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NUMERICAL ESTIMATION OF UNCERTAINTY PRINCIPLE
FOR LÉVY DRIVEN ORNSTEIN UHLENBECK PROCESSES

IN FINANCE

DENIZ ILALAN

Department of Banking and Finance, Çankaya University, Ankara, Turkey

ABSTRACT. According to uncertainty principle, the more precisely the position of some particle
is determined, the less precisely its momentum can be known and vice versa. This study applies
the uncertainty principle to geometric Brownian motion, mean reverting Ornstein Uhlenbeck (OU)
and more general Lévy driven OU processes which are widely used in finance. It is found out that
the variance of the process itself which can be regarded as the momentum and the variance of its
Fourier transform, which corresponds to the position are inversely related. Various approximation
and numerical techniques are applied to Lévy driven OU processes since their Fourier transforms
involve non elementary integrals.
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1. INTRODUCTION

A moving particle in quantum physics and a financial asset typically have the

same properties. Since any financial asset moves along in time, the dispersion of it

can be considered as the dispersion in the momentum. Whenever the dispersion of

gets closer to zero, that is, it becomes more and more stable, after a threshold the

dispersion of its position immediately tends to infinity due the uncertainty principle.

The uncertainty principle merely says that we cannot be perfectly clear about where

something is and where it is going. Although this principle always holds it is hard to be

observed in daily life. However, when particles are of atomic size then the effect of this

principle is clearly visible. As a consequence of this principle there is a relationship

between a randomly distributed variable and its Fourier transform which will be our

main yardstick for this study. First the uncertainty principle is introduced and its

linkage with Fourier transform is explained. After stating the uncertainty principle

for the easiest case namely the geometric Brownian motion, we then consider the

mean reverting OU processes which are widely used for modeling financial securities.

The last and the main concern of the article is devoted to Lévy driven OU processes.

We first start with basic definitions and important formulas. We then find the Fourier

transform of a Lévy driven OU process where some major theorems are stated and
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used. Here due to the complexities only positive exponentially distributed jumps are

taken into consideration. The non-elementary integrals lead us to approximate them

with Taylor series conjoined with numerical integration and a root finding algorithm.

We state a new approximation technique for finding the roots of the Fourier transform

of the Lévy driven OU process which is a mixture of Taylor series expansion and

nonlinear least squares estimation. It is found out that after a certain point the

variance of the Fourier transform interestingly diverges. The paper concludes with

possible related future research topics.

2. UNCERTAINTY PRINCIPLE

The uncertainty principle [7] states that the standard deviation of the position of

a moving particle ∆x and the standard deviation of its momentum ∆p should respect

the following inequality:

(2.1) ∆x ·∆p ≥
h

4π

where h is the Planck constant (approximately 6, 6 · 10−34). In order to demonstrate

the equivalence of uncertainty principle for random variables the following definitions

and theorem are given:

Definition 2.1. Let f(x) be an arbitrary probability density function. M(t) is called

the moment generating function of f(x) defined by M(t) =
∫∞
−∞ e

txf(x)dx.

A key problem with moment generating functions is that moments and the mo-

ment generating function may not exist, as the integrals need not converge absolutely.

Definition 2.2. Let f(t) be an arbitrary function. A function F (ω) is called the

Fourier transform of f(t) defined by F (ω) =
∫∞
−∞ e

−iωtf(t)dt.

Contrary to the moment generating function, Fourier transform always exists.

Intuitively, the Fourier transform carries a function from time domain to frequency

domain.

Theorem 2.3 (Plancherel [11]). Let f(t) has the Fourier transform F (ω) then∫ ∞
−∞
|f(t)|2dt =

1

2π

∫ ∞
−∞
|F (ω)|2d(ω)

Theorem 2.4 (Uncertainty Principle). Suppose f(t) has the Fourier transform F (ω).

Let

E =

∫ ∞
−∞
|f(t)|2dt =

1

2π

∫ ∞
−∞
|F (ω)|2d(ω)

d2 =
1

E

∫ ∞
−∞

t2|f(t)|2dt ; D2 =
1

2πE

∫ ∞
−∞

ω2|F (ω)|2d(ω)

If
√
tf(t)→ 0 as |t| → ∞ then D · d ≥ 1

2
.
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Fourier transform may not always be a probability density function at all and

its variance may not always be defined. However, D · d = 1 when we have Gaussian

distribution which will be proved in the next section.

3. GEOMETRIC BROWNIAN MOTION

The driving process of a stock is usually assumed to follow a geometric Brownian

motion as stated by [1]

(3.1) dS(t) = µS(t)dt+ σS(t)dB(t)

Where µ is the drift, σ is the volatility parameter and B(t) is the standard

Brownian motion. The solution of (3.1) is quite straightforward by Ito formula [8]

(3.2) S(t) = S(0) · e
“
µ−σ

2

2

”
+σḂ(t)

and since Brownian motion is normally distributed we have

(3.3) s(t) = ln(S(t)) ∼ N

((
µ− σ2

2

)
t, σ2t

)
Let f(x) ∼ N(0, 1) be standard normal distributed. Now consider the moment

generating function of f(x) which is

M(t) =

∫ ∞
−∞

etx
1√
2π
e
x2

2 dx =

∫ ∞
−∞

1√
2π
e

“
−x2

2
+tx

”
dx =

∫ ∞
−∞

1√
2π
e−

1
2

(x−t)2e−
1
2
t2dx = e

1
2
t2

since
∫∞
−∞

1√
2π
e−

1
2

(x−t)2dx = 1.

Now for an arbitrary mean and variance, the moment generating function of

f(x) ∼ N(µ, σ2) becomes M(t) =
∫∞
−∞ e

tx 1√
2πσ2

e
−(x−µ)2

2σ2 dx. Defining z = x−µ
σ

implies

x = zσ + µ and by change of variable technique the result is M(t) = eµt+
σ2t2

2 .

Since Fourier transform (characteristic function) is defined as Φ(t) = M(it) we have

Φ(t) = eiµt−((σ2t2)/2). Now, the Fourier transform of a normal distribution with mean

zero and variance σ2 is another normal distribution with mean zero but a variance

of 1
σ2 . Hence, the relation between the variances of a normal probability distribution

function with mean zero and its Fourier transform can be expressed in uncertainty

principle form as σ2 1
σ2 = 1. When we set t = 1, without loss of generality, the relation

for the geometric Brownian motion case easily follows.

4. UNCERTAINTY PRINCIPLE FOR OU PROCESSES

Modeling data in continuous time with uncertainty is a major issue. The cor-

responding driving process is usually assumed to follow a particular pattern. Mean

reverting processes for term structures drew quite a lot of attention in the literature.

Benchmark for these is the OU process by [10]:

(4.1) dX(t) = −cX(t)dt+ σdB(t), X(0) ∈ R
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where σ ∈ R+, c > 0 and B(t) is the standard Brownian motion. OU process can be

solved analytically by integration by parts as

Y (t) = X(t)ect ⇒ dY (t) = cectX(t)dt+ ectdX(t)

= cectX(t)dt+ ect[−cX(t)dt+ σdB(t)]⇒ dY (t) = σectdB(t)

Y (0) = x⇒ Y (t) = x+ σ

∫ t

0

ecsdB(s)⇒ X(t)ect = x+ σ

∫ t

0

ecsdB(s)

⇒ X(t) = xe−ct + σ

∫ t

0

ec(s−t)dB(s)

Mean and variance of 4.1 are

(4.2) E(X(t)) = E(xe−ct) + σE
[∫ t

0

ec(s−t)dB(s)

]
= xe−ct.

(4.3)

V ar(X(t)) = E(X(t)− E(X(t))2 = E
(
σe−ct

∫ t

0

ec(s−t)dB(s)

)2

and from Ito isometry we have

σ2e−2ctE
[∫ t

0

e2csds

]
= σ2e−2ct e

2cs

2c

∣∣∣t
0

= σ2e−2ct e
2ct − 1

2t
=
σ2

2c
(1− e−2ct).

If we consider the OU process stated in (4.1) and follow the derivation of the charac-

teristic function of the normal distribution the Fourier transform of (4.1) becomes

(4.4) e−itX(t) = e

“
−iuX(0)e−2ct+u2

2
σ2

2c
(1−e−2ct)

”

Since our main concern is the comparison of variances we can set X(0) = 0. Moreover,

we can also write (4.4) as

e−itX(t) = e

 
u2

1
σ2

1
2c

(1−e−2ct)

!

Following the assertion of Plancharel’s Theorem we have the following:

σ2

2c
(1− e−2ct)

1

2π

1

σ2
e(

1
2c

(1−e−2ct)) = 1

In order for this equality to hold, when σ → 0 then 1
σ
→∞. Hence it is apparent that

a decrease in the variance of the OU Process in question yields bigger uncertainty.

The variances of the OU Process and its Fourier transform are compared in Figure 1.

Whenever the variance of the OU Process gets smaller the variance of its Fourier

transform widens. The situation is reversed when the variance of the OU process

increases. When σ = 1 the variances are again inversely related according to the mean

reversion rate c. Hence if the momentum is certain the position becomes uncertain

according to c and vice versa if the uncertainty effect from σ is nil. However, none

of the variances immediately diverge. The uncertainty principle holds but is hard to

observe when σ is not infinitesimally close to zero.
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Figure 1. Comparison of the variance functions of OU Process and

its Fourier transform for different values of σ when t = 1.

(a) σ = 0.75 (b) σ = 1

(c) σ = 1.25 (d) σ = 2

5. UNCERTAINTY PRINCIPLE FOR LÉVY DRIVEN OU

PROCESSES

OU processes are generalized by adding a random jump component. This is usu-

ally done with a Poisson process conjoined with a Poisson random measure. Formal

definitions are stated below (for detailed explanation see [3]).

Definition 5.1 (Poisson Process). Poisson processes are extensively used for mod-

eling breaks in financial data. The homogeneous Poisson process counts events that

occur at a fixed rate λ called the intensity. The process is characterized by

(5.1) P[N(t+ τ)−N(t) = k] =
e−λτ (λτ)k

k!
, k = 0, 1, . . .

where N(t + τ) − N(t) = k is the number of events in time interval (t, t + τ ] and λ

being the expected number of jumps that occur per unit time. The mean and variance

of the Poisson process given in (5.1) is E(x) = V ar(x) = λt.
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Definition 5.2 (Compound Poisson Process). If jumps are Yi with arbitrary sizes

and E(Yi) = β then Q(t) =
∑N(t)

i=1 Yi is called a compound Poisson process where

E(x) = V ar(x) = βλt.

Definition 5.3 (Compensated Compound Poisson Process). The process M(t) =

Q(t) − βλt is called the compensated compound Poisson process. Its expectation is

0.

Definition 5.4 (Poisson Random Measure). Let (S, S,m) be a sigma finite measure

space with m(s) > 0 and (Ω, F,P) the underlying probability space. A Poisson

random measure π with intensity m is a collection of random variables π(A)A∈S with

the following properties:

(i) π(A) = Poisson(m(A)), ∀A ∈ S
(ii) If A1, A2, . . . , Ak ∈ S are disjoint then, π(A1), π(A2), . . . , π(Ak) are independent.

The Poisson random measure counts the expected number of jumps for a given inter-

val.

Definition 5.5 (Lévy Process). A stochastic process is said to be a Lévy process if

it has independent and stationary increments and is continuous in probability.

Definition 5.6 (Lévy Ito Decomposition). A Lévy process has three independent

components (γ, σ2, ν) called the Lévy triplet where γ is a linear drift, σ2 is a diffusion

process captured by a Brownian motion and ν is a Poisson random measure for

Poisson processes with different jump sizes.

Definition 5.7 (Lévy Khintchine Formula). The distribution of a Lévy process is

characterized by

E(eiux) = eiuγe−
u2σ2

2 e
R∞
−∞[eiux−1−iuxI|x|<1]ν(dx)

where I is the indicator function and ν is a finite measure satisfying
∫∞
−∞(1Λx2)ν(dx) <

∞.

Consider the following OU Process

(5.2) dX(t) = −cX(t)dt+ dL(t)

where L(t) is a Lévy process with the triplet (γ, σ2, ν) and ν is a Poisson random

measure defined by ν(dx) = λF (dx) = λαe−αxdx, x > 0. Although could be

generalized, for computational and accuracy purposes (which will be clearer) only

exponentially distributed positive jumps and a maturity of unity is considered. The

solution of (5.2) straightforward as:

X(t) = X(0)e−ct +

∫ t

0

e−c(s−t)dL(s)
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which can be partitioned by Lévy Ito decomposition as

X(t) = X(0)e−ct + γ

∫ t

0

e−c(s−t)ds+ σ

∫ t

0

e−c(s−t)dB(s)

+

t∫
0

∞∫
|x|=1

e−c(s−t)xM(dsdx) +

t∫
0

1∫
|x|=ε

e−c(s−t)xM̃(dsdx)

where M denotes the compound Poisson and M̃ denotes the compensated compound

Poisson process. The expectation of X(t) is

(5.3)

E(X(t)) = X(0)e−ct + γ

∫ t

0

e−c(s−t)ds+

t∫
0

∞∫
1

e−c(s−t)xν(dx)ds

= X(0)e−ct + γ
1− e−ct

c
+

1− e−ct

c

∫ ∞
1

λαe−αxdx

= X(0)e−ct + γ
1− e−ct

c
+

1− e−ct

c

λ

α
e−α(1 + α)

= X(0)e−ct +
γ

c
(1− e−ct) +

λ(1 + α)e−α

αc
(1− e−ct)

and the variance can be computed as

(5.4)

V ar(X(t)) = σ2

∫ t

0

e2c(s−t)ds+

t∫
0

∞∫
−∞

e2c(s−t)x2ν(dx)ds

=
σ2

2c
(1− e−2ct) +

λ

σ2c
(1− e−2ct)

=
(1− e−2ct)

c

(
σ2

2
+

λ

α2

)
In order to compute the characteristic function of X(t) we need the following lemma:

Lemma 5.8. Let f : [0, T ]→ R be left continuous and Z(t) be a Lévy process. Then

E
(
e−i

R t
0 f(t)dZ(t)

)
= e(

R T
0 Ψ(f(t))dt)

where Ψ(u) is the characteristic exponent of Z.

Now let us compute the characteristic function of X(t)

E
(
eiuX(t)

)
= eiuX(0)e−ctE

(
eiu

R t
0 e
−c(s−t)dL(s)

)
= eiuX(0)e−cte

R T
0 Ψ(uec(s−t))

Now consider L(t) defined by

L(t) = γtσB(t) +

t∫
0

∞∫
|x|=1

xM(dsdx) +

t∫
0

1∫
|x|=ε

xM̃(dsdx)

From Lévy Khintchine Formula we have

E(eiuL1) = eiuγe−
u2σ2

2 e
R∞
−∞[eiux−1−iuxI|x|<1]ν(dx)
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where I is the indicator function. Then the characteristic component of L is

Φ(u) = (iuγ)

(
−u

2σ2

2

)(∫ ∞
−∞

[eiux − 1− iuxI|x|<1]ν(dx)

)
and

Φ(uec(s−t)) =(
(iuγ)e−c(s−t)

)(
−u

2σ2

2
e2c(s−t)

)(∫ ∞
−∞

[eiue
c(s−t) − 1− iue−c(s−t)I|x|<1]ν(dx)

)
then ∫ t

0

Φ(uec(s−t))ds =

(
iuγ

∫ t

0

e−c(s−t)ds

)(
−u

2σ2

2

∫ t

0

e2c(s−t)ds

)

+

t∫
0

∞∫
−∞

∞∫
−∞

[eiue
c(s−t)x − 1− iuec(s−t)xI|x|<1]dsν(dx)

We finally have

(5.5)

E
(
eiuX(t)

)
= e(iuX(0)e−ct)e

“
iuγ
“

1−e−ct
c

”
−σ

2u2

2

“
1−e−2ct

2c

””

eλte

„
iuλ
c

„
1−e−α(1+α)

α

««
e

 
tR
0

∞R
−∞

eiuxe
c(s−t)

dsλxαe−αxdx

!

Since our main concern is the comparison of variances we can set X(0) = 0 and γ = 0.

However, we cannot say that the variance is 1
σ2 multiplied by a constant as in the OU

process since u’s also appear elsewhere Thus we have

E
(
eiuX(t)

)
= e

−σ
2u2

2

“
1−e−2ct

2c

”
eλte

„
iuλ
c

„
1−e−α(1+α)

α

««
e

 
tR
0

∞R
−∞

eiuxe
c(s−t)

dsλxαe−αxdx

!

Now the mean of EeiuX(t) is

E
(
E
(
eiuX(t)

))
=∫ ∞

−∞
u

e−σ2u2

2

“
1−e−2ct

2c

”
eλte

„
iuλ
c

„
1−e−α(1+α)

α

««
e

 
tR
0

∞R
0

eiuxe
c(s−t)

dsλxαe−αxdx

! du
Let us consider the integrand with respect to s and x in the exponent of last term

which is λ
t∫

0

∞∫
0

eiuxe
c(s−t)

dsxαe−αxdx. Notice that lower limit of the final integral is

changed from −∞ to 0 since we only have positive exponentially distributed jumps.

This double integral has no analytic solution therefore we approximate the term ec(s−t)

with the first two Taylor series term at the expansion point t = 1 as 1+ c(s− t). Here

adding more terms again gives non elementary results therefore only the first two

terms are taken. Although it seems a naive approximation, our choice of t = 1 and

positive exponentially distributed jumps makes it quite accurate as seen in Figure 2.
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Figure 1. Approximation of ee
c(s−t)

when c = t = 1.

The reason of our particular choices are now clearer. Now we have

λ

t∫
0

∞∫
0

eiux(1+c(s−t))dsxαe−αxdx =

∞∫
0

λ
eiux(1+c(s−t))

iuxc

∣∣∣t
0
xαe−αxdx

=

∞∫
0

λ
eiuxeiuxc

iuxc

∣∣∣t
0
xαe−αxdx

when we set c = α = 1 the integral becomes
∞∫

0

λ
2eiux

iux
xαe−xdx =

∞∫
0

−λ2eiux−x

iu
dx = λ

2ieiux−1x

u(iu− 1)

∣∣∣∞
0

=
2iλ

u(iu− 1)
.

For other values of c solution of the integral is harder and results are too long. Our

aim here is to see the impact of variance and jump components and since the effect

of mean reversion rate is analyzed in detail for sole OU processes we will not take

into account mean reversion rates other than unity. We also set α = 1 but for other

values of α the integral can easily be computed. Now the mean becomes

(5.6) E
(
E
(
eiuX(t)

))
= e

1−e−2

2
+2λ(2−e−1)

∫ ∞
−∞

ue−
u2σ2

2
+iu+e

2i
u(iu−1)

The last term inside the integral makes it non elementary therefore we again approx-

imate it with the first two Taylor series terms around 1, we then have

(5.7)

E
(
E
(
eiuX(t)

))
= e

1−e−2

2
+2λ(2−e−1)

∫ ∞
−∞

ue−
u2σ2

2
+iu+e(1−i)+(−1+2i)e(1−i)(u−1)du
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Figure 2. Graphs of the mean estimating function for the Fourier

transform of Lévy driven OU process for different values of σ when

t = 1.

(a) σ = 0.75 (b) σ = 1

(c) σ = 1.25 (d) σ = 2

The oscillations and their wave lengths increase when the σ decreases. Now let

us denote the mean by µ. Then the variance becomes

(5.8)

E(u− µ)2eiuX(t) =

e
1−e−2

2
+2λ(2−e−1)

∫ ∞
−∞

(u− µ)2e−
u2σ2

2
+iu+e(1−i)+(−1+2i)e(1−i)(u−1)du

Since e
1−e−2

2
+2λ(2−e−1) are just constants we try to understand the shape of the vari-

ance estimating function. Notice that it involves complex values therefore we only

sketch the graph of its real part since it corresponds to the usual variance. Moreover,

the variance function had some negativities, hence their absolute value is taken into

consideration.

Notice how the variance estimator function shoots up when σ decreases from 1.25

to 1. It almost tends to infinity when σ is lowered to 0.75.
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Figure 3. Graphs of the variance estimating function for the Fourier

transform of Lévy driven OU process for different values of σ when

t = 1.

(a) σ = 0.75 (b) σ = 1

(c) σ = 1.25 (d) σ = 2

6. SERIES EXPANSION AND ROOT FINDING ALGORITHM FOR

LÉVY DRIVEN OU PROCESSES

In order to determine the position of roots for estimating the variance with Simp-

son’s rule the roots of the integral stated in equation (5.8), we first compute its Taylor

Series Expansion which is

∞∑
k=0

u2
(
−u2σ2

2
+ iu+ e(1−i) + (−1 + 2i)e(1−i)(u− 1)

)k
k!

Therefore, we follow polynomial root finding algorithm due to Cayley Hamilton The-

orem.

Theorem 6.1 (Cayley Hamilton). For a given n by n square matrix the characteristic

polynomial of A defined by p(λ) = det(λIn − A) where In is the identity matrix and

det stands for the determinant. Then we have p(A) = 0.
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Definition 6.2 (Companion Matrix). The companion matrix of the polynomial

p(t) = c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1 + cnt
n is defined by

C(p) =


0 0 0 . . . −c0

1 0 0 . . . −c1

...
...

...
. . .

...

0 0 0 . . . −cn−1


(Detailed proofs are available in [2, 5, 6].)

Following Cayley Hamilton Theorem, the eigenvalues of the companion matrix

which in fact is the roots of the polynomial in question. Here we compute eigenvalues

via QR algorithm [4, 9] for a desired level of Taylor Expansion order. The real parts

of the roots are ordered and their minimum and maximum values are picked. Having

seen the tendency of real roots next step is to calculate the corresponding variance

value for the selected σ’s. In order to compute them we consider the integral on

the neighborhood of real roots and apply Simpson’s rule. Our algorithm stops when

0,01 error is reached. It is also worthwhile mentioning that the proposed root finding

method with Taylor expansion and Cayley Hamilton Theorem becomes significantly

slower when the Taylor series order is more than 15. The reason for this is the due

to the saddle shape of the Fourier transform. Our proposed algorithm is too fast

for smoother distributions like the OU Process without jumps. We therefore apply

a new innovative technique for estimation of the roots by using logarithmic least

squares estimation after certain number of roots are computed. The findings are

listed in Tables 1–4:

Table 1. Estimation of the variance of Fourier transform of the Lévy

driven OU Process for σ = 2

σ = 2

Order Minimum Maximum

1 1,0537 1,0537

2 0.9157 1,2100

3 0,8390 1,1929

4 0,7920 1,1759

5 0,7616 1,2350

6 0,7413 1,2594

7 0,7275 1,2545

8 0,7176 1,2622

9 0,7101 1,2852

10 0,7040 1,2990

11 0,6900 1,3066

12 0,6768 1,3125

13 0,6655 1,3321

14 0,6557 1,3474

Trend y=-0,14ln(x)+1,0132 y=-0,0943ln(x)+1,0821

Number Of Iterations 760 487

Value 0,0845 1,6657

Variance 0,0622
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Table 2. Estimation of the variance of Fourier transform of the Lévy

driven OU Process for σ = 1, 25

σ = 1, 25

Order Minimum Maximum

1 1,4684 1,4684

2 1,4204 1,5330

3 1,3946 1,5935

4 1,3760 1,6431

5 1,3600 1,6832

6 1,3447 1,7160

7 1,3295 1,7436

8 1,3141 1,7476

9 1,2988 1,7890

10 1,2839 1,8085

11 1,2689 1,8266

12 1,2505 1,8436

13 1,2315 1,8598

14 1,2125 1,8752

Trend y=-0,093ln(x)+1,4926 y=0,1612ln(x)+1,4335

Number Of Iterations 481 894

Value 0,9182 2,5290

Variance 2,1919

Table 3. Estimation of the variance of Fourier transform of the Lévy

driven OU Process for σ = 1

σ = 1

Order Minimum Maximum

1 2,4883 2,4883

2 2,4372 2,5428

3 2,4006 2,5901

4 2,3709 2,6312

5 2,3453 2,6673

6 2,3224 2,6995

7 2,3018 2,7285

8 2,2829 2,7551

9 2,2656 2,7797

10 2,2498 2,8026

11 2,2342 2,8242

12 2,2130 2,8446

13 2,1872 2,8646

14 2,1647 2,8830

Trend y=-0,105ln(x)+2,4723 y=0,1569ln(x)+2,4391

Number Of Iterations 558 833

Value 1,8082 3,4943

Variance 31,11

As can be observed from the table at σ = 1 the variance of the Fourier transform

of Lévy Process is approximately 31. However, when σ = 0, 75 which is only a

small decrease the variance shoots up to 16346! We can conclude that at some point

the inequality is broken from the Levy driven OU process in favor of momentum,

therefore in order to satisfy the inequality the variance of the Fourier transform which

corresponds to discrepancy in position tends to infinity. In that sense one should be

very cautious when a certain variance parameter to a Lévy driven OU process is
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Table 4. Estimation of the variance of Fourier transform of the Lévy

driven OU Process for σ = 1

σ = 0, 75

Order Minimum Maximum

1 3,9916 3,9916

2 3,9395 4,0438

3 3,9004 4,0882

4 3,8684 4,1276

5 3,8413 4,1635

6 3,8176 4,1967

7 3,7966 4,2278

8 3,7778 4,2569

9 3,7607 4,2845

10 3,7451 4,3110

11 3,7270 4,3343

12 3,5979 4,4404

13 3,5962 4,4506

14 3,4825 4,6001

Trend y=-0,162ln(x)+4,0656 y=0,1984ln(x)+3,8942

Number Of Iterations 833 1060

Value 2,9761 5,2763

Variance 16346

assigned since an incremental decrease may instantly end up with a huge discrepancy

in its position.

7. CONCLUSION

This study applies the Heisenberg’s uncertainty principle to three major pro-

cesses which are widely used in finance. It is observed that for geometric Brownian

motion and OU processes without jumps, where both are normally distributed, the

impact of the principle is not easily observable unless the variance parameter tends

to zero. However, the effect of the uncertainty principle is clearly visible when the

process in question is a Lévy driven OU process. After a certain point, which is

quite far away from zero compared to the other mentioned processes the variance of

the Fourier transform tends to infinity. Due to the complex structure of the Fourier

transform of the Lévy driven process, we used Taylor series expansion in order to sim-

plify the non-elementary integrals. Moreover, we used only exponentially distributed

positive jumps. More generalized jump size distributions can be a future research

topic. Another obstacle we faced was the computation of the variance of the Fourier

transform. Here we applied the Taylor expansion to find the roots of the variance

estimating function. Although our proposed algorithm works quite fast for smooth

distributions, due to the saddle like structure, it becomes too slow after an order of

15. We therefore applied an innovative technique by using a logarithmic least squares

estimation of the roots. After a desired tolerance level, we stop and use the roots

as lower and upper limit for the integration of the variance estimator function. Here

Simpson’s rule is used for approximation of the variance.
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