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ABSTRACT. In this paper, we introduce a hepatitis B virus stochastic transition model with
vaccination and awareness campaign. The purpose of this work is to show the effect of vaccine and
awareness in the affected area of hepatitis B. For this purpose first, we formulate the stochastic
model for hepatitis B virus, then investigate the asymptotic behavior of vaccination and awareness
campaign, through the unique positive solution of our proposed model. We study the different
scenarios in order to identify the best control of this virus. Graphical justification is also presented.
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1. INTRODUCATION

A hepatitis B virus (HBV) infection is a global health disease which transmits

through unhealthy food as well as by their carriers. According to the analysis of

World Health Organization about 2000 millions people have been infected with this

virus and about 350 millions, among them, are its carriers [1]. There appear about 4

million acute clinical cases and 25 percent of its carriers each year. Moreover about 1

million die, due to this virus, each year. For the control of HBV mathematicians also

play an important rule in the sense of making different models to study the dynamical

behavior of this virus [2].

Pang et al. [1] and Zou et al. [3] considered a deterministic HBV transmission

model with vaccination, where vaccination took place in China to all newborns. They

have shown that, with regular vaccination to newborns, the number of children having

HBV infection as well as the number of carriers decreased dramatically. Anderson

and May 1991 [6] have discussed the effects of carriers on the transmission of this

virus by using a simple mathematical model. Zhao et al. 2000 [4] presented an age

structure model to study the long-term effect of vaccination on the HBV transmission

in China. Wang et al. 2008 [5] studied HBV infection in a diffusion model restricted
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to a finite domain. Similarly Xu and Ma 2009 [7] proposed an HBV model with

spatial diffusion respond in the infection rate. Different authors studied the models

describing the HBV as well as stochastic models [8, 9, 10, 11, 12, 13, 14].

In this work, we extend the deterministic model of Pang et al. [1] to a stochas-

tic HBV transmission model with addition of migrated class and vaccination plus

awareness campaign to all latent individuals. First, we study the stability of the

corresponding deterministic model. Then the asymptotic behavior of acute, carriers

and immunity classes are presented. It is shown that the number of susceptible and

latent’s individuals increase/decrease as linear, through the unique positive solution

of our stochastic model under different scenarios in order to identify the expected

optimal control of HBV.

The rest of the paper is organized as: in Section 2, we give the formulation of

model and discuss the stability of stochastic model. In Section 3, we apply different

controls and discuss the different scenarios with the obtained figures through Matlab.

Finally, we give conclusion in Section 4.

2. NOTATIONS AND FORMULATION OF THE MODEL

We propose a stochastic transition HBV model with vaccination to acute as

well as latent ones. The total population is divided in five classes: the Susceptible

S = S(t), Latent L = L(t), Acute ones A = A(t), HBV Carriers C = C(t) and

temporary protective Immunity I = I(t) at time t ≥ 0.

We assume that all the parameters of the model are non-negative and the re-

cruitment rate denotes by λ such that λm, 0 ≤ m ≤ 1, number of individuals adds

to suspectable while λ(1 − m) move to latent class, di, i = 1, 2, . . . , 5, denotes the

death rate of S, L, A, C and I, respectively. The child birth rate is denoted by µ,

ω is the rate of failure immunization, β is the transmission coefficient, σ is the rate

at which latent individuals becoming infections, n ratio of latent moves to immunity

class due to vaccination, δ is the rate of loss of immunity class, r1 is the rate at which

an individual leaves class A, carriers recover with the rate r2, the infectiousness rate

of carriers relative to acute infection is α, q (0 ≤ q ≤ 1) is the rate at which acute

infection individuals become carrier while 1 − q is the rate at which acute infection

individuals clear HBV and move to immunity class. Moreover new born are vacci-

nated immediately after his/her birth and µ(1− w) part of them move to immunity

class.

We introduce stochastic components on the transition rates, that is, on the tran-

sition from S to L with drift term β(A + αC) and variance σ1, L to A with drift σ

and volatility σ2, A to C with drift qr1 with volatility σ3, C to I with drift r2 and

volatility σ4 and I to S with drift δ and volatility σ5.
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We consider a probability space (Ω,F , P ) and a five dimensional Wiener process

W = (W1(t),W2(t), . . . ,W5(t)) on it, where each Wi(t), i = 1, 2, . . . , 5 is a standard

Wiener process, independent of each other, with mean zero and variance t at time t.

The augmentation of the natural filtration of the Wiener processes by P -null sets of

F is denote by FW = (FW (t))t≥0. On the filtered probability space (W,F ,FW (t), P )

we will consider five random functions S(t), L(t), A(t), C(t) and I(t).

Evolution of these functions obey the following system of stochastic differential

equations

dS(t) = (λm+ µω(1− εC(t))− (β(A(t) + αC(t)) + p(1− ω) + d1 − δI(t))S(t))dt

(2.1)

− σ1(A(t) + αC(t))S(t)dW1(t) + σ5S(t)I(t)dW5(t),

dL(t) = (λ(1−m) + µωεC(t) + β(A(t) + αC(t))S(t)− (n+ σ + d2)L(t))dt

+ σ1(A(t) + αC(t))S(t)dW1(t)− σ2L(t)dW2(t),

dA(t) = (σL(t)− (d3 + r1)A(t))dt+ σ2L(t)dW2(t)− σ3qA(t)dW3(t),

dC(t) = (qr1A(t)− (d4 + r2)C(t))dt+ σ3qA(t)dW3(t)− σ4C(t)dW4(t),

dI(t) = (r2C(t) + µ(1− ω) + (1− q)r1A(t) + nL(t) + p(1− ω)S(t)

− (d5 + δ)I(t))dt+ σ4C(t)dW4(t)− σ5I(t)dW5(t),

where we have assumed that all the coefficients in the model are Lipschitz continuous.

From the above system, the dynamics of S(t) can be described by:

S(t) = e−(p(1−ω)+d1)t−
R t
0 (β(A(u)+αC(u))+αC(u)−δI(u))du−σ

2
1
2

R t
0 (A(u)+αC(u))2du−σ

5
1
2

R t
0 I(u)

2du

(2.2)

× e−σ1

R t
0 (A(u)+αC(u))dW1(u)+σ5

R t
0 I(u)dW5(u)

[
S(0)− µωε

∫ t

0

C(u)e(p(1−ω)+d1)u

× e
R u
0 (β(A(v)+αC(v))+αC(v)−δI(v))dv+σ2

1
2

R u
0 (A(v)+αC(v))2dv+

σ5
1
2

R u
0 I(v)2dv

× eσ1

R u
0 (A(v)+αC(v))dW1(v)−σ5

R u
0 I(v)dW5(v)du

]
+ (λm+ µω)

∫ t

0

e−(p(1−ω)+d1)(t−u)−
R t
u(β(A(v)+αC(v))+αC(v)−δI(u))du−σ

2
1
2

R t
u(A(v)+αC(v))2du

× e−
σ5
1
2

R t
u I(v)

2dv−σ1

R t
u(A(v)+αC(v))dW1(v)+σ5

R t
u I(v)dW5(v)du,

with expected value

E(S(t)) = Ee−(p(1−ω)+d1)t−
R t
0 (β(A(u)+αC(u))+αC(u)−δI(u))du

[
S(0)− µωεE

∫ t

0

C(u)e(p(1−ω)+d1)u

(2.3)

× e
R u
0 (β(A(v)+αC(v))+αC(v)−δI(v))dv

]
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+ (λm+ µω)E

∫ t

0

e−(p(1−ω)+d1)(t−u)−
R t
u(β(A(u)+αC(u))+αC(u)−δI(u))dudu,

where we have used the property of exponential martingales

(2.4) Ee
R t
s a(u)dWu− 1

2

R t
s a

2(u)du = 1,

where a(t) is any FW (t)-measurable function and W (t), t ≥ 0, is any standard Wiener

process.

Dynamics of L(t) is given as

L(t) = e
−
„
n+σ+d2+

σ2
2
2

«
t−σ2W2(t)

[
L(0) +

∫ t

0

(µωεC(u) + β(A(u) + αC(u))S(u))

(2.5)

× e
„
n+σ+d2+

σ2
2
2

«
u+σ2W2(u)

du+ σ1

∫ t

0

e

„
n+σ+d2+

σ2
2
2

«
u+σ2W2(u)

(A(u)

+ αC(u))S(u)dW1(u)

]
+ λ(1−m)

∫ t

0

e
−
„
n+σ+d2+

σ2
2
2

«
(t−u)−σ2(W2(t)−W2(u))

du.

Using properties like (2.4) and of the Itô’s integral

(2.6) E

∫ t

0

b(u)dWu = 0,

where b(t) is some FW (t)-measurable function, we obtain the expected value of L(t)

as

E(L(t)) = e−(n+σ+d2)t

[
L(0) + E

∫ t

0

(µωεC(u) + β(A(u) + αC(u))S(u)) e(n+σ+d2)udu

]
+

λ(1−m)

n+ σ + d2

(
1− e−(n+σ+d2)t

)
.(2.7)

Similarly

(2.8)

A(t) = e
−
„
d3+r1+

σ2
3q

2

2

«
t−σ3qW3(t)

[
A(0)+

∫ t

0

L(u)e

„
d3+r1+

σ2
3q

2

2

«
u+σ3qW3(u)

(σdu+σ2)dW2(u)

]
,

with expectation

(2.9) E(A(t)) = e−(d3+r1)t

[
A(0) + σE

∫ t

0

L(u)e(d3+r1)udu

]
.

While

(2.10)

C(t) = e
−
„
d4+r2+

σ2
4
2

«
t−σ4W4(t)

[
C(0)+q

∫ t

0

A(u)e

„
d4+r2+

σ2
4
2

«
u+σ4W4(u)

(r1du+σ3dW3(u))

]
,

with expected value

E(C(t)) = e−(d4+r2)t

[
C(0) + qr1E

∫ t

0

A(u)e(d4+r2)udu

]
.(2.11)
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And

I(t) = e
−
„
d5+δ+

σ2
5
2

«
t−σ5W5(t)

[
I(0) +

∫ t

0

e

„
d5+δ+

σ2
5
2

«
u+σ5W5(u)

(2.12)

× (µ(1− ω) + r2C(u) + (1− q)r1A(u)

+ p(1− ω)S(u) + nL(u))du+ σ4C(u)dW4(u)

]
,

with

E(I(t)) = e−(d5+δ)t

[
I(0) + µ(1− ω)

∫ t

0

e(d5+δ)udu

(2.13)

+

∫ t

0

e(d5+δ)u(r2C(u) + (1− q)r1A(u) + p(1− ω)S(u) + nL(u))du

]
.

Under the assumption E(S(t+)|S(t)) = k1 and E(L(t+)|L(t)) = k2, where k1, k2 ∈ R,

of linear growth/decay, we have

(2.14) E(A(t)) = A(0)e−(d3+r1)t +
σk2

d3 + r1

(
1− e−(d3+r1)t

)
,

E(C(t)) = C(0)e−(d4+r2)t +
qr1A(0)e−(d4+r2)t

d4 + r2 − d3 − r1
(
e(d4+r2−d3−r1)t − 1

)
(2.15)

+
qr1σk2

(d3 + r1)(d4 + r2)

(
1− e−(d4+r2)t

)
− qr1σk2e

−(d4+r2)t

(d3 + r1)(d4 + r2 − d3 − r1)
(
e(d4+r2−d3−r1)t − 1

)
,

while

E(I(t)) = I(0)e−(d5+δ)t +

[
(1− ω)(µ+ pk1) + nk2 +

σr1k2(d4 + r2 − qd4)

(d3 + r1)(d4 + r2)

](2.16)

×
(

1− e−(d5+δ)t

d5 + δ

)
+

r2C(0)e−(d5+δ)t

d5 + δ − d4 − r2
(
e(d5+δ−d4−r2)t − 1

)
+
r1A(0)(d4 + r2 − d3 − r1 − q(d4 − d3 − r1))e−(d5+δ)t

(d4 + r2 − d3 − r1)(d5 + δ − d3 − r1)
(
e(d5+δ−d3−r1)t − 1

)
+ qr1r2e

−(d5+δ)t

[
σk2

(d4 + r2 − d3 − r1)(d4 + r2)
− A(0)

d4 + r2 − d3 − r1

]
×
(
e(d5+δ−d4−r2)t − 1

d5 + δ − d4 − r2

)
− σk2r1e

−(d5+δ)t

(
e(d5+δ−d3−r1)t − 1

d5 + δ − d3 − r1

)
× d4 + r2 − d3 − r1 − q(d4 − d3 − r1)

(d3 + r1)(d4 + r2 − d3 − r1)
.
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3. SCENARIOS

In this section, we present different scenarios to understand the dynamical be-

havior of the proposed model.

1. When d3 + r1 = 0 and k2 > 0, then the asymptotic behavior of E(A(t)),

E(C(t)) and E(I(t)) is as

lim
t→∞

E(A(t)) =∞, lim
t→∞

E(C(t)) = 0,(3.1)

lim
t→∞

E(I(t)) =
1

d5 + δ
((1− ω)(µ− pk1) + nk2),

and if k2 < 0, then E(A(t)), E(C(t)) and E(I(t)) decrease and E(A(t)) vanishes

at time t = −A(0)
σk2

, vanishing time of E(C(t)) and E(I(t)) can be obtained by using

expressions (2.11) and (2.13).

Figure 1. The plot shows the asymptotic behavior of A(t), C(t) and

I(t) with parameters values β = 0.48, m = 0.02, d2 = 0.5, γ = 0.02,

d3 = 0.01.

2. Similarly when d4 + r2 = 0 then

lim
t→∞

E(A(t)) =
σk2

d3 + r1
, lim

t→∞
E(C(t)) =∞,(3.2)

lim
t→∞

E(I(t)) =
1

d5 + δ
((1− ω)(µ− pk1) + nk2) +

(1− q)r1σk2

(d3 + r1)2
.

3. And when d5 + δ = 0 then

(3.3) lim
t→∞

E(A(t)) =
σk2

d3 + r1
, lim
t→∞

E(C(t)) =
qr1σk2

(d3 + r1)(d4 + r2)
, lim
t→∞

E(I(t)) =∞.
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Figure 2. The plot shows the asymptotic behavior of A(t), C(t) and

I(t) with parameters values β = 0.48, m = 0.02, d2 = 0.5, γ = 0.02,

d3 = 0.01.

Figure 3. The plot represents the asymptotic behavior of A(t), C(t)

and I(t) with parameters values β = 0.48, m = 0.02, d2 = 0.5, γ = 0.02,

d3 = 0.01.

4. Moreover, for positive d4 + r2, d3 + r1, and d5 + δ, with arbitrary equality or

inequality relation between them, we have the asymptotic stability as

lim
t→∞

E(A(t)) =
σk2

d3 + r1
, lim
t→∞

E(C(t)) =
qr1σk2

(d4 + r2)(d3 + r1)
,

(3.4)

lim
t→∞

E(I(t)) =
1

d5 + δ

[
(1− ω)(µ+ pk1) + nk2 +

qr1r2σk2

(d3 + r1)(d4 + r2)
+

(1− q)r1σk2

d3 + r1

]
.

d1 = d2 = d3 = d4 = d5 = λ = µ = 1
70

, ω = .05, σ = 6, δ = .05, r1 = 4, r2 = .009,

ε = .8, q = .07, p = .5, β = 5, α = .5, S(0) = 40, L(0) = 20, A(0) = 30, C(0) = 10,

I(0) = 100, k1 = k2 = .001, σ1 = σ2 = σ3 = σ4 = σ5 = .01.
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Figure 4. The graph shows the asymptotic behavior of A(t), C(t) and

I(t) with parameters values β = 0.48, m = 0.02, d2 = 0.5, γ = 0.02,

d3 = 0.01.

4. CONCLUSION

In this work, we introduced a hepatitis B virus stochastic transition model with

vaccination and awareness campaign. First, we investigated the asymptotic behavior

of vaccination and awareness campaign, through the unique positive solution of our

stochastic model. Then we studied different scenarios in order to identify the best

control. Graphical justification is also presented.
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