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ABSTRACT. This article deals with classes of antagonistic games with two players. A game is

specified in terms of two “hostile” stochastic processes representing mutual attacks upon random

times that exert casualties of random magnitudes. The game ends when one of the players is defeated,

that is, when the amounts of casualties to the players cross respective tolerance thresholds. We target

the first passage time τρ of the defeat and the amount of casualties to either player upon τρ. Here

we validate our claim of analytic tractability in formulas obtained in [1] under various transforms.
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1. Introduction

In this paper we model purely antagonistic stochastic games of two players, A and

B, who periodically attack each other according to two independent marked random

measures

A :=
∑

j≥1

wjεsj
, and B :=

∑

k≥1

zkεtk , s1, t1 > 0. (1.1)

The game evolves as a mutual conflict involving two players A and B hitting

each other at random until one of the players is “exhausted.” In short, the players

attack each other in accordance with two independent marked point processes A and

B of (1.1) on a probability space (Ω,F , P ) , where εa is the Dirac point mass at point

a ∈ R,
∑

j≥1 εsj
, and

∑

k≥1 εtk are underlying point random measures representing

the times of attacks, and the marks wj’s and zk’s (nonnegative random variables)

represent respective damages to players A and B. Players A and B can sustain the

attacks until their respective cumulative casualties cross thresholds M andN (positive

real numbers). At a time when it takes place (called the first passage time), i.e. when

one of the players loses the game, the game should formally stop.

However, the game is observed upon random epochs of time T = {τ1, τ2, . . .} and

the outcome of the game is not known in real time. The first passage time is then
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shifted to an epoch τρ, i.e. upon one of the observation instants of time. Thus, the

narrative of the game is delayed allowing the players to continue fighting each other

beyond their assumed merits of endurance, thereby letting the game to follow the

path of a more realistic scenario.

In the sequel, we make assumptions on A, B, as being Poisson marked processes

and T being a Poisson point process. If Xi and Yi are casualties to players A and B

over the interval (τi−1, τi], and observed upon τi,then

Ak = X0 +X1 + · · · +Xk, Bk = Y0 + Y1 + · · ·+ Yk (1.2)

are the cumulative damages to players A and B by time τk. With the exit indices

ν1 := inf{j ≥ 0 : Aj = X0 +X1 + · · ·+Xj ≥ M (1.3)

and

ν2 := inf{k ≥ 0 : Bk = Y0 + Y1 + · · · + Yk ≥ N}, (1.4)

and

ρ := min {ν1, ν2} , (1.5)

the random time τρ is the observed first passage time or the observed ruin time or the

observed exit time from the game. We recall that the real ruin time is unknown and

it takes place anywhere between τρ−1 (observed pre-exit time) and τρ. Obviously, the

finer are the observation times, the shorter is a delay of the end of the game. The

other information of interest are Aρ and Bρ being the cumulative damages to players

A and B upon the ruin time. Clearly, Aρ ≥ M or Bρ ≥ N, whereas Aρ−1 < M and

Bρ−1 ≤ N .

In this paper we target the joint transform

Φ (u, v, θ) = EuAρvBρe−θτρ , ‖u‖ ≤ 1, ‖v‖ ≤ 1, Reθ ≥ 0, (1.6)

partially discrete due to integer-valued marks wj’s and zk’s and partially continuous

because of the third component τρ valued in a continuum set.

A method of finding Φ was suggested in Agarwal and Dshalalow [1] where the

authors treated a multivariate marked point process with mutually dependent marks

of which exactly two were so-called active. The latter meant that the cumulative

marks identified as active are to cross thresholds (such as M and N previously in-

troduced) which bring the entire process to a hold upon crossing at the first passage

time, whereas the rest of the marks identified as passive just assume their respec-

tive values. One of them is the first passage time τρ. Although functional Φ is a

special case of a more general functional in [1] (that was not related to a game), we

want to demonstrate the actual use of some discrete operators proposed in [1] and

not only that. We also want to show that the mathematical outcome of the game is

analytically tractable and numerically tame.



DISCRETE OPERATIONAL CALCULUS 57

The following result is due to [1] in its special and a largely abridged form.

Theorem 1. (Agarwal-Dshalalow [1]). Under the assumptions (1.1–1.6), the

functional Φ of the process can be expressed through γ (u, v, θ) = EuX1vY1e−θτ1 and

it satisfies the following formula:

Φ (u, v, θ) = EuAρvBρe−θτρ = 1− [1− γ(u, v, θ)]DM−1,N−1
xy

{

1

1 − γ(ux, vy, θ)

}

, (1.7)

where the operator D (applied to a function ϕ : C3 → C analytic at x = y = 0)

defined as

Dk,m
x,y ϕ (x, y, z) =

{

limx→0,y→0
1

k!m!
∂k+m

∂xk∂ym

[

1
(1−x)(1−y)

ϕ (x, y, z)
]

, k,m ≥ 0

0, k < 0 or m < 0
.

(1.8)

2. Motivation

The class of antagonistic games which we study occur almost in every sphere of

life. The following are some examples of games pertinent to our models.

Cancer Treatment. Some cancers are curable while others are not. Most

metastatic cancer (which spreads from a primary site to other parts of the body

over lymph nodes and blood vessels) are incurable but can be managed to some

extent using radiation alone or with other forms of treatment like chemotherapy. In

relation to the antagonistic games, an oncologist, along with his/her treatment, can be

regarded as player A while the tumor - as player B. The oncologist attacks the tumor

cells with radiation and/or chemotherapy. While the tumor can shrink under the

treatment, it may also continue spreading to other parts of the body (metastasize).

Notice that any treatment by itself always has side effects (such as weakening immune

system) that can be regarded as a collateral damage. At some point, when the cancer

continues to spread and thus the body does not respond to the treatment, unless

there are alternative options, player A is defeated. On the other hand, if the body

well responds to the treatment and the tumor vanishes (the state of remission), we

declare that player B is defeated. In a more modest form of a defeat, the tumor can

shrink or significantly shrink instead of disappearing entirely.

Note that cancer cells like bacteria cells typically divide in two progeny and they

initially evolve as a deterministic branching process. However, some cancer cells are

eliminated by T-killer cells, and at some point, when cancer matures, it evolves not

from a single but many cells. If we also take into consideration mutations exhibiting

an increase of the number of chromosomes (beginning in 46 to 64 and further), on

an early stage, the general tumor development becomes rather chaotic allowing us to

model it by an independent and stationary increment process.
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Since in this paper the “nature” of attacks goes to integer-valued increments, and

since we work on entirely discrete operational calculus, we would like to emphasize

why some applications can contain entirely discrete components (or at worst they can

be approximated by units made arbitrarily small).

Global Military Warfare. This is a situation where a country or group of coun-

tries are at war with one another under military operations. One classical example

is the war between the United States and Japan during the WWII which consisted

of multiple phases [8]. Phase 1 began with economic sanctions imposed on Japan

by the US in 1940–1941 due to Japan’s aggression in Manchuria. Japan tried to

negotiate with the US (apparently until November 26 of 1941), but the concessions

offered by the Japanese were not satisfactory to the US, and Japan not wishing to

give in had no other choice as to strike on December 7, 1941. This corresponds to the

beginning of phase 2. Undoubtedly, Japan was not ruined economically, but it was

significantly crippled (being deprived of steel and oil, to name a few). At the same

time Japan did not want to stop her campaign in China, which the US chose not to

tolerate, also fearing Japan’s further expansion. The Japanese Pearl Harbor attack

followed by their Pacific campaign is yet another intermediate phase prior to a full

scale war, because Japan believed the US will be deterred from further actions under

the inflicted casualties and loss of territories in the Pacific.

Global Economic Warfare. A recent economic confrontation between the

US/Europe and Russia is an antagonistic game. Here player A will be the US/Europe

while player B is Russia. US and Europe stroke Russia with numerous sanctions in

an attempt to weaken its economy and to drive Russia out of Ukraine, while Russia

reciprocated with their own sanctions (such as forbidding US and Canada officials

from entering Russia and adopting a ban on fruit, vegetables, fish, meat, and dairy

products from the US and Europe) to counter such attacks.

Corporate Economic Hostilities. Here we refer to a hostile relationship be-

tween two or more corporations which have a similar goal or offer similar services. In

particular, we consider ride sharing companies (examples include Uber and Lyft) and

taxi cabs (such as the Yellow Cab which is a sole licensed taxi cab company in Long

Beach city). Uber in recent times have had to reduce their fares for their riders and

this has brought about a drift of riders from Yellow Cab to Uber while they also make

use of recent and flashy cars to attract its riders and make them feel more comfort-

able compared to Yellow Cab. This move by Uber is some form of attack on Yellow

Cab which seems to be working as Uber gains more riders defecting from Yellow Cab

riders. In turn, Yellow Cab attacks Uber now by calling on the authorities to make

ride sharing companies face the same regulatory burdens as they do. While at the

same time they are working with city councils to remove taxi’s fare floor, discount
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fares as condition warrants, provide an ordering applications as well as getting a new

branding identity.

Existing Literature. The idea of utilizing multivariate random walk processes

in stochastic games goes back to Agarwal and Dshalalow [1] and various earlier work

of Dshalalow (cf. [1] for a related bibliography). Variants of stochastic games were

studied in papers [8–11] by the first author and his collaborators, among them -

games with coalitions [10]. There were several efforts to apply formulas in [1], such as

Theorem 1 and alike, with different degree of success. One of them was Dshalalow and

Treerattrakoon [11] with continuous operational calculus. Unlike traditional methods

in operational calculus and special functions, in this paper we open a new avenue of

discrete operational calculus utilizing discrete inverse formulas for a class of bivariate

operators D introduced in (1.9) which we explore in section 3. Such tools are non-

existent in the literature except for a few scattered results in articles by the first

author and his collaborators. We manage to obtain a fully tractable formula for the

joint functional Φ of three dependent components of the game, the first observed

passage time τρ and cumulative casualties of the players. We also obtain explicitly

the marginal probability density function of τρ.

The subject of our modeling is entirely focused on fully antagonistic games which

are popular in game theory. They cover a range of applications in economics [4–6, 12,

14, 15, 19], warfare [3, 5, 13, 18, 20], and biology [16] to name a few. The methodology

we use is based on fluctuation theory of stochastic processes (cf. [1, 2, 17]).

3. A Special Case with Discrete Components

Notice that in most applications, the functional γ (u, v, θ) = EuX1vY1e−θτ1 can be

readily found, as it is in our case. Let us assume that the mutual attacks on players A

and B follow in accordance with two independent ordinary Poisson processes A and

B [specified in (1.1)] of intensities λ and µ.

Since A and B are ordinary, the respective marks wj’s and zk’s are 1 a.s. Further-

more, the observations take place at times τ1, τ2, . . . that forms a renewal process, with

interrenewal times ∆1 = τ1,∆2 = τ2 − τ1, . . . ∈ [∆] , i.e., being identically distributed

with the common Laplace-Stieltjes transform

γ (θ) = Ee−θ∆. (3.1)

In this case, since X and Y are conditionally independent given ∆,

γ (u, v, θ) = EuX1vY1e−θτ1 = E
[

E
[

uX1vY1e−θτ1∆
]]

= E
[

e−θ∆E
[

uX1∆
]

E
[

vY1∆
]]

= E
[

e−θ∆eλ∆(u−1)eµ∆(v−1)
]

= γ [θ + λ− λu+ µ− µv] . (3.2)
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In the special case when ∆ ∈ [Exp (γ)] (exponentially distributed with parameter

γ), from (3.2) we have

γ (u, v, θ) =
γ

γ + λ+ µ+ θ − λu− µv
(3.3)

and thus

1

1 − γ(u, v, θ)
= 1 +

γ

p − λu − µv
, where p = λ+ µ+ θ. (3.4)

Now we are going to use the following properties of the D-operator [2, 7].

Theorem 2. (cf. Dshalalow [7]).

(i) Dk,m
x,y = Dk

x ◦ D
m
y = Dm

y ◦ Dk
x

(ii) D is a linear functional with Dx1 (x) = 1, where 1(x) = 1 for all x ∈ R.

(iii) Dk
x (xjg(x)) = Dk−j

x g(x).

(iv) For any real number b it holds true that

Dk
x

{

1
1−bx

}

=

{

1−bk+1

1−b
, b 6= 1

k + 1, b = 1
.

(v) For any real number a and for a positive integer n

Dk
x

{

1
(1−ax)n

}

=

{

∑k

j=0

(

n+j−1
j

)

aj , except for a = n = 1

k + 1, a = n = 1
.

(vi) For two real numbers a and b it holds

Dk
x

{

1
1−bx

1
(1−ax)n

}

=

{

1
1−b

∑k
j=0

(

n+j−1
j

)

(

aj − bk+1
(

a
b

)j
)

, b 6= 1
∑k

j=0

(

n+j−1
j

)

aj (k − j + 1) , b = 1

Theorem 3. For the special case of a discrete antagonistic game of two players,

the joint functional Φ satisfies the following formulas:

Φ(u, v, θ) =
γ

γ + λ (1 − u) + µ (1 − v) + θ

(

1 −
λ (1 − u) + µ (1 − v) + θ

λ+ µ (1 − v) + θ
ψ

)

(3.5)

where

ψ =
1 − bM

1 − b
−

1

1 − b
CN

M−1
∑

j=0

(

N + j − 1

j

)[

aj − bM
(a

b

)j
]

(3.6)

a =
λu

p
, b =

λu

p− µv
, C =

µv

p
, p = λ + µ+ θ (3.7)

Proof. From Theorem 2(i),

DM−1, N−1
xy

{

1

1 − γ(ux, vy, θ)

}

= DM−1
x

{

DN−1
y

{

1

1 − γ(ux, vy, θ)

}}

.
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From (3.3), Theorem 2(ii) and (iv), and using notation (3.7),

DN−1
y

{

1

1 − γ(ux, vy, θ)

}

= DN−1
y

{

1 +
γ

p − λux

1

1 − µv

p−λux
.y

}

= 1 +
γ

p − λux
· DN−1

y

{

1

1 − µv

p−λux
· y

}

= 1 +
γ

p− λux

1 −
(

µv

p−λux

)N

1 − µv

p−λux

= 1 + γ ·
1 −

[

µv

p−λux

]N

p − µv − λux

= 1 +
γ

p− µv
·

1

1 − λu
p−µv

x



1 −

(

µv

p

)N
(

1

1 − λu
p
x

)N


 .

After some algebra,

DN−1
y

{

1

1 − γ(ux, vy, θ)

}

= 1 +
γ

p− µv

[

1

1 − bx
−

1

1 − bx
CN 1

(1 − ax)N

]

.

Then

DM−1, N−1
xy

{

1

1 − γ(ux, vy, θ)

}

= DM−1
x

{

1 +
γ

p− µv

[

1

1 − bx
− CN 1

1 − bx

1

(1 − ax)N

]}

.

From (iv), and (vi) with b 6= 1 as in case 1 of Theorem 2(vi),

DM−1, N−1
xy

{

1

1 − γ(ux, vy, θ)

}

= 1 +
γ

p− µv

[

1 − bM

1 − b
−

1

1 − b
CN

M−1
∑

j=0

(

N + j − 1

j

)[

aj − bM
(a

b

)j
]

]

.

By (1.8),

Φ (u, v, θ) = 1 − [1 − γ(u, v, θ)]DM−1,N−1
xy

{

1

1 − γ(ux, vy, θ)

}

= 1 − [1 − γ(u, v, θ) ]

{

1 +
γ

p− µv

[

1 − bM

1 − b
−

1

1 − b
CN

×
M−1
∑

j=0

(

N + j − 1

j

)[

aj − bM
(a

b

)j
]

]}

after some algebra

Φ (u, v, θ) =
γ

γ + p− λu− µv

(

1 −
p− µv − λu

p− µv
ψ

)

(3.8)
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where

ψ =
1 − bM

1 − b
−

1

1 − b
CN

M−1
∑

j=0

(

N + j − 1

j

)[

aj − bM
(a

b

)j
]

(3.9)

a =
λu

λ+ µ+ θ
, b =

λu

λ+ µ+ θ − µv
.

The statement now follows from Theorem 1 and (3.3–3.9).

Example 1. The Marginal Transform of τρ. Letting u = v = 1 in Φ (u, v, θ) of

Theorem 3 we arrive at

Ee−θτρ =
γ

γ + θ

{

(

λ

λ+ θ

)M

+

(

µ

λ+µ+θ

)N M−1
∑

j=0

(

N + j − 1

j

)(

λ

λ+ µ+ θ

)j

×

[

1 −

(

λ

λ+ θ

)M−j
]}

.

Example 2. The Marginal Transform of Aρ. Letting v = 1 and θ = 0 in

Φ (u, v, θ) of Theorem 3 we arrive at

EuAρ =
γ

γ + λ (1 − u)

[

uM +

(

µ

µ+ λ

)N M−1
∑

j=0

(

N + j − 1

j

)(

λu

λ+ µ

)j
(

1 − uM−j
)

]

.

Example 3. The Marginal Transform of Bρ. Letting u = 1 and θ = 0 in

Φ (u, v, θ) of Theorem 3 we arrive at

EvBρ =
γ

γ + µ (1 − v)

[

bM +

(

µv

λ+ µ

)N M−1
∑

j=0

(

N + j − 1

j

)(

λ

λ+ µ

)j
(

1 − bM−j
)

]

where b = λ
λ+µ(1−v)

.

To find the probability density function of τρ we make use of the following inverse

Laplace transform formulas which can be readily proved.

Lemma 4. Let α, γ, λ be some real fixed parameters. Then,

(i) L−1
θ

(

1
γ+θ

1
(λ+θ)n

)

(t)

= e−γt 1
(λ−γ)n

[

1 − e(γ−λ)t
∑n−1

i=0
(λ−γ)i

i!
ti
]

= e−γt

(λ−γ)nP (n− 1, (λ− γ) t)

(ii) L−1
θ

(

1
γ+θ

1
(λ+θ)m

1
(α+θ)n

)

(t) = g (α, λ)

{

1

(λ−γ)m−k

[

e−γt − e−λt
∑m−k−1

r=0
(λ−γ)r

r!
tr
]

−
∑n+k−1

i=0 (α− λ)i
[

(

m+i−k−1
i

)

1

(λ−α)m+i−k

×
(

e−γt − e(α−λ−γ)t
∑m+i−k−1

s=0
(λ−α)s

s!
ts
)]

}

= e−γtg (α, λ)

{

1

(λ−γ)m−k

[

1 − e−(λ−γ)t
∑m−k−1

r=0
(λ−γ)r

r!
tr
]

− 1

(λ−α)m−k

∑n+k−1
i=0 (−1)i

(

m+i−k−1
i

)

(

1 − e−(λ−α)t
∑m+i−k−1

s=0
(λ−α)s

s!
ts
)

}
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also in the form

= e−γt (−1)n∑m−1
k=0

(

n−k−1
k

)

1

(λ−α)n+k

{

1

(λ−γ)m−kP (m− k + 1, (λ− γ) t)

− 1

(λ−α)m−k

∑n+k−1
i=0 (−1)i

(

m+i−k−1
i

)

P (m+ i− k − 1, (λ− α) t)

}

where

g (α, λ) =
1

(n− 1)! (α− λ)n

m−1
∑

k=0

(n+ k − 1)!

k!

1

(λ− α)k

= (−1)n
m−1
∑

k=0

(

n− k − 1

k

)

1

(λ− α)n+k

and

P (n, αt) = 1 −
Γ (n, αt)

Γ (n)
= 1 − e−αt

n
∑

j=0

(αt)j

j!

is the regularized gamma function.

Example 4. The Probability Density Function f
τρ

of τρ. Revisiting Example 1

we go further on obtaining the probability density function of the first observed

passage time of the game end. Since Ee−θτρ is the Laplace-Stieltjes transform, we

need to divide it by θ and then take the Laplace inverse to obtain the density function.

fτρ
(t) = L−1

θ

{

Ee−θτρ
}

(t)

= L−1
θ

{

γλM

(γ + θ)(λ+ θ)M
+

M−1
∑

j=0

(

N + j − 1

j

)

γλjµN

(γ + θ)(λ+ µ+ θ)N+j

−
M−1
∑

j=0

(

N + j − 1

j

)

γλMµN

(γ + θ)(λ + θ)M−j(λ+ µ+ θ)N+j

}

(t) .

By Lemma 4 (i–ii) and after some algebra we arrive at

fτρ
(t) =

γλMe−γt

(λ− γ)M
P (M − 1, λ− γ)

+ γµNe−γt

M−1
∑

j=0

(

N + j − 1

j

)

λj

(λ+ µ− γ)N+j
P (N + j − 1, λ+ µ− γ)

− γµNe−γt

M−1
∑

j=0

(

N + j − 1

j

)

λM−N−j

M−j−1
∑

k=0

(

N + j − k − 1

k

)

(−1)k

λk

×

{

1

(λ− γ)M−j−k
P (M − j − k + 1, (λ− γ) t)

−
(−1)M−j−k

µM−j−k

N+j+k−1
∑

l=0

(−1)l

(

M − j + l − k − 1

l

)

P (M − j + l − k − 1,−µt)

}

.
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