabled

transition tj ∈ T fires at time k then, the next marking for pi ∈ P is given by

(2.1) Mk+1(pi) = Mk(pi) +W (tj, pi)−W (pi, tj).

COMPUTABILITY POWER OF AN EXTENDED PETRI NET MODEL (APN) 31

Let A = [aij] denote an n × m matrix of integers (the incidence matrix) where

aij = a+
ij − a−ij with a+

ij = W (ti, pj) and a−ij = W (pj, ti). Let uk ∈ {0, 1}n de-

note a firing vector where if tj ∈ T is fired then, its corresponding firing vector

is uk = [0, . . . , 0, 1, 0, . . . , 0]T with the one in the jth position in the vector and zeros

everywhere else. The non-linear difference matrix equation describing the dynamical

behavior represented by a PN is:

(2.2) Mk+1 = Mk + ATuk

where if at step k, a−ij < Mk(pj) for all pi ∈ P then, ti ∈ T is enabled and if this ti ∈ T
fires then, its corresponding firing vector uk is utilized in the difference equation to

generate the next step. Notice that if M ′ can be reached from some other marking

M and, if we fire some sequence of d transitions with corresponding firing vectors

u0, u1, . . . , ud−1 we obtain that

(2.3) M ′ = M + ATu, u =
d−1∑
k=0

uk.

A Petri net with inhibitor arcs (PNI) is an extension of a PN where now there

exists the possibility of connecting a place with a transition through an arc, where

the arrowhead has been substituted by a small circle. A new firing rule is allowed, a

transition is enabled if the marking of the places corresponding to inhibitor arcs are

empty and as a consequence a new marking Mk+1 will be generated.

Definition 1. An arithmetic Petri net (APN) consists of a PNI that executes the

following three arithmetical operations: increment by one, decrement by one and

testing for zero, as is depicted in Fig. 1.

Figure 1. APN that executes increment. decrement and test for zero

32 Z. R. KONIGSBERG

Remark 2. Notice that the place pi is the one that controls the execution of the

arithmetical operation.

Definition 3. A partial function f on N is simply a function whose domain is a

subset of N . If f is a partial function on N and aεN , then we write f(a) ↓, and say

that f(a) is defined to indicate that a is in the domain of f ; if a is not in the domain

of f , we write f(a) ↑ and say that f(a) is undefined. If a partial function on N has

the domain N , then it is called total.

Definition 4. A function f(x1, x2, . . . , xm) (from Nm → N) is APN computable if

there exists an APN with an output place py, a set of input places PI = {px1 , px2 , . . . ,

pxm}, a set of auxiliary places PA (as many as needed), not necessarily disjoint such

that when the initial marking of the input places is set equal to the values of the

variables of the function f , and all the other markings are assumed to be set to zero

except for the places that control the execution of the arithmetical operations. A

final marking is reached with the marking of py equal to the value of f i.e., Mk(py) =

f(x1, x2, . . . , xm). In the case when the APN does not reach a final marking i.e.,

there exists an infinite sequence of markings M1,M2, . . . beginning from the initial

marking, then f(x1, x2, . . . , xm) will be undefined denoted as f(x1, x2, . . . , xm) ↑.

Remark 5. It is supposed that there are always enough tokens in the places that

control the execution of the arithmetical operations. This is similar to the execution

of a software program where you go from one instruction to another or the same

one. Therefore an APN computation behaves as a software program (see [5]). This

similarity is of great help in understanding the logic in what is next presented.

Figure 2. APN that computes the identity function

COMPUTABILITY POWER OF AN EXTENDED PETRI NET MODEL (APN) 33

Example 6. The identity function is APN computable as is depicted in Fig. 2, and

which is constituted by three blocks each one representing the decrement, increment

and test for zero arithmetic operations of the APN .

Remark 7. Notice that a place can play two (or more) roles in a computation depend-

ing on the arithmetical operation that is being executed, as occurs in this example.

It is also important to point out that we do not need such a complicated APN in

case our only goal were to replicate at the output the input, since this can be easily

achieved with a PN formed by two places and one transition.

Definition 8. A partial function f on N is simply a function whose domain is a

subset of N . If f is a partial function on N and aεN , then we write f(a) ↓, and say

that f(a) is defined to indicate that a is in the domain of f ; if a is not in the domain

of f , we write f(a) ↑ and say that f(a) is undefined. If a partial function on N has

the domain N , then it is called total.

The following list of functions are called initial functions:

• The successor function s(x) = x+ 1

• The nullity function n(x) = 0

• The projection function ui(x1, x2, . . . , xn) = xi

Definition 9. Let f be a function of k variables and let g1, . . . , gk be functions of n

variables. Let

h(x1, x2, . . . , xn) = f(g1(x1, x2, . . . , xn), g2(x1, x2, . . . , xn), . . . , gk(x1, x2, . . . , xn)).

Then h is said to be obtained from f and g1, . . . , gk by composition.

Definition 10. The function h of n+ 1 variables is said to be obtained by primitive

recursion, or simply recursion, from the total functions f (of n variables) and g (of

n+ 2 variables) if the following iterative scheme holds,

h(x1, x2, . . . , xn, 0) = f(x1, x2, . . . , xn)

h(x1, x2, . . . , xn, t+ 1) = g(t, h(x1, x2, . . . , xn, t), x1, x2, . . . , xn).

Definition 11. The function f is said to be defined from the function g by mini-

malization if ∀(x1, x2, . . . , xn)∃y(g(x1, x2, . . . , xn, y) = 0) and f(x) = µy(g(x1, x2, . . .,

xn, y) = 0), where µy(g(x1, x2, . . . , xn, y) = 0) is the least number y such that

g(x1, x2, . . . , xn, y) = 0 holds. The function f is said to be defined from the total pred-

icate P by minimalization if f(x) = µy(P (x1, x2, . . . , xn, y)), where µy(P (x1, x2, . . .,

xn, y)) is the least number y such that P (x1, x2, . . . , xn, y) holds.

Definition 12. A function f is primitive recursive if it can be obtained by a fi-

nite number of applications of composition and recursion, beginning with the initial

functions.

34 Z. R. KONIGSBERG

Definition 13. A function f is partial recursive if it can be obtained by a finite

number of applications of composition, recursion and minimalization, beginning with

the initial functions.

Definition 14. A function f is recursive if it can be obtained by a finite number of

applications of composition, recursion and minimalization of total functions, begin-

ning with the initial functions.

In particular every primitive recursive function is recursive (for a proof see [5] and/or

[6]). Notice that if f is recursive then it is partial recursive and total.

Definition 15. A predicate is said to be primitive primitive recursive (partial recur-

sive, recursive) if its characteristic function is primitive recursive (partial recursive,

recursive).

Next, it is proven that every recursive function is APN computable.

Theorem 16. Let f be a recursive function then f is APN computable.

Proof. This proof follows exactly the same lines given for flowcharts discussed in [4],

therefore just an outline is next presented. By induction on the definition of recursive

functions, first, it is proven to be true that the initial functions are APN computable.

That the successor is, it is immediate, using the increment by one function. That the

nullity is, follows using the decrement by one function, which will be operating until

all the tokens in px are used and the marking of px is zero (see Fig. 1b). Finally, for the

projection function use the APN given in Example 6, i.e., the identity function, for

the xi variable. Now lets suppose that for each case i.e., composition, recursion and

minimalization, a set of functions which are APN computable have been obtained.

Then, based on the diagrams presented in pages (66) and (67) of [4] (representing an

APN computation as a block) the resulting function derived by applying composition,

recursion and minimalization is APN computable.

3. The Normal Form Theorem for APN

Arithmetization is a method of translating reasoning in natural language by

arithmetical propositions, with the goal of substituting arguments with computa-

tions. Primitive recursive predicates and functions are the paradigm used to carry

out arithmetizations [4]. Prime numbers ΠiεI and factorizations are used for coding

since they are well known to be primitive recursive. The code assigned to the sequence

[x1, x2, . . . , xn] is defined as:

[x1, x2, . . . , xn] = Πn
0 · Π

x1
1 · · ·Πxn

n ,

and the decoding is given by: [x]n = exp(x,Πn), ln(x) = (x)0 and Seq(x) ⇔ (∀n ≤
x)(n > 0 ∧ (x)n 6= 0 → n ≤ ln(x)), where ln(x) is the length of x and (x)n is

COMPUTABILITY POWER OF AN EXTENDED PETRI NET MODEL (APN) 35

the n-th component of x. Th concatenation of two sequences ∗ is defined to be

[x0, x1, . . . , xn] ∗ [y1, y2, . . . , ym] = [x1, x2, . . . , xn, y1, y2, . . . , ym]. Next, the following

result which is basic for the proof of the normal form theorem, is given without proof

which can be find in [4].

Proposition 17 (Course of values recursion). The class of primitive recursive func-

tions is closed under recursions in which the definition of f(x1, x2, . . . , xn, y+ 1) may

involve not just the last value f(x1, x2, . . . , xn, y) but any number of (and possibly all)

values f(x1, x2, . . . , xn, z)z≤y already obtained. Formally, let f̂ be the history function

of f defined as:

f̂(x1, x2, . . . , xn, y) = [f(x1, x2, . . . , xn, 0), . . . , f(x1, x2, . . . , xn, y)].

Then if f is defined as:

f(x1, x2, . . . , xn, 0) = g(x1, x2, . . . , xn),

f(x1, x2, . . . , xn, y + 1) = h(x1, x2, . . . , xn, y,

f̂(x1, x2, . . . , xn, y)) and g, h are primitive recursive, so is f .

Theorem 18 (Normal Form Theorem for APN). Let f(x1, x2, . . . , xn) be APN com-

putable, then there is a primitive recursive function U , a primitive recursive predicate

Tn and a number e such that,

f(x1, x2, . . . , xn) = U(µwTn(e, x1, x2, . . . , xn, w)).

Proof. The idea of the proof based on the notion of computation tree has been bor-

rowed from the beautiful book of Odifreddi [4]. A computation tree allows us to

organize the values of a given APN computable function f in a natural way. Each

node of such a tree will tell us how a value needed in the computation can be in-

ductively obtained by means of the APN arithmetical operations. The proof will be

presented in a number of steps.

• Step 1. Definition of the APN.

The APN will consist of: (1) a set of input places, denoted by {pxi
}iεN whose

elements correspond to each one of the input variables x1, x2, . . . , xn with nεN ,

an output place denoted by py, a set of auxiliary places, denoted by {pzi
}mi=1

which correspond to variables possibly needed to compute f , a set of places

associated to each one of the arithmetical operations performed over the input

places and/or the auxiliary places and/or the output place (see the figures given

in definition 1) denoted by {pIxi∨zi∨y}iεN , {p(I+1)xi∨zi∨y}iεN , and {pBxi∨zi∨y}iεN ,

and (2) a set of transitions. (This notation was used in Example 6.)

• Step 2. Associate numbers to the places and to the arithmetical operations of

the APN .

To each one of the places, a unique numeral is given which will be denoted by

36 Z. R. KONIGSBERG

]p, where p belongs to anyone of the set of places defined in step 1. In case of

belonging to more than one, a unique number will be assigned which will be

taken as the number that represents the place for the other cases. A numeral

will also be assigned to each one of the arithmetical operations performed by

the APN which will be denoted by]A and in particular,]Inc,]Dec and]B,

depending on each case.

• Step 3. Associate numbers to the computations.

This is done by induction on the construction of the computation tree. First of

all, we assign numbers to nodes:

]v = [[]A,]pIxi∨zi∨y ,Mk(pIxi∨zi∨y),]p(I+1)xi∨zi∨y ,

Mk(p(I+1)xi∨zi∨y),]pBxi∨zi∨y ,Mk(pBxi∨zi∨y)],

[M
k
(px1), . . . ,Mk(pxn)], [Mk(pz1), . . . ,Mk(pzm)],Mk(py)]

Thus a node is represented by four numbers: corresponding respectively to

e = []A,]pIxi∨zi∨y ,Mk(pIxi∨zi∨y),]p(I+1)xi∨zi∨y ,

Mk(p(I+1)xi∨zi∨y),]pBxi∨zi∨y ,Mk(pBxi∨zi∨y)],

called the index at time k, the inputs, the auxiliary variables and the output.

Remark 19. A node gives us an instantaneous complete description of the state and

the type of arithmetical operation of the APN at time k. Uniqueness in the number

assigned to the node due to the fundamental theorem of arithmetic plus uniqueness

in the number assigned to the places, is of great importance for decoding purposes

i.e., given a fixed number, the topological representation of the node which consists

of the type of instruction and the places that are involved as well as its markings can

be recovered, whenever the representation obtained from the number makes sense in

terms of the definition of the arithmetical operations.

We then assign numbers to trees: each tree T consists of a node v with associated

number]v, and of a certain number (finite, and possibly equal to zero) of ordered

predecessors, each one being a sub-tree Ti. By induction, we assign to this tree the

number

]T = []v,]T1, . . . ,]Tm],

where]Ti is the number assigned to the sub-tree Ti i.e.,]Ti = i+ 1 . In particular, if

the vertex with number]v does not have predecessors, then it has number []v] as a

tree.

• Step 4. Translate in a primitive recursive predicate T (w) the property that w is

a number coding a computation tree.

Remark 20. To increase readability we use commas instead of nested parentheses,

and write e.g. (a)i,j,k in place of (((a)i)j)k).

COMPUTABILITY POWER OF AN EXTENDED PETRI NET MODEL (APN) 37

(a) Initial State (b) Final State

Fig 3. Increment

Setting w = []v,]T1, . . . ,]Tm] where:

1. (w)1 = [e, [M
k
(px1), . . . ,Mk(pxn)], [M

k
(pz1), . . . ,Mk(pzm)],Mk(py)]

2. (w)1,1 = e

3. (w)1,2 = [M
k
(px1), . . . ,Mk(pxn)]

4. (w)1,3 = [M
k
(pz1), . . . ,Mk(pzm)]

5. (w)1,4 = Mk(py)

6. (w)i+1 =]Ti

7. (w)i+1,1 = number associated to the node corresponding to Ti

(which are a direct consequence of the definitions given in step 3). First, it is assured

that w is well defined i.e.,

Const(w) ⇔ Seq(w) ∧ Seq((w)1) ∧ ln((w)1) = 4 ∧ Seq((w)1,1) ∧ ln((w)1,1) = 7 ∧
Seq((w)1,2) ∧ ln((w)1,2) = n,∧Seq((w)1,3) ∧ ln((w)1,3) = m

Now, let’s take care of the three possible arithmetic operations performed by the

APN .

Increment: From the description given in Fig. 3, there are three cases to be considered:

Increment in the input:

(w)2,1 = [[]Inc,]pIxi
,Mk(pIxi

),]p(I+1)xi
,Mk(p(I+1)xi

), 0, 0],

[M
k
(px1), . . . ,Mk(pxi

) . . . ,Mk(pxn)],

[Mk(pz1), . . . ,Mk(pzm)],Mk(py)]→ (w)1 = [[]Inc,]pIxi
,Mk+1(pIxi

) = Mk(pIxi
)− 1,

]p(I+1)xi
,Mk+1(p(I+1)xi

) = Mk(p(I+1)xi
) + 1, 0, 0],

[Mk+1(px1), . . . ,Mk+1(pxi
)

= Mk(pxi
) + 1, . . . ,Mk+1(pxn)], [Mk+1(pz1), . . . ,Mk(pzm)],Mk+1(py)]

Increment in the auxiliary variables:

(w)2,1 = [[]Inc,]pIxi
,Mk(pIxi

),]p(I+1)xi
,Mk(p(I+1)xi

), 0, 0], [M
k
(px1), . . . ,Mk(pxn)],

38 Z. R. KONIGSBERG

[Mk(pz1), . . . ,Mk(pzi
), . . . ,Mk(pzm)],Mk(py)]→ (w)1

= [[]Inc,]pIxi
,Mk+1(pIxi

) = Mk(pIxi
)− 1,

]p(I+1)xi
,Mk+1(p(I+1)xi

) = Mk(p(I+1)xi
) + 1, 0, 0],

[Mk+1(px1), . . . ,Mk+1(pxn)], [Mk+1(pz1), . . . ,Mk+1(pzi
)

= Mk(pzi
) + 1, . . . ,Mk(pzm)],Mk+1(py)]

Increment in the output:

(w)2,1 = [[]Inc,]pIxi
,Mk(pIxi

),]p(I+1)xi
,Mk(p(I+1)xi

), 0, 0], [Mk(px1), . . . ,Mk(pxn)],

[Mk(pz1), . . . ,Mk(pzm)],Mk(py)]→ (w)1 = [[]Inc,]pIxi
,Mk+1(pIxi

) = Mk(pIxi
)− 1,

]p(I+1)xi
,Mk+1(p(I+1)xi

) = Mk(p(I+1)xi
) + 1, 0, 0],

[Mk+1(px1), . . . ,Mk+1(pxn)], [Mk+1(pz1), . . . ,Mk(pzm)],Mk+1(py) = Mk(py) + 1]

Therefore we get that:

Inc(w)⇔ [ln(w) = 2∧ln(w)1,1 = ln(w)2,1,1∧(w)1,1,1 = (w)2,1,1,1∧(w)1,1,2 = (w)2,1,1,2∧
(w)1,1,3 = (w)2,1,1,3 − 1 ∧ (w)1,1,4 = (w)2,1,1,4 ∧ (w)1,1,5 = (w)2,1,1,5 + 1 ∧ (w)1,1,6 =

(w)2,1,1,6 ∧ (w)1,1,7 = (w)2,1,1,7 ∧ ln(w)1,2 = ln(w)2,1,2 ∧ (w)1,2,1 = (w)2,1,2,1 ∧ . . . ∧
(w)1,2,i = (w)2,1,2,i+1∧. . .∧(w)1,2,n = (w)2,1,2,n∧ln(w)1,3 = ln(w)2,1,3∧(∀)mi=1((w)1,3,i =

(w)2,1,3,i)∧ (w)1,4 = (w)2,1,4]∨ [ln(w) = 2∧ ln(w)1,1 = ln(w)2,1,1∧ (w)1,1,1 = (w)2,1,1,1∧
(w)1,2,2,2 = (w)2,1,2∧(w)1,1,3 = (w)2,1,1,3−1∧(w)1,1,4 = (w)2,1,1,4∧(w)1,1,5 = (w)2,1,1,5+

1 ∧ (w)1,1,6 = (w)2,1,1,6 ∧ (w)1,1,7 = (w)2,1,1,7 ∧ ln(w)1,2 = ln(w)2,1,2 ∧ (∀)ni=1((w)1,2,i =

(w)2,1,2,i)∧ln(w)1,3 = ln(w)2,1,3∧(w)1,3,1 = (w)2,1,2,1∧. . .∧(w)1,3,i = (w)2,1,3,i+1∧. . .∧
(w)1,3,m = (w)2,1,3,m∧ (w)1,4 = (w)2,1,4]∨ [ln(w) = 2∧ ln(w)1,1 = ln(w)2,1,1∧ (w)1,1,1 =

(w)2,1,1,1∧(w)1,2,2,2 = (w)2,1,2∧(w)1,1,3 = (w)2,1,1,3−1∧(w)1,1,4 = (w)2,1,1,4∧(w)1,1,5 =

(w)2,1,1,5 + 1 ∧ (w)1,1,6 = (w)2,1,1,6 ∧ (w)1,1,7 = (w)2,1,1,7 ∧ ln(w)1,2 = ln(w)2,1,2 ∧
(∀)ni=1((w)1,2,i = (w)2,1,,i)∧ ln(w)1,3 = ln(w)2,1,3∧ (∀)mi=1((w)1,3,i = (w)2,1,3,i)∧ (w)1,4 =

(w)2,1,4 + 1]

Decrement: This case is exactly the same as the previous one just change plus one

by minus one for each one of the input, auxiliary and output places. The description

is denoted by Dec(w).

Test for zero: there are two cases: no branching (Fig. 4) and branching (Fig. 5). Each

one with three sub-cases to be considered:

The condition is not satisfied (no branching):

Input:

(w)2,1 = [[]B,]pIxi
,Mk(pIxi

),]p(I+1)xi
,Mk(p(I+1)xi

), pBxi
,Mk(pBxi

)],

[Mk(px1), . . . ,Mk(pxi
) > 0, . . . ,Mk(pxn)], [Mk(pz1), . . . ,Mk(pzm)],Mk(py)]→

(w)1 = [[]B,]pIxi
,Mk+1(pIxi

) = Mk(pIxi
)− 1,

]p(I+1)xi
,Mk+1(p(I+1)xi

) = Mk(p(I+1)xi
) + 1,]pBxi

,Mk+1(pBxi
) = Mk(pBxi

)],

COMPUTABILITY POWER OF AN EXTENDED PETRI NET MODEL (APN) 39

(c) Initial State (d) Final State

Fig 4. No branching

(e) Initial State (f) Final State

Fig 5. Branching

[Mk+1(px1), . . . ,Mk+1(pxi
)

= Mk(pxi
), . . . ,Mk+1(pxn)], [Mk+1(pz1), . . . ,Mk(pzm)],Mk+1(py)]

Auxiliary variables

(w)2,1 = [[]B,]pIxi
,Mk(pIxi

),]p(I+1)xi
,Mk(p(I+1)xi

), pBxi
,Mk(pBxi

)],

[Mk(px1), . . . ,Mk(pxn)],

[Mk(pz1), . . . ,Mk(pzi
) > 0, . . . ,Mk(pzm)],Mk(py)]→

(w)1 = [[]B,]pIxi
,Mk+1(pIxi

) = Mk(pIxi
)− 1,

]p(I+1)xi
,Mk+1(p(I+1)xi

) = Mk(p(I+1)xi
) + 1,]pBxi

,Mk+1(pBxi
) = Mk(pBxi

)],

[Mk+1(px1), . . . ,Mk+1(pxn)], [Mk+1(pz1), . . . ,Mk+1(pzi
) = Mk(pzi

), . . . ,Mk(pzm)],Mk+1(py)]

Output

(w)2,1 = [[]B,]pIxi
,Mk(pIxi

),]p(I+1)xi
,

Mk(p(I+1)xi
), pBxi

,Mk(pBxi
)], [Mk(px1), . . . ,Mk(pxn)],

[Mk(pz1), . . . ,Mk(pzm)],Mk(py) > 0]→ (w)1 = [[]B,]pIxi
,Mk+1(pIxi

) = Mk(pIxi
)− 1,

40 Z. R. KONIGSBERG

]p(I+1)xi
,Mk+1(p(I+1)xi

) = Mk(p(I+1)xi
) + 1,]pBxi

,Mk+1(pBxi
) = Mk(pBxi

)],

[Mk+1(px1), . . . , . . . ,Mk+1(pxn)], [Mk+1(pz1), . . . ,Mk(pzm)],Mk+1(py) = Mk(py)]

The condition is satisfied (branching):

Input:

(w)2,1 = [[]B,]pIxi
,Mk(pIxi

),]p(I+1)xi
,Mk(p(I+1)xi

), pBxi
,Mk(pBxi

)],

[Mk(px1), . . . ,Mk(pxi
) = 0, . . . ,Mk(pxn)], [Mk(pz1), . . . ,Mk(pzm)],Mk(py)]→

(w)1 = [[]B,]pIxi
,Mk+1(pIxi

) = Mk(pIxi
)− 1,

]p(I+1)xi
,Mk+1(p(I+1)xi

) = Mk(p(I+1)xi
),]pBxi

,Mk+1(pBxi
) = Mk(pBxi

) + 1],

[Mk+1(px1), . . . ,Mk+1(pxi
) = Mk(pxi

), . . . ,Mk+1(pxn)],

[Mk+1(pz1), . . . ,Mk(pzm)],Mk+1(py)]

Auxiliary variables

(w)2,1 = [[]B,]pIxi
,Mk(pIxi

),]p(I+1)xi
,Mk(p(I+1)xi

), pBxi
,Mk(pBxi

)],

[Mk(px1), . . . ,Mk(pxn)],

[Mk(pz1), . . . ,Mk(pzi
) = 0, . . . ,Mk(pzm)],Mk(py)]→

(w)1 = [[]B,]pIxi
,Mk+1(pIxi

) = Mk(pIxi
)− 1,

]p(I+1)xi
,Mk+1(p(I+1)xi

) = Mk(p(I+1)xi
),]pBxi

,Mk+1(pBxi
) = Mk(pBxi

) + 1],

[Mk+1(px1), . . . ,Mk+1(pxn)], [Mk+1(pz1), . . . ,Mk+1(pzi
) = Mk(pzi

), . . . ,Mk(pzm)],Mk+1(py)]

Output

(w)2,1 = [[]B,]pIxi
,Mk(pIxi

),]p(I+1)xi
,Mk(p(I+1)xi

), pBxi
,Mk(pBxi

)],

[Mk(px1), . . . ,Mk(pxn)],

[Mk(pz1), . . . ,Mk(pzm)],Mk(py) = 0]→ (w)1 = [[]B,]pIxi
,Mk+1(pIxi

) = Mk(pIxi
)− 1,

]p(I+1)xi
,Mk+1(p(I+1)xi

) = Mk(p(I+1)xi
),]pBxi

,Mk+1(pBxi
) = Mk(pBxi

) + 1],

[Mk+1(px1), . . . , . . . ,Mk+1(pxn)], [Mk+1(pz1), . . . ,Mk(pzm)],Mk+1(py) = Mk(py)]

Therefore we get that:

Tz(w) ⇔ [[[ln(w) = 2 ∧ ln(w)1,1 = ln(w)2,1,1 ∧ (w)1,1,1 = (w)2,1,1,1 ∧ (w)1,1,2 =

(w)2,1,1,2 ∧ (w)1,1,3 = (w)2,1,1,3 − 1 ∧ (w)1,1,4 = (w)2,1,1,4 ∧ (w)1,1,5 = (w)2,1,1,5 +

1 ∧ (w)1,1,6 = (w)2,1,1,6 ∧ (w)1,1,7 = (w)2,1,1,7 ∧ ln(w)1,2 = ln(w)2,1,2 ∧ (w)1,2,1 =

(w)2,1,2,1 ∧ . . . ∧ (w)1,2,i = (w)2,1,2,i > 0 ∧ . . . ∧ (w)1,2,n = (w)2,1,2,n ∧ ln(w)1,3 =

ln(w)2,1,3 ∧ (∀)mi=1((w)1,3,i = (w)2,1,3,i) ∧ (w)1,4 = (w)2,1,4] ∨ [ln(w) = 2 ∧ ln(w)1,1 =

ln(w)2,1,1∧(w)1,1,1 = (w)2,1,1,1∧(w)1,1,2 = (w)2,1,1,2∧(w)1,1,3 = (w)2,1,1,3−1∧(w)1,1,4 =

(w)2,1,1,4∧(w)1,1,5 = (w)2,1,1,5+1∧(w)1,1,6 = (w)2,1,1,6∧(w)1,1,7 = (w)2,1,1,7∧ln(w)1,2 =

ln(w)2,1,2 ∧ (∀)ni=1((w)1,2,i = (w)2,1,2,i) ∧ ln(w)1,3 = ln(w)2,1,3 ∧ (w)1,3,1 = (w)2,1,2,1 ∧
. . .∧ (w)1,3,i = (w)2,1,3,i > 0∧ . . .∧ (w)1,3,m = (w)2,1,3,m ∧ (w)1,4 = (w)2,1,4]∨ [ln(w) =

2 ∧ ln(w)1,1 = ln(w)2,1,1 ∧ (w)1,1,1 = (w)2,1,1,1 ∧ (w)1,1,2 = (w)2,1,1,2 ∧ (w)1,1,3 =

COMPUTABILITY POWER OF AN EXTENDED PETRI NET MODEL (APN) 41

(w)2,1,1,3 − 1 ∧ (w)1,1,4 = (w)2,1,1,4 ∧ (w)1,1,5 = (w)2,1,1,5 + 1 ∧ (w)1,1,6 = (w)2,1,1,6 ∧
(w)1,1,7 = (w)2,1,1,7 ∧ ln(w)1,2 = ln(w)2,1,2 ∧ (∀)ni=1((w)1,2,i = (w)2,1,,i) ∧ ln(w)1,3 =

ln(w)2,1,3∧(∀)mi=1((w)1,3,i = (w)2,1,3,i)∧(w)1,4 = (w)2,1,4 > 0]]∨[[ln(w) = 2∧ln(w)1,1 =

ln(w)2,1,1∧(w)1,1,1 = (w)2,1,1,1∧(w)1,1,2 = (w)2,1,1,2∧(w)1,1,3 = (w)2,1,1,3−1∧(w)1,1,4 =

(w)2,1,1,4∧(w)1,1,5 = (w)2,1,1,5∧(w)1,1,6 = (w)2,1,1,6∧(w)1,1,7 = (w)2,1,1,7+1∧ln(w)1,2 =

ln(w)2,1,2 ∧ (w)1,2,1 = (w)2,1,2,1 ∧ . . . ∧ (w)1,2,i = (w)2,1,2,i = 0 ∧ . . . ∧ (w)1,2,n =

(w)2,1,2,n ∧ ln(w)1,3 = ln(w)2,1,3 ∧ (∀)mi=1((w)1,3,i = (w)2,1,3,i) ∧ (w)1,4 = (w)2,1,4] ∨
[ln(w) = 2∧ ln(w)1,1 = ln(w)2,1,1∧(w)1,1,1 = (w)2,1,1,1∧(w)1,1,2 = (w)2,1,1,2∧(w)1,1,3 =

(w)2,1,1,3−1∧(w)1,1,4 = (w)2,1,1,4∧(w)1,1,5 = (w)2,1,1,5∧(w)1,1,6 = (w)2,1,1,6∧(w)1,1,7 =

(w)2,1,1,7+1∧ln(w)1,2 = ln(w)2,1,2∧(∀)ni=1((w)1,2,i = (w)2,1,2,i)∧ln(w)1,3 = ln(w)2,1,3∧
(w)1,3,1 = (w)2,1,2,1∧ . . .∧ (w)1,3,i = (w)2,1,3,i = 0∧ . . .∧ (w)1,3,m = (w)2,1,3,m∧ (w)1,4 =

(w)2,1,4] ∨ [ln(w) = 2 ∧ ln(w)1,1 = ln(w)2,1,1 ∧ (w)1,1,1 = (w)2,1,1,1 ∧ (w)1,1,2 =

(w)2,1,1.2∧(w)1,1,3 = (w)2,1,1,3−1∧(w)1,1,4 = (w)2,1,1,4∧(w)1,1,5 = (w)2,1,1,5∧(w)1,1,6 =

(w)2,1,1,6 ∧ (w)1,1,7 = (w)2,1,1,7 + 1∧ ln(w)1,2 = ln(w)2,1,2 ∧ (∀)ni=1((w)1,2,i = (w)2,1,,i)∧
ln(w)1,3 = ln(w)2,1,3 ∧ (∀)mi=1((w)1,3,i = (w)2,1,3,i) ∧ (w)1,4 = (w)2,1,4 = 0]]]

which can be reduced to:

Tz(w) ⇔ [[ln(w) = 2 ∧ ln(w)1,1 = ln(w)2,1,1 ∧ (w)1,1,1 = (w)2,1,1,1 ∧ (w)1,1,2 =

(w)2,1,1,2 ∧ (w)1,1,3 = (w)2,1,1,3 − 1 ∧ (w)1,1,4 = (w)2,1,1,4 ∧ (w)1,1,5 = (w)2,1,1,5 +

1 ∧ (w)1,1,6 = (w)2,1,1,6 ∧ (w)1,1,7 = (w)2,1,1,7 ∧ ln(w)1,2 = ln(w)2,1,2 ∧ (w)1,2,1 =

(w)2,1,2,1 ∧ . . . ∧ (w)1,2,i = (w)2,1,2,i > 0 ∧ . . . ∧ (w)1,2,n = (w)2,1,2,n ∧ ln(w)1,3 =

ln(w)2,1,3∧ (∀)mi=1((w)1,3,i = (w)2,1,3,i)∧ (w)1,4 = (w)2,1,4 > 0]∨ [ln(w) = 2∧ ln(w)1,1 =

ln(w)2,1,1∧(w)1,1,1 = (w)2,1,1,1∧(w)1,1,2 = (w)2,1,1,2∧(w)1,1,3 = (w)2,1,1,3−1∧(w)1,1,4 =

(w)2,1,1,4∧(w)1,1,5 = (w)2,1,1,5∧(w)1,1,6 = (w)2,1,1,6∧(w)1,1,7 = (w)2,1,1,7+1∧ln(w)1,2 =

ln(w)2,1,2 ∧ (w)1,2,1 = (w)2,1,2,1 ∧ . . . ∧ (w)1,2,i = (w)2,1,2,i = 0 ∧ . . . ∧ (w)1,2,n =

(w)2,1,2,n ∧ ln(w)1,3 = ln(w)2,1,3 ∧ (∀)mi=1((w)1,3,i = (w)2,1,3,i) ∧ (w)1,4 = (w)2,1,4 = 0]].

This reduction could have also been derived by analyzing the APN for the test for

zero case, where the only places whose marking changes are pIxi
and p(I+1)Xi+1

(for the

no-branching case), and pIxi
and pBXi

(for the branching case) with all the remaining

places being unchanged.

Therefore, we may define inductively:

T (w)⇔ Const(w) ∧ [Inc(w) ∨Dec(w) ∨ Tz(w)] ∧ [(∀)ln(w)
i=2 T ((w)i)]

which is by course of values induction primitive recursive.

• Step 5. Define Tn and U .

Let:

Tn(e, x1, . . . , xn, w)⇔ T (w) ∧ (w)1,1 = e ∧ (w)ln(w),2 =

[M0(px1), . . . ,M0(pxn)]

and

U(w) = (w)1,4,

42 Z. R. KONIGSBERG

which are primitive recursive. Where Tn is the predicate that translates: w is

the number of a computation tree of the value of the arithmetic operation with

associated number e, on inputs x1, x2, . . . , xn.

• Step 6. End of the proof.

Let f(x1, x2, . . . , xn) be APN computable with number e. Since f is total, it is

guarantee that for every set of values of the input variables there is a computation

tree employing the computation procedure given by e. Therefore searching for

the smallest tree i.,e., the one with the smallest code number and extracting the

value of the function by looking at its fourth node number we get that:

f(x1, x2, . . . , xn) = U(µwTn(e, x1, x2, . . . , xn, w)).

The following corollary is a direct consequence of Theorems 16 and 18.

Corollary 21. f(x1, x2, . . . , xn) is APN computable if and only if f is recursive.

Finally, the claim that APN are equivalent to Turing machines is established.

Corollary 22. f(x1, x2, . . . , xn) is APN computable if and only if f is Turing com-

putable.

Proof. It follows from the fact that recursive is equivalent to Turing computability

[6].

CONSEQUENCES

• The normal form theorem is also true for APN partial computable functions.

It is just enough to observe that µwTn(k, x1, x2, . . . , xn, w) is defined if and only

if there exists an APN -computation, that is, if and only if f is defined.

• An enumeration of all partial computable functions through number e is ob-

tained. In this sense the APN model of computation is universal.

• The number e is not unique since it can be increased by adding superfluous

arithmetical operations. This is formally proved by the Padding lemma (see

[4]).

REFERENCES

[1] S. Kleene. Introduction to Metamathematics. Noth Holland Publishing Co. Amsterdam, Gronin-
gen (1952).

[2] J. C. Sheperdzon and H. E. Sturgis. Computability of Recursive Functions. Journal of the ACM,
vol 10, no 2, 1963.

[3] J. L. Peterson. Petri Net Theory and The Modelling of Systems. Prentice Hal 1981.
[4] P. Odifreddi. Recursion Theory, The theory of functions and sets of natural numbers. Studies in

logic and the foundations of mathematics, Elsevier 1999.

COMPUTABILITY POWER OF AN EXTENDED PETRI NET MODEL (APN) 43

[5] M. Davis, R. Sigal and E. Weyuker. Computability, Complexity, and Languages, Fundamentals
of Theoretical Computer Science. Academic Press, 1983.

[6] M. Davis. Computability and Unsolvability. McGraw-Hill 1958.
[7] Z. Retchkiman. Modeling and Stability Analysis of fault queuing systems. Neural Parallel and

Scientific Computations, (20) 2012.
[8] Z. Retchkiman. The modeling and stability problem for a communication network system. Neural

Parallel and Scientific Computations, (22) 2014.

