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DYNAMIC ANALYSIS OF A STOCHASTIC TRANSMISSION

MODEL FOR ECHINOCOCCOSIS
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ABSTRACT. In this paper we study a stochastic transmission model for Echinococcosis. The

model is proposed from the corresponding deterministic model presented in [18] by introducing

random perturbations around the disease-free equilibrium and endemic equilibrium. By constructing

a suitable Lyapunov function of quadratic form, we obtain the sufficient condition on the stochastic

stability of the disease-free equilibrium and endemic equilibrium. Numerical simulations have been

performed to verify/extend our analytical results.
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1. PRELIMINARIES

Echinococcosis (hydatidosis or hydatid disease), which is a group of infectious

diseases caused by the larval stage of tapworms of the genus Echinococcosis, is a

parasitic disease that affects both humans and other mammals, such as sheep, dogs,

rodents, and horses [1]. Among the reported Echinococcosis, the two most clinically

relevant species are E. granulosus, leading to cystic echinococcosis (CE) and E. mul-

tilocularis causing alveolar echinococcosis (AE). Humans are accidental hosts and, in

most cases, do not contribute to continuance of the parasite life cycle, except under

unique circumstances. It is estimated that there are more than three million people

in the world who are infected with echinococcosis while 0.38 million cases exist in

P.R. China [2–4]. Among the reported data, about 90% of all cases of echinococcosis

in China are cystic echinococcosis caused by E. granulosus, whereas the reminder

are from alveolar echinococcosis, which is caused by E. multilocularis and produces

more severe pathological changes [5, 6]. Infection with E. granulosus results in the

development of one or several unilocular hydatid cysts which develop mostly in the

liver (70%) and the lungs (20%) [7]. CE also causes great loss of animal husbandry
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as sheep, goats and cattle. E. multilocularis metastasising lesion almost exclusively

in the liver (98-100%).

Echinococcosis has a wide geographical distribution in P.R. China, mainly in

western provinces and regions. According to the reporting system on diseases con-

trol and prevention established by China CDC, there are 27 provinces (autonomous

regions, mulnicipalities) reported echinococcosis cases [9], and Xinjiang, Qinghai,

Gansu, Ningxia, Tibet, Inner Monogolia, and Sichuan provinces are reported with

a relatively high prevalence [8–12]. In addition, the rate of incidence of Echinococ-

cosis has increased in the past decade. The operability of Echinococcosis exceeds

10/100000 in each year. High-risk group subject to Echinococcosis reaches up to 50

million, and the number of domestic animal amount being faced with infection of

Echinococcosis is more than one hundred million, in which the amount of dogs is at

least 5 million [13].

Mathematical modeling has become an important tool in analyzing the epidemi-

ological characteristics of infectious disease and can provide useful control measures.

Various models have been used to study different aspects of echinococcosis [14–18].

In [18], in order to explore effective control and prevention measures the authors pro-

posed a deterministic model to study the transmission dynamics of echinococcosis in

Xinjiang. The results showed that the dynamics of the model was completely deter-

mined by the basic reproduction number R0. Du et al [19] introduced an echinococ-

cosis transmission model with saturation incidence. In addition, they established a

threshold type result, which states that when R0 < 1, the disease will die out; the

disease will persists, when R0 > 1 and the recovery rate of dogs is very small.

In fact, the transmission process of epidemics are inevitably influenced by random

variation in the noisy world. There is no exception for echinococcosis. In terms of the

spread of echinococcosis, dogs are the definitive host, human, sheep and cattle are the

intermediate host; the dogs engulf organs of sheep and cattle with hydatidosis, which

contain huge larval of Echinococcosis granulosus; each of the individual protoscoleces

may develop into an adult worm in about 7 or 8 weeks, which dischage eggs with

the feces of dogs contaminating the soil, grassland, water and the living place of

dogs; touching or taking articles, nutriment or water polluted by eggs will develop

echinococcosis. As eggs can survive about 11 days in a dry environment, while in a

suitable, moist and low temperature environment the infectivity may contain as long

as a year. Therefore, the variation of season and temperature, which can be seen as

the random fluctuation, have notably influence on the transmission of echinococcosis.

Thus, in order to describe the transmission dynamics and trend more precisely, it

is necessary to consider all kinds of uncertainty and stochastic factors. Random

fluctuations in temperature will therefore be translated to fluctuations around disease-

free equilibrium and endemic equilibrium [23].
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However, few of the existing literatures formulate mathematical models to study

the effect of unpredictable fluctuations in the environment on the hydatidosis. Thus,

the purpose of the present paper is to extend the deterministic model of echinococ-

cosis, introduced by Wang et al [18], allowing the random perturbation around equi-

librium state.

In order to study stability properties of the considered model, we use well known

method based on construction of appropriate Lyapunov functions. Though many

authors have studied the stability of stochastic epidemic models by Lyapunov method,

the Lyapunov of quadratic form has been rarely used. So, in this paper we want to

construct a Lyapunov function of quadratic form and obtain some relative results.

The paper is organized in the following way. In Section 2, we briefly outline the

deterministic model presented in [18] on the basis of which we construct the stochas-

tic models. Some basic preliminaries are presented in Section 3. In Section 4, by

constructing a suitable Lyapunov function of quadratic form, we investigate stochas-

tic asymptotic of stability of the disease-free equilibrium and endemic equilibrium

of the considered model. In Section 5, we present a numerical simulation result to

show that the stochastic model of Echinococcosis disease transmission, with quan-

tities which are reliable data, is compatible with the mathematical results obtained

through the paper. We also give some discussion about the result.

2. THE MODEL

In this section, we briefly present the results by Wang et al [18]. They introduce

a deterministic model of the hydatid disease and present the spread among human,

definitive host (dogs and other canidae), intermediate host (sheep, goat, swine, etc)

and eggs in the environment. Also, they found that the parameters of the human

do not affect the dynamical behaviors of the echinococcosis. Hence in this paper we

only consider definitive hosts, intermediate hosts and eggs. The dynamics of dogs,

livestock and Echinococcosis eggs population is given by the following model

(2.1)



























































dSD(t)

dt
= A1 − β1SD(t)IL(t) − d1SD(t) + σID(t),

dID(t)

dt
= β1SD(t)IL(t) − (d1 + σ)ID(t),

dSL(t)

dt
= A2 − β2SL(t)x(t) − d2SL(t),

dIL(t)

dt
= β2SL(t)x(t) − d2IL(t),

dx(t)

dt
= aID(t) − dx(t).

with the initial condition SD(0) = SD0, ID(0) = ID0, SL(0) = SL0, IL(0) = IL0, x(0) =

x0. The total dogs population at t, given by N1(t), they partitioned into SD(t), ID(t),
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of individuals who are susceptible, and infectious, respectively. In the same way, they

divide intermediate hosts population into two subclasses: the susceptible population

SL(t), the infected population IL(t), and N2(t) = SL(t) + IL(t). All parameters of

model (2.1) are assumed positive. For the dog population, A1 describes the annual

recruitment rate; d1 is the natural death rate; σ denotes the recovery rate of transition

from infected to noninfected dogs, including natural recovery rate and recovery due to

anthelmintic treatment; β1SDIL describe the transmission of Echinococcosis between

susceptible dogs and infectious livestock after the ingestion of cyst-contain organs of

infected livestock. For the livestock population, A2 is the annual recruitment rate; d2

is the death rate; β2SLx describes the transmission of Echinococcosis to livestock by

the ingestion of Echinococcosis eggs in the environment. For Echinococcosis eggs, a

denote the released rate from infected dogs; d is the mortality rate of eggs.

The total dog population size is N1(t) and can be determined as a solution of

the differential equation Ṅ1(t) = A1 − d1N1(t), which is obtained by adding the first

two equations in model (2.1). Similarly, the total population size of livestock is N2(t)

where N2(t) is a solution of the differential equation Ṅ2(t) = A2−d2N2(t) obtained by

adding the third and the forth equation in model (2.1). Because limt→∞ N1(t) = A1

d1

,

and limt→∞ N2(t) = A2

d2

, we can assume, without loss of generality, that the total dog

population and the total livestock population are constants, that is N1(t) = A1

d1

and

N2(t) = A2

d2

, and therefore, model (2.1) becomes equivalent with the following model

(2.2)



























dID(t)

dt
= −β1ID(t)IL(t) − (d1 + σ)ID(t) +

β1A1

d1

IL(t),

dIL(t)

dt
= −β2IL(t)x(t) − d2IL(t) +

β2A2

d2

x(t),

dx(t)

dt
= aID(t) − dx(t).

with initial values ID(0) = ID0, IL(0) = IL0 and x(0) = x0. An important quantity

of model (2.1) is the basic reproduction number

R0 = 3

√

β1β2A1A2a

(d1 + σ)d1d2
2d

.

It is a measure of potential for disease spread in deterministic epidemic. Epidemio-

logically, R0 is interpreted as the expected number of secondary infectious produced

by index case in a completely susceptible host. It controls the number of equilib-

ria of model (2.1). In [18] two equilibrium states of model (2.1) were obtained: the

trivial stable state E0 = (A1

d1

, 0, A2

d2

, 0, 0) which represents the disease-free case, and

the positive equilibrium state E∗ = (S∗
D, I∗

D, S∗
L, I∗

L, x∗), which represents the endemic

case, provided that R0 > 1. Therefore, model (2.2) owns a disease-free equilib-

rium P0 = (0, 0, 0), when R0 ≤ 1, otherwise, it has a unique endemic stable state
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P ∗ = (I∗
D, I∗

L, x∗). Denote P̄ = (ĪD, ĪL, x̄), with P̄ = P0 if R0 ≤ 1 and P̄ = P ∗ if

R0 > 1.

As is well know, environmental fluctuations have a significant influence on all

aspects of real life. So it is reasonable to investigate how these fluctuations affect the

epidemic model presented in the previous section. Thus we introduce the stochastic

perturbation terms into model (2.2).

It is highlight that most studies on biological and epidemiological models are

devoted to stability analysis of their equilibrium states. For this purpose the standard

approach is to assume that stochastic perturbations of the state variables around their

steady state P ∗ and P0 are Gaussian white noise type and that they are proportional

to the distances of SD, IL, x from S̄D, ĪL, x̄, respectively. This approach ensures that

the equilibrium states P0 or P ∗ of deterministic model (2.2) also be the equilibrium

of stochastic model when R0 < 1 or R0 > 1, that is, P̄ is the equilibrium of the

stochastic model.

Hence, we obtain the stochastic Echinococcosis epidemic model of the form

(2.3)



























dID(t)

dt
= β1(

A1

d1

− ID(t))IL(t) − (d1 + σ)ID(t) + σ1(ID(t) − ĪD)Ḃ1(t),

dIL(t)

dt
= β2(

A2

d2

− IL(t))x(t) − d2IL(t) + σ2(IL(t) − ĪL)Ḃ2(t),

dx(t)

dt
= aID(t) − dx(t) + σ3(x(t) − x̄)Ḃ3(t).

with the initial conditions ID(0) = ID0, IL(0) = IL0 and x(0) = x0, where B(t) =

(B1(t), B2(t), B3(t)) represents a three-dimensional standard Brownian motion de-

fined on a probability space (Ω,F , {Ft}t≥0, P ) with the filtration {Ft}t≥0, satisfying

the usual conditions (it is right continuous and increasing, while {F0} contains all

P-null sets) and σi > 0, i = 1, 2, 3 denote the white noise intensity.

In order discuss the dynamic properties of model (2.3), we introduce new variables

x1 = ID − ĪD, x2 = IL − ĪL and x3 = x − x̄. Thus, we obtain the following model

(2.4)



























dx1(t)

dt
= −β1x1(t)x2(t) − (β1ĪL + d1 + σ)x1(t) + β1S̄Dx2(t) + σ1x1Ḃ1(t),

dx2(t)

dt
= −β2x2(t)x3(t) − (β2x̄ + d2)x2(t) + β2S̄Lx3(t) + σ2x2(t)Ḃ2(t),

dx3(t)

dt
= ax1(t) − dx3(t) + σ3x3(t)Ḃ3(t).

with the initial conditions x1(0) = x10, x2(0) = x20 and x3(0) = x30. Obviously, the

stability of equilibrium P̄ of model (2.3) is equivalent to the stability of the trivial

solution of model (2.4).
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3. PRELIMINARIES

In order to discuss the stability of trivial solution of model (2.4), we give some

results on the Lyapunov matrix equation (see [20], for instance) and Itô stochastic

differential equations (see [21]).

Lemma 3.1. Let A is a real constant matrix. If all characteristic roots of A have

negative real parts, then for any negative definite matrix C = CT , there exists a

positive definite matrix B = BT such that AT B + BA = C.

Consider the stochastic differential equation

(3.1) dx(t) = f(t, x(t))dt + g(t, x(t))dB(t),

with initial conditions x(0) = x0 ∈ R
d. We assume, with no emphasis on conditions,

that there exists a unique global solution x(t; 0, x0) of Eq. (3.1), and f(t, 0) = 0 and

g(t, 0) = 0 for t ≥ 0. Thus, Eq. (3.1) has the trivial solution x(t) ≡ 0, corresponding

to the initial condition x0 = 0.

Definition 3.2. The trivial solution of Eq. (3.1) is said to be stochastically stable (or

stable in probability) if for every ε ∈ (0, 1) and r > 0, there exists a δ = δ(ε, r, 0) > 0

such that when |x0| < δ,

P{|x(t; 0, x0)| < r, t ≥ 0} ≥ 1 − ε.

Definition 3.3. The trivial solution of Eq. (3.1) is said to be stochastically asymp-

totically stable if it is stochastically stable and, for every ε ∈ (0, 1), there exists a

δ = δ(ε, r, 0) > 0 such that when |x0| < δ,

P{ lim
t→∞

x(t; 0, x0) = 0} ≥ 1 − ε.

Denote by C([0, +∞) × R
d; R+) the space of all non-negative functions V (t, x) :

[0, +∞) × R
d → R+ such that they are continuous differential with respect to t

and twice differential with respect to x, where R+ = (0, +∞). For any V (t, x) ∈

C([0, +∞) × R
d; R+), define the differential operator L associated with Eq. (3.1) by

LV (t, x) = Vt(t, x) + Vx(t, x)f(t, x) +
1

2
trace[gT (t, x)Vxxg(t, x)].

The following lemma gives the conditions for stochastic asymptotic stability of

trivial solution of Eq. (3.1) in terms of Lyapunov function.

Lemma 3.4. Suppose that there exist non-negative function V (t, x) ∈ C([0,∞) ×

R
d; R+), continuous functions a, b : R+ → R+, positive on R+ and a positive constant

K such that a(|x|) ≤ V (t, x) ≤ b(|x|) for all |x| ≤ K and t ≥ 0.

(a) If LV ≤ 0 with |x| < K and t ≥ 0, then the trivial solution of Eq. (3.1) is

stochastically stable.
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(b) If there exists a continuous function c : R+ → R+, such that LV ≤ −c(|x|)

with |x| ≤ K and t ≥ 0, then the trivial solution of Eq. (3.1) is stochastically asymp-

totically stable.

Since many problems concerning the stability of the equilibrium states of non-

linear stochastic model can be reduced to those about stability of solutions of linear

associated equation. We consider linear equation of Eq. (3.1)

(3.2) dx(t) = Fx(t)dt + Gx(t)dB(t), t ≥ 0.

Lemma 3.5. If linear system (3.2) is stochastically asymptotically stable, and the

coefficients of equation (3.1) and (3.2) satisfy the inequality

(3.3) |f(t, x) − Fx| + |g(t, x) − Gx| < δ|x|,

in a sufficiently small neighborhood of x = 0 with a sufficiently small constant δ, then

trivial solution x(t) = 0 of Eq. (3.1) is also stochastically asymptotically stable.

4. STABILITY ANALYSIS FOR STOCHASTIC MODEL

In order to show the stochastic asymptotic stability of trivial solution of model

(2.4), we consider the linearized system of model (2.4),

(4.1)



























dx̃1(t)

dt
= −(β1ĪL + d1 + σ)x̃1(t) + β1S̄Dx̃2(t) + σ1x̃1(t)Ḃ1(t),

dx̃2(t)

dt
= −(β2x̄ + d2)x̃2(t) + β2S̄Lx̃3(t) + σ2x̃2(t)Ḃ2(t),

dx̃3(t)

dt
= ax̃1(t) − dx̃3(t) + σ3x̃3(t)Ḃ3(t).

Firstly, take into account the deterministic part of system (4.1), and get the

following lemma.

Let

A =









−(β1ĪL + d1 + σ) β1S̄D 0

0 −(β2x̄ + d2) −β2S̄L

a 0 −d









.

Lemma 4.1. Assume P̄ = P0 if R0 < 1 and P̄ = P ∗ if R0 > 1. Then all character-

istic roots of A have negative real parts.

Proof. By simple calculation, we get the corresponding characteristic equation of

matrix A

Φ(λ) = λ3 + b2λ + b1λ + b0,
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where
b0 = d(β1ĪL + d1 + σ)(β2x̄ + d2) − aβ1S̄Dβ2S̄L,

b1 = β1ĪL + d + d1 + d2 + σ,

b2 = (β1ĪL + d1 + σ)(β2 + d2) + d(β1ĪL + d1 + d2 + σ).

It is easy to see b1 > 0, b2 > 0. Noticing that














A1 = β1S̄DIL + d1S̄D + σĪD,

A2 = β2S̄Lx̄ + d2ĪL + d2S̄L,

aβ1S̄Dβ2S̄L = dd2(d1 + σ).

It follows that when R0 < 1, we have b0 = dd2(d1 + σ)(1 − R3
0) > 0 and

b1b2 − b0 = d2(d1 + d2 + σ) + [(d1 + σ)d2 + d(d1 + d2 + σ)](d1 + d2 + σ)

+
aβ1β2A1A2

d1d2

> 0,

and that when R0 > 1, we have b0 = dd2(d1 + σ)(R3
0 − 1) > 0 and

b1b2 − b0 = d2(β1I
∗
L + β2x

∗ + d1 + d2 + σ) + [(β1I
∗
L + d1 + σ)(β2x

∗ + d2)

+d(β1I
∗
L + β2x

∗ + d1 + d2 + σ)](β1I
∗
L + β2x

∗ + d1 + d2 + σ)

+aβ1S
∗
Dβ2S

∗
L > 0.

Therefore, by Routh-Herwitz criteria, all roots of Φ(λ) have negative real parts. That

is, all characteristic roots of A have negative real parts.

By Lemma 4.1 it is easy to obtain the following result, which is useful in con-

structing Lyapunov in the main result of this paper.

Lemma 4.2. Assume P̄ = P0 if R0 < 1 and P̄ = P ∗ if R0 > 1. Taking matrix

C =







−c1 0

0 −c2 0

0 0 −c3






,

where ci > 0, i = 1, 2, 3, which is a definite negative matrix. Then, there exists a

positive definite symmetric quadratic B = BT = (bij)3×3 and bij , i, j = 1, 2, 3 are

constants to be determined later, such that AT B + BA = 2C.

Proof. According to Lemma 3.1 and Lemma 4.1, there exists a positive definite matrix

B = BT , which is unique, such that AT B + BA = 2C, which equals to the following
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linear equations

(4.2)



























































−(β1ĪL + d1 + σ)b11 + ab13 = −c1,

β1S̄Db11 − (β1ĪL + β2x̄ + d1 + d2 + σ)b12 + ab23 = 0,

β2S̄Lb12 − (β1ĪL + d + d1 + σ)b13 + ab33 = 0,

β1S̄Db12 − (β2x̄ + d2)b22 = −c2,

β1S̄Db13 + β2S̄Lb22 − (β2x̄ + d + d2)b23 = 0,

β2S̄Lb23 − db33 = −c3.

Therefore, there exists a unique solution to system (4.2), which depend on the value

of the elements of C. Using Gramer’s principle, we obtain

b11 =
c1

a1

+
c1aβ1S̄Dβ2S̄L

a2
1a2a3

+
Ga2β2S̄L

a1a2a3

n,

b12 =
c1β1S̄D

a1a2

+ (
a

a2

+
a2β1S̄Dβ2S̄L

a1a2
2a3

)n +
ac1(β1S̄D)2β2S̄L

a2
1a

2
2a3

,

b13 =
c1β1S̄Dβ2S̄L

a1a2a3

+
aβ2S̄L

a2a3

n,

b22 =
E

a4

+
aβ1S̄D

a2

n, b23 = n, b33 =
mc3 + Gβ2S̄L

mE
,

where

a1 = β1ĪL + d1 + σ, a2 = β1ĪL + β2x̄ + d1 + d2 + σ,

a3 = β1ĪL + d + d1 + σ, a4 = β2x̄ + d2, a5 = β2x̄ + d + d2,

m =
a4a5(β1ĪL + β2x̄ + d2) + a5β2x̄(d1 + σ) + d2(d1 + σ)(β2x̄ + d2)

a2a4

,

E = c2 +
c1(β1S̄D)2

a1a2

, G =
c1(β1S̄D)2β2S̄L

a1a2a3

+
Eβ2S̄L

a4

,

n =
G

m
+

aβ1S̄D(mc3 + Gβ2S̄L)

m2Ha3

, H = d +
aβ1S̄Dβ2S̄L

a3m
.

Therefore, we get the definitely positive matrix B.

In the sequel, by a suitable Lyapunov function method, which was proposed

by Kolmanovskii and Shaikhet, we obtain the conditions for stochastic asymptotic

stability of trivial solution of linearized system (4.1) around the equilibrium.

Theorem 4.3. Assume that there exist positive constants c1, c2 and c3 such that

(4.3) 0 ≤ σ2

1 ≤
2c1

b11

, 0 ≤ σ2

2 ≤
2c2

b22

, 0 ≤ σ2

2 ≤
2c3

b33

,

where b11, b22, b33 are determined in Lemma 4.2. Then the trivial solution of model

(2.4) is stochastically asymptotically stable.
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Proof. Firstly, we prove that the trivial solution of system (4.1) is stochastically

asymptotically stable.

Denote

D =







σ1x̃1 0 0

0 σ2x̃2 0

0 0 σ3x̃3






.

Regarding the complexity of system (4.1) we cannot apply any standard Lya-

punov function. Consider Lyapunov function defined in Lemma 4.2, V (x) = xT Bx.

If we apply the generating operator L on V (x), it is not difficult to show that

LV = xT (AT B + BA)x +
1

2
trace(D(2B)DT )

= V̇ + (b11σ
2

1 x̃
2

1 + b22σ
2

2 x̃
2

2 + b33σ
2

3x̃
2

3)

= 2xT Cx + (b11σ
2

1x̃
2

1 + b22σ
2

2 x̃
2

2 + b33σ
2

3x̃
2

3)

= −(2c1 − b11σ
2

1)x̃
2

1 − (2c2 − b22σ
2

2)x̃
2

2 − (2c3 − b33σ
2

3)x̃
2

3.

which is negative, in regard of (4.3). Hence, by virtue of Lemma 3.5, it follows that

the trivial solution of system (4.1) is stochastically asymptotically stable.

On the other hand, by Lemma 3.4 and Lemma 3.5, in order to prove the theorem

it suffices to verify condition (3.3). The left-side of (3.3) becomes
√

(−β1x1x2)2 + (−β2x2x3)2

≤
√

β2
1ε

2x2 + β2
2ε

2x2
2 ≤ Mε

√

x2
1 + x2

2 ≤ Mε|x|.

providing that x = (x1, x2, x3) belongs to the small neighborhood |x| < ε and M =
√

max{β2
1 , β

2
2}. Since condition (3.3) holds, the proof is completed.

Directly from Theorem 4.3 we further have the following corollaries.

Corollary 4.4. When R0 < 1, disease-free equilibrium P0 of model (2.3) is stochas-

tically asymptotically stable.

Corollary 4.5. When R0 > 1, endemic equilibrium P ∗ of system (2.3) is stochasti-

cally asymptotically stable.

5. NUMERICAL SIMULATIONS

In this section we show that the simulation of the stochastic model of a Echinococ-

cosis disease transmission is compatible with the mathematical results obtained in

Section 4. In order to verify the stability results for model (2.3), we use the Euler-

Maruyama approximate method (see [22]) to simulate the solution of the considered

equations.

In view of [18], we fix A1 = 2 × 104 yr−1, d1 = 0.08 yr−1, β1 = 5.8 × 10−8 yr−1,

σ = 2 yr−1, A2 = 1.05× 108 yr−1, d2 = 0.33 yr−1, β2 = 7.4× 10−8 yr−1, a = 9.7 yr−1
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and d = 10.42 yr−1. For such a choice of the model parameters, we obtain the

reproduction number R0 = 0.7736 < 1, which ensure P̄ = P0, i.e. the perturbation is

around the disease-free equilibrium of system (2.3). We set c1 = 10000, c2 = 1

5
and

c3 = 100, then we can obtain that 0 ≤ σ2
1 ≤ 0.4304, 0 ≤ σ2

2 ≤ 0.1168 and 0 ≤ σ2
3 ≤

0.1762 from condition (4.3). We choose σ2
1 = 0.23, σ2

2 = 0.11 and σ2
3 = 0.16, then by

Corollary 4.4 disease-free equilibrium E0 is stochastically asymptotically stable, which

can be seen in Figure 1, where the initial conditions are given by ID(0) = 8 × 105,

IL(0) = 5.7 × 107 and x(0) = 1.44 × 107. From Figure 1 (a) we can see under

environmental noises echinococcosis in dogs will die out about eighty years later,

however, in deterministic model echinococcosis in dogs dies out about twenty years

later. It followed that environmental noises prolong existing time of echinococcosis

in dogs. We can get similar results from (b) and (c).

On the other hand, from [18] we can also get that if we change A1 to 2×105yr−1,

then R0 = 1.667 > 1 becomes to which is greater than unit one, which means P̄ = P ∗,

i.e. the perturbation is around the endemic equilibrium of model (2.3). For this we

choose c1 = 500, c2 = 1 and c3 = 50, and we can obtain 0 ≤ σ2
1 ≤ 2.6567, 0 ≤

σ2
2 ≤ 0.7994 and 0 ≤ σ2

3 ≤ 0.8054 from condition (4.3). We take σ2
1 = 1.1, σ2

2 = 0.8

and σ2
3 = 0.45, then from Corollary 4.5 endemic equilibrium P ∗ of system (2.3) is

stochastically asymptotically stable, which can be seen in Figure 2. Figure 2 showed

that when R0 > 1 deterministic model and stochastic counterpart has very little

difference in dogs and livestock, but environmental noises can delay echinococcosis

eggs attain endemic equilibrium about twenty years.

Furthermore, we present some examples in which Theorem 4.3 remain true when

condition (4.3) is not satisfied. More precisely, if we use quantities of the model param-

eters from [18] once more, for A1 = 2×104 yr−1, d1 = 0.08 yr−1,β1 = 5.8×10−8 yr−1,

σ = 2 yr−1, A2 = 1.05× 108 yr−1, d2 = 0.33 yr−1, β2 = 7.4× 10−8 yr−1, a = 9.7 yr−1

and d = 10.42 yr−1, then R0 = 0.7736 < 1. If we choose that intensities of noise

are σ2
1 = 0.6, σ2

2 = 0.3 and σ2
3 = 0.4, then condition (4.3) is not satisfied, but from

Figure 3 we see that disease-free equilibrium P0 of model (2.3) may be stochastically

asymptotically stable. In addition, from [18], if we change A1 to 2 × 105yr−1, then

R0 = 1.667 > 1. In this case, we choose σ2
1 = 2.8, σ2

2 = 1.0 and σ2
3 = 0.81, then

endemic equilibrium P ∗ of system (2.3) is stochastically asymptotically stable with-

out condition (4.3) as well from Figure 4. Figure 3 (a) showed that echinococcosis in

dogs go to extinction about ten years later and in corresponding deterministic model

the disease dies out about twenty years later, which means the white noise make

echinococcosis in dogs die out much faster. However, from Figure 3 (b) and (c) we

can get that the environmental noises prolong the existing time of echinococcosis in

livestock and eggs. From Figure 4, it is observed that when R0 > 1 deterministic
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model and stochastic counterpart has very little difference in dogs and livestock but

environmental noises can delay echinococcosis eggs attain endemic equilibrium.
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Figure 1. Deterministic and stochastic trajectories of model (2.3) with R0 < 1.

6. DISCUSSION

In this paper, in order to explore the effect on the transmission dynamics and

trend of echinococcosis of white noise, we extended the epidemic model of echinococ-

cosis presented in [18] by introducing fluctuation around disease-free equilibrium and

endemic equilibrium in them. We propose to examine how environmental fluctuations

affect the stability of system (2.2). By constructing a Lyapunov function of quadratic

form, which has never been used in the analysis of stochastic differential equations, we

obtaind sufficient conditions for the stochastic asymptotic stability of the disease-free

equilibrium as well as the endemic equilibrium.

Combining analytical results we have give some numerical simulations. From Fig-

ure 1 it is observed that environmental noises prolong existing time of echinococcosis.

When R0 < 1 and condition (4.3) is not satisfied from Figure 3 we can get that the

white noise make echinococcosis in dogs die out much faster but prolong the exist-

ing time of echinococcosis in livestock and eggs. Figure 2 and Figure 4 showed that
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Figure 2. Deterministic and stochastic trajectories of model (2.3) with R0 > 1.
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Figure 3. Deterministic and stochastic trajectories of model (2.3) with R0 < 1 and
without condition (4.3).
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when R0 > 1 deterministic model and stochastic counterpart has very little difference

in dogs and livestock but environmental noises can delay echinococcosis eggs attain

endemic equilibrium. Furthermore, according to Figure 3 and Figure 4 we can see

that Theorem 4.3 give sufficient but not necessary condition for the trivial solution of

considered system to be stochasticaaly asymptotically stable, in other words, the sta-

bility conditions for the disease-free equilibrium and endemic equilibrium are weaker

than condition (4.3). Therefore, in our further work, we wish to give a sufficient and

necessary condition for stochastic asymptotic stability of stochastic echinococcosis

epidemic model considered in this paper.
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Figure 4. Deterministic and stochastic trajectories of model (2.3) with R0 > 1 and
without condition (4.3).
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