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ABSTRACT. Let Dn(θ) =
∑

n

k=0
(Ak cos kθ + Bk sin kθ) be a random trigonometric polynomial

where the coefficients A0, A1, . . . , An, and B0, B1, . . . , Bn, form sequences of Gaussian random vari-

ables. Moreover, we assume that the increments ∆1

k
= Ak−Ak−1, ∆2

k
= Bk−Bk−1, k = 0, 1, 2, . . . , n,

are independent, with conventional notation of A−1 = B−1 = 0. The coefficients A0, A1, . . . , An,

and B0, B1, . . . , Bn, can be considered as n consecutive observations of a Brownian motion. In this

paper we provide the asymptotic behavior of the expected number of real roots of Dn(θ) = 0 as order
2
√

2n√
3

. Also by the symmetric property assumption of coefficients, i.e., Ak ≡ An−k, Bk ≡ Bn−k, we

show that the expected number of real roots is of order 2n√
3
.
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1. PRELIMINARIES

There are two different forms of random trigonometric polynomials previously

studied.

Tn(θ) =
n
∑

k=0

Ak cos(kθ)

and

(1.1) Dn(θ) =
n
∑

k=0

(Ak cos kθ + Bk sin kθ),

Dunnage [2] first studied the classical random trigonometric polynomials T (θ). He

showed that in the case of identically and normally distributed coefficients A0, A1, . . . ,

An with mean zero and variances 1, the expected number of real roots in the interval

(0, 2π), outside of an exceptional set of measure zero, is 2n√
3
+O{n11/3(log n2/3)}, when

n is large. In Farahmand [3, 4, 5], it is shown the asymptotic formula for the expected

number of K-level crossings remain valid when the level K increases. The work of

Sambandham and Renganathan [13] and Farahmand [6] among other obtained this

result for different assumption on the distribution of the coefficients. For various
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aspects on random polynomials see Bharucha-Reid and Sambandham [1], which in-

cludes a comprehensive reference. Farahmand and Sambandham [8] study a case of

coefficients with different mean and variances, which shows an interesting results for

the expected number of level crossing in the interval (0, 2π). Farahmand and T. Li [9]

obtained asymptotic behavior for the expected number of real roots of two different

forms of random trigonometric polynomials Tn(θ) and Dn(θ), where the coefficients

of polynomials are normally distributed random variables with different means and

variances. Also They studied a case of reciprocal random polynomials for Tn(θ) and

Dn(θ). We consider the classical forms of random trigonometric polynomials Dn(θ)

where the coefficients A0, A1, . . . , An and B0, B1, . . . , Bn be a mean zero Gaussian

random sequence in which the increments ∆
(1)
k = Ak − Ak−1 and ∆

(2)
k = Bk − Bk−1,

k = 0, 1, 2, . . . , are independent, A−1 = 0, B−1 = 0. The sequence A0, A1, . . .

and B0, B1, . . . may be considered as successive Brownian points, i.e., Ak = W1(tk),

Bk = W2(tk),k = 0, 1, . . . , n, where t0 < t1 < · · · and {Wi(tk), t ≥ 0}, i = 1, 2, are the

standard Brownian motion. In this physical interpretation, Var(∆
(i)
k ) is the distance

between successive times tk−1, tk. We note that

Ak = ∆
(1)
0 + ∆

(1)
1 + · · ·+ ∆

(1)
k , Bk = ∆

(2)
0 + ∆

(2)
1 + · · ·+ ∆

(2)
k k = 0, 1, . . . , n,

where ∆
(i)
k ∼ N(0, σ2

i ), k = 0, 1, . . . , n, i = 1, 2, and ∆
(i)
k are independent. Thus

Dn(θ) =

n
∑

k=0

[(

n
∑

j=k

cos jθ

)

∆
(1)
k +

(

n
∑

j=k

sin jθ

)

∆
(2)
k

]

=

n
∑

k=0

(

ak1(θ)∆
(1)
k + bk1(θ)∆

(2)
k

)

and

D
′

n(θ) =

n
∑

k=0

[(

−
n
∑

j=k

j sin jθ

)

∆
(1)
k +

(

n
∑

j=k

j cos jθ

)

∆
(2)
k

]

=
n
∑

k=0

(

ck1(θ)∆
(1)
k + dk1(θ)∆

(2)
k

)

where

ak1(θ) =
n
∑

j=k

cos jθ =
sin(2n + 1) θ

2
− sin(2k − 1) θ

2

2 sin( θ
2
)

,

bk1(θ) =
n
∑

j=k

sin jθ =
cos(2k − 1) θ

2
− cos(2n + 1) θ

2

2 sin( θ
2
)

,

ck1(θ) = −
n
∑

j=k

j sin jθ =

(

sin(2n + 1) θ
2
− sin(2k − 1) θ

2

2 sin( θ
2
)

)′

,
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(1.2) dk1(θ) =
n
∑

j=k

j cos jθ =

(

cos(2k − 1) θ
2
− cos(2n + 1) θ

2

2 sin( θ
2
)

)

Now given Dn(θ) in (1.1) with a symmetric property of coefficients, i.e., Ak ≡ An−k

and Bk ≡ Bn−k for k = 0, 1, . . . , n, we can write Qn(θ) for odd n’s as follows:

(1.3) Qn(θ) =

n−1

2
∑

k=0

[Ak(cos kθ + cos (n − k)θ) + Bk(sin kθ + sin (n − k)θ)]

The polynomials will have one additional term for even n’s and we will not discuss

this case here.

Qn(θ) =

n−1

2
∑

k=0

[Ak(cos kθ + cos (n − k)θ) + Bk(sin kθ + sin (n − k)θ)]

=

n−1

2
∑

k=0









n−1

2
∑

j=k

(cos jθ + cos (n − j)θ)



∆
(1)
k +





n−1

2
∑

j=k

(sin jθ + sin (n − j)θ)



∆
(2)
k





=

n−1

2
∑

k=0

(

ak2(θ)∆
(1)
k + bk2(θ)∆

(2)
k

)

,

Q′
n(θ) =

n−1

2
∑

k=0







−
n−1

2
∑

j=k

(j sin jθ + (n − j) sin (n − j)θ)



∆
(1)
k

+





n−1

2
∑

j=k

(j cos jθ + (n − j) cos (n − j)θ)



∆
(2)
k





=

n−1

2
∑

k=0

(

ck2(θ)∆
(1)
k + dk2(θ)∆

(2)
k

)

where by using this results

ak2(θ) =

n−1

2
∑

j=k

(cos jθ + cos (n − j)θ) =
sin(2n − 2k + 1) θ

2
− sin(2k − 1) θ

2

2 sin θ
2

,

bk2(θ) =

n−1

2
∑

j=k

(sin jθ + sin (n − j)θ) =
cos(2k − 1) θ

2
− cos(2n − 2k + 1) θ

2

2 sin θ
2

,

ck2(θ) = −
n−1

2
∑

j=k

(j sin jθ+(n−j) sin (n − j)θ) =

(

sin(2n − 2k + 1) θ
2
− sin(2k − 1) θ

2

2 sin θ
2

)′

,

(1.4)

dk2(θ) =

n−1

2
∑

j=k

(j cos jθ + (n − j) cos (n − j)θ) =

(

cos(2k − 1) θ
2
− cos(2n − 2k + 1) θ

2

2 sin θ
2

)′
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2. Kac-Rice Formula

Let N(0, 2π) be denotes the number of real roots of the random trigonometric

polynomials in the interval (0, 2π) and E(N(0, 2π)) be its expected value. To deal

with the asymptotic behavior of the expected number of real roots of Dn(θ) = 0 and

Qn(θ) = 0, we refer to Kac-Rice formula [10, 11], which is defined as

(2.1) E(N(0, 2π)) =

∫ 2π

0

∆

πA2
dθ,

where ∆2 = A2B2 − C2. For Dn(θ) given in (1.1) we have

A2
D = Var(Dn(θ)) =

n
∑

k=0

(a2
k1(θ)σ

2
1 + b2

k1(θ)σ
2
2),

B2
D = Var(D′

n(θ)) =

n
∑

k=0

(c2
k1(θ)σ

2
1 + d2

k1(θ)σ
2
2),

(2.2) CD = Cov(Dn(θ), D′
n(θ)) =

n
∑

k=0

(ak1(θ)ck1(θ)σ
2
1 + bk1(θ)dk1(θ)σ

2
2),

where ak1(θ), bk1(θ), ck1(θ) and dk1(θ) are defined in (1.2). For Qn(θ) given in (1.3)

we have

A2
Q = Var(Qn(θ)) =

n−1

2
∑

k=0

(a2
k2(θ)σ

2
1 + b2

k2(θ)σ
2
2),

B2
Q = Var(Q′

n(θ)) =

n−1

2
∑

k=0

(c2
k2(θ)σ

2
1 + d2

k2(θ)σ
2
2),

(2.3) CQ = Cov(Qn(θ), Q′
n(θ)) =

n−1

2
∑

k=0

(ak2(θ)ck2(θ)σ
2
1 + bk2(θ)dk2(θ)σ

2
2),

where ak2(θ), bk2(θ), ck2(θ) and dk2(θ) are defined in (1.4).

As in algebraic case the above identities are not well behaved around 0, π and

2π. Therefore we first consider the intervals (ε, π − ε), (π + ε, 2π− ε), where ε is any

positive constant, smaller than π and arbitrary at this point to be chosen later. It

should be positive and small enough to facilitate handling the roots in the intervals

(ε, π − ε), (π + ε, 2π − ε) and for roots inside this two intervals, we use (2.1). For

the real roots lying in the intervals (0, ε), (π − ε, π + ε) and (2π − ε, 2π), which it so

happens, are negligible, we will use a different method based on the Jensen’s theorem.

We now define some functions to make the estimations, define S(θ) = sin(2n +

1)θ/ sin θ, see from [5, page 74] which is continuous at θ = jπ and will occur frequently
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in follows. Since for θ ∈ (ε, π − ε) and θ ∈ (π + ε, 2π − ε), we have |S(θ)| < 1/ sin ε.

Hence, we can obtain

S(θ) = O

(

1

ε

)

Further

S ′(θ) = O
(n

ε

)

, S ′′(θ) = O

(

n2

ε

)

We can show

(2.4)

n
∑

k=0

cos kθ =
sin(2n + 1) θ

2

2 sin θ
2

+
1

2
=

S( θ
2
) + 1

2
= O

(

1

ε

)

,

and

(2.5)
n
∑

k=0

k sin kθ = −S ′( θ
2
)

4
= O

(n

ε

)

,
n
∑

k=0

k2 cos kθ = −S ′′( θ
2
)

8
= O

(

n2

ε

)

,

In similar way, we define P (θ) = cos θ − cos(2n+1)θ
2 sin θ

, we also have |P (θ)| < 1/ sin ε.

Hence, we can obtain

P (θ) = O

(

1

ε

)

Further

P ′(θ) = O
(n

ε

)

, P ′′(θ) = O

(

n2

ε

)

We can show

(2.6)
n
∑

k=0

sin kθ =
cos θ

2
− cos(2n + 1) θ

2

2 sin θ
2

= P

(

θ

2

)

= O

(

1

ε

)

,

and

(2.7)

n
∑

k=0

k cos kθ =
P ′( θ

2
)

4
= O

(n

ε

)

,

n
∑

k=0

k2 sin kθ = −P ′′( θ
2
)

8
= O

(

n2

ε

)

,

Now, using the above identities, we are able to evaluate the characteristics required

in using the Kac-Rice formula in (2.1).

3. Asymptotic Behavior of E(N(0, 2π))

This section includes two subsection. We evaluate the asymptotic behavior of the

expected number of real roots of Dn(θ) = 0 in the intervals (ε, π−ε), (π+ε, 2π−ε) in

subsection 3.1 and in the intervals (0, ε), (π− ε, π + ε), (2π− ε, 2π) in subsection 3.2.
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3.1. Results On the Intervals (ε, π − ε), (π + ε, 2π − ε). In this part, we obtain

our results by applying the Kac-Rice formula. The main contribution of this part for

the two different cases is stated separately in the following theorems.

Theorem 3.1. Let Dn(θ) be the random trigonometric polynomial given in (1.1) for

which Ak = ∆
(1)
0 +∆

(1)
1 +· · ·+∆

(1)
k , Bk = ∆

(2)
0 +∆

(2)
1 +· · ·+∆

(2)
k , k = 0, 1, . . . , n, where

∆
(i)
k , k = 0, 1, . . . , n, i = 1, 2 are standard normal i.i.d random variables independent.

We prove that for all sufficiently large n, the expected number of real roots of the

equation Dn(θ) = 0, satisfies

EN(ε, π − ε) = EN(π + ε, 2π − ε) ≃
√

2n√
3

Proof. In order to use the Kac-Rice formula, we first evaluate asymptotic value for

each variable needed by using the error terms obtained in (2.4)–(2.7). Since E(Ak) = 0

and E(Bk) = 0 we have

(3.1) E(Dn(θ)) = 0, E(D′
n(θ)) = 0,

Now using (2.4)-(2.7) and (1.2) and using some trigonometric identities, we obtain

the variance of Dn(θ) and D′
n(θ), as

A2
D = Var(Dn(θ)) =

n
∑

k=0

(a2
k1(θ) + b2

k1(θ))

=

n
∑

k=0





(

n
∑

j=k

cos jθ

)2

+

(

n
∑

j=k

sin jθ

)2


 =
n

2 sin2 θ
2

+ O(
1

ε
),(3.2)

B2
D = Var(D′

n(θ)) =

n
∑

k=0

(c2
k1(θ) + d2

k1(θ))

=

n
∑

k=0





(

−
n
∑

j=k

j sin jθ

)2

+

(

n
∑

j=k

j cos jθ

)2




=
n
∑

k=0

4n2 + 4k2

16 sin2 θ
2

+ O

(

n2

ε

)

=
n3

3 sin2 θ
2

+ O

(

n2

ε

)

,(3.3)

CD = Cov(Dn(θ), D′
n(θ)) =

n
∑

k=0

(ak1(θ)ck1(θ) + bk1(θ)dk1(θ))

=

n
∑

k=0

[(

n
∑

j=k

cos jθ

)(

−
n
∑

j=k

j sin jθ

)

+

(

n
∑

j=k

sin jθ

)(

n
∑

j=k

j cos jθ

)]

= O
(n

ε

)

,(3.4)
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Then, finally from (3.2)-(3.4), we can obtain

(3.5) ∆2 = A2
DB2

D − C2
D =

n4

6 sin4 θ
2

+ O

(

n3

ε

)

,

The results of (3.2) and (3.5) into the Kac-Rice formula (2.1), we have

E(N(ε, π − ε)) = E(N(π + ε, 2π − ε)) ∼
√

2n√
3

The theorem is proved.

Theorem 3.2. Let Qn(θ) be the random trigonometric polynomial given in (1.3)

where Ak = ∆
(1)
0 + ∆

(1)
1 + · · ·+ ∆

(1)
k , Bk = ∆

(2)
0 + ∆

(2)
1 + · · ·+ ∆

(2)
k , k = 0, 1, . . . , n−1

2
,

where ∆
(i)
k , k = 0, 1, . . . , n−1

2
, i = 1, 2, are standard normal i.i.d random variables.

We prove that for all sufficiently large n, the expected number of real roots of the

equation Qn(θ) = 0, satisfies

EN(ε, π − ε) = EN(π + ε, 2π − ε) ≃ n√
3

Proof. We obtain our results by applying the Kac-Rice formula. Since E(Ak) = 0 and

E(Bk) = 0 we have

E(Qn(θ)) = 0, E(Q′
n(θ)) = 0

Now from (1.4) and (2.4)–(2.7) and making some trigonometric identities, we obtain

A2
Q = Var(Qn(θ)) =

n−1

2
∑

k=0

(a2
k2(θ) + b2

k2(θ))

=

n−1

2
∑

k=0











n−1

2
∑

j=k

(cos jθ + cos (n − j)θ)





2

+





n−1

2
∑

j=k

(sin jθ + sin (n − j)θ)





2






=
n

4 sin2 θ
2

+ O(
1

ε
),(3.6)

B2
Q = Var(Q′

n(θ)) =

n−1

2
∑

k=0

(c2
k2(θ) + d2

k2(θ))

=

n−1

2
∑

k=0









−
n−1

2
∑

j=k

(j sin jθ + (n − j) sin (n − j)θ)





2

+





n−1

2
∑

j=k

(j cos jθ + (n − j) cos (n − j)θ)





2






=

n−1

2
∑

k=0

4n2 − 8k2 − 8nk

16 sin2 θ
2

+ O(
n2

ε
) =

n3

12 sin2 θ
2

+ O(
n2

ε
),(3.7)



104 S. SHEMEHSAVAR AND K. FARAHMAND

ani

CQ = Cov(Qn(θ), Q′
n(θ)) =

n−1

2
∑

k=0

(ak2(θ)ck2(θ) + bk2(θ)dk2(θ))

=

n−1

2
∑

k=0









n−1

2
∑

j=k

(cos jθ + cos (n − j)θ)







−
n−1

2
∑

j=k

(j sin jθ + (n − j) sin (n − j)θ)





+





n−1

2
∑

j=k

(sin jθ + sin (n − j)θ)









n−1

2
∑

j=k

(j cos jθ + (n − j) cos (n − j)θ)









= O
(n

ε

)

,

(3.8)

Then, finally from (3.6)–(3.8) we can get

(3.9) ∆2 = A2
QB2

Q − C2
Q =

n4

48 sin4 θ
2

+ O

(

n3

ε

)

,

The results of (3.6) and (3.9) into the Kac-Rice formula (2.1), we can obtain

E(N(ε, π − ε)) = E(N(π + ε, 2π − ε)) ∼ n√
3

3.2. Results On the Intervals (0, ε), (π−ε, π+ε), (2π−ε, 2π). In this subsection,

we are going to show the expected number of real roots in the intervals (0, ε), (π −
ε, π + ε), (2π − ε, 2π) is negligible. The period of Dn(θ) is 2π, and so the number of

real roots in the interval (0, ε) and (2π − ε, 2π) is the same as the number in (−ε, ε),

the interval (π − ε, π + ε) can be treated in the same way to give the same result.

Here we deal only with Dn(θ), since the same method is applicable for the random

trigonometric polynomial, Qn(θ), and the results of Dn(θ) remain the same for Qn(θ).

We consider the function of the complex variable z,

Dn(z, ω) =

n
∑

k=0

(Ak(ω) cos kz + Bk(ω) sin kz)

We seek an upper bound to the number of real roots in the segment of the real axis

joining the points ±ε, and this certainly does not exceed the number of real roots in

the circle |z| < ε.

Let N(r) ≡ N(r, ω) denote the number of real roots of Dn(z, ω) = 0 in |z| < ε.

We will modify the method based on the Jensen’s theorem [12], which has been used

by Dunnage [2], then By Jensen’s theorem,
∫ 2ε

ε

r−1N(r)dr ≤
∫ 2ε

0

r−1N(r)dr =
1

2π

∫ 2π

0

log |Dn(2εeiθ, ω)

Dn(0)
|dθ
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for which we have

(3.10) N(ε) log 2 ≤ 1

2π

∫ 2π

0

log |Dn(2εeiθ, ω)

Dn(0)
|dθ,

Now since the distribution function of Dn(0, ω) =
∑n

k=0

∑n
j=k ∆1

k(ω) is

G(x) ∼ N

(

0,
(2n3 + 9n2 + 13n + 6)

6

)

We can see that for any positive υ,

P (−e−υ ≤ Dn(0, ω) ≤ e−υ)

=

√

3

π(2n3 + 9n2 + 13n + 6)

∫ e−υ

−e−υ

exp

{

− 3t2

2n3 + 9n2 + 13n + 6

}

dt

<
2
√

3e−υ

√

π(2n3 + 9n2 + 13n + 6)
,(3.11)

Also we have

|Dn(2εeiθ)| = |
n
∑

k=0

(

n
∑

j=k

cos(2jεeiθ)

)

∆1
k +

n
∑

k=0

(

n
∑

j=k

sin(2jεeiθ)

)

∆2
k|

≤ 2M(n + 1)(n + 2)e2nε,(3.12)

where M = Maxk(max |∆1
k|, max |∆2

k|). The distribution function of |∆1
k| and |∆2

k| is

F (x) =







1√
2π

∫ x

0
e−

t
2

2 if x ≥ 0

0 if x < 0

For any positive υ and all sufficiently large n, the probability M > neυ is

P (M > neυ) ≤ nP (|∆1
1| > neυ)

= n
1√
2π

∫ ∞

neυ

e−
t
2

2 dt ≃
√

2

π
exp

{

−υ − (neυ)2

2

}

,(3.13)

Therefore from (3.12) and (3.13), except for sample functions in an ω-set of measure

not exceeding

(3.14)

√

2

π
exp

{

−υ − (neυ)2

2

}

|Dn(2εeiθ)| < 3n(n + 1)(n + 2)e2nε+υ,

Hence from (3.11), (3.14) and since we obtain

(3.15) |Dn(2εeiθ, ω)

Dn(0, ω)
| ≤ 3n(n + 1)(n + 2)e2nε+2υ,

Except for sample function in an ω-set of measure not exceeding

2
√

3e−υ

√

π(2n3 + 9n2 + 13n + 6)
+

√

2

π
exp

{

−υ − (neυ)2

2

}
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Therefore from (3.10) and (3.15) we can show that outside the exceptional set

(3.16) N(ε) ≤ log 3 + log n log (n + 1) + log (n + 2) + 2nε + 2υ

log 2
,

ε = n−1/4, it follows from (3.16) and for any sufficiently large n that

(3.17) P (N(ε) > 3nε+2υ) ≤ 2
√

3e−υ

√

π(2n3 + 9n2 + 13n + 6)
+

√

2

π
exp

{

−υ − (neυ)2

2

}

,

Let n′ = [3n3/4] be the greatest integer less than equal to 3n3/4, then from (3.17) and

for n large enough we obtain

EN(ε) =
∑

j>0

P (N(ε) ≥ j) =
∑

1≤j≤n′

P (N(ε) > j) +
∑

j≥1

P (N(ε) ≥ n′ + j)

≤ n′ +

√

12

π(2n3 + 9n2 + 13n + 6)

∑

j≥1

e−j/2 +

√

2

π

∑

j≥1

exp

{

−j

2
− (nej)2

2

}

= O(n3/4),(3.18)
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