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ABSTRACT. In biased and correlated random walk (BCRW) models, the movement is character-

ized by correlated successive step orientations along with a bias in the globally preferred direction. In

this study, stochastic partial differential equations (SPDEs) for BCRW are derived for one, two, and

three dimensions. First, discrete-time stochastic models are developed by determining the changes

for a small time interval. As the time interval approaches zero, systems of Itô stochastic differential

equations are found. Then, SPDEs are derived as the space interval approaches zero. Finally, nu-

merical solutions of the stochastic equations are compared with the independently formulated Monte

Carlo calculations.
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1. INTRODUCTION

The theory of stochastic integration and stochastic differential equations (SDEs),

known as the Itô calculus, was first introduced by Kiyoshi Itô in 1940s. After this

introduction, SDEs are preferred to be used frequently in applied mathematics due

to random processes in different subjects such as physics, biology, and economics.

[2, 3, 5, 10, 21, 13, 15, 20]. This paper includes stochastic biased and correlated

random walk (BCRW) models in one, two, and three dimensions. Derivation steps

are explained in detail only for one and two dimensions.

In nature, the direction of the movement of animals, micro-organisms, or cells is

not random and usually there is a correlation between the consecutive steps of the

motion. Various mathematical models incorporating the above idea of the particle

motion have been developed. In Correlated Random Walk (CRW) models, the current

direction of a particle is considered to be related with the previous movement direc-

tion. For instance, most animals tend to move forward. This persistence produces
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a local directional bias. CRW models are commonly used to investigate the animal

paths in biology or ecology [7, 12, 16, 22]. However, besides the local directional bias,

some movements also have a global preferred direction towards a target such as a

light or food source. These types of motion are known as a biased and correlated

random walk. For example, the movement paths of swimming micro-organisms and

butterflies can be modeled as BCRW [14, 19].

In this paper, stochastic partial differential equations (SPDEs) are derived for a

BCRW in one, two, and three dimensions under the assumption that globally pre-

ferred direction of movement is independent of the location of the particles. Solutions

of derived SPDEs, in one and two dimensions, are compared with independently for-

mulated Monte Carlo simulations. Computational results of SPDEs are in well agree-

ment with the results of Monte Carlo calculations. The general derivation procedure

for SDEs and SPDEs are not provided in this work. The details of the derivation

procedure can be found at [3, 11].

2. DERIVATION OF STOCHASTIC BCRW MODELS

In this section, SPDEs are derived for BCRW models in one, two, and three

dimensions.

2.1. Derivation of Stochastic BCRW in One Dimension. In this subsection,

an SPDE is derived for a one-dimensional BCRW. BCRW model can be defined as a

biased telegraph equation. It is assumed that the preferred absolute direction of the

movement is independent of the location, i.e., the target of the particles is assumed

to be located at infinity. The derivation of biased telegraph equation is given before

deriving the stochastic model.

In one dimensional case, right and left direction moving particles are considered.

Notations of α and β are used to show numbers of right and left moving particles

per unit distance. The rate of change for the right and left moving particles can be

modeled by the following system of differential equations:

∂α

∂t
= −v

∂α

∂x
− γ1α + γ2β(2.1)

∂β

∂t
= v

∂β

∂x
+ γ1α − γ2β(2.2)

where v is a constant speed, γ1 is the rate that right-moving particles change direction

to the left, and similarly, γ2 is the rate that left-moving particles change direction to

the right.

Adding equations (2.1) and (2.2) and differentiating the resulted equation with

respect to t gives the following equation:

∂2(α + β)

∂t2
= v

∂2(β − α)

∂x∂t
.(2.3)
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Subtracting the equation (2.1) from the equation (2.2) and differentiating with

respect to x gives

∂2(β − α)

∂x∂t
= v

∂2(β + α)

∂x2
− 2γ2

∂(β)

∂x
+ 2γ1

∂(α)

∂x
(2.4)

Then, substituting the equation (2.4) into the equation (2.3), replacing α + β by

p, p = p(x, t) is the total particle density, and modifying the resulting equation by

adding and subtracting related terms gives the biased telegraph equation:

∂2p

∂t2
+ (γ1 + γ2)

∂p

∂t
+ v(γ2 − γ1)

∂p

∂x
= v2 ∂2p

∂x2
(2.5)

It is clear that when γ1 = γ2, assuming that turning probabilities are same, then

the equation (2.5) reduces to a known telegraph equation which is used to model the

CRW in one-dimension.

Table 1. Right-moving particle population changes on [xi−1, xi] in time ∆t

Possible Change (∆αi) Probability

αi−1v∆t/∆ p2 = 1

−αiv∆t/∆x p2 = 1

0 p3 = αiσv∆t(1 − γ1)

-1 p4 = αiσv∆tγ1

1 p5 = βiσv∆tγ2

Table 2. Left-moving particle population changes on [xi−1, xi] in time ∆t

Possible Change (∆βi) Probability

βi+1v∆t/∆x p1 = 1

−βiv∆t/∆x p2 = 1

0 p3 = βiσv∆t(1 − γ2)

-1 p4 = βiσv∆tγ2

1 p5 = αiσv∆tγ1

The derivation of a stochastic version of the biased telegraph equation in one-

dimension is similar to the unbiased case which is well known as CRW, except that

there are different turning probabilities depending on the direction of the movement.

As summarized on page 3, in one dimensional BCRW there are right and left direction

moving particles with a constant speed v. It is assumed that particles may have an

interaction with probability per unit distance σ. As a result of this, a possible change

in direction may occur. When a possible change in direction occurs, the probability

of a right-moving particle turning left is γ1. Moreover, γ2 is the probability of a

left-moving particle turning right after an interaction occurs. For example, (1 − γ1)



166 E. DOGAN-CIFTCI AND U. BULUT

is the probability of a right-moving particle preserving its initial direction. Notations

of α(x, t) and β(x, t) are used to show the number densities of right and left moving

particles at position x and time t. To find changes occurring, for a small time interval

∆t, in the right and left moving particle populations, the space interval [xmin, xmax] is

divided into N sub-intervals [xi−1, xi], for i = 1, 2, . . . , N where x0 = xmin, xN = xmax,

xj = xmin + j∆x for j = 1, 2, . . . , N − 1, and ∆x = (xmax − xmin)/N . Let αi(t) and

βi(t) be numbers of right and left moving particles on the interval [xi−1, xi] at time t.

Possible changes for αi(t) and βi(t) for a small time interval, ∆t, are listed in Table 1

and Table 2. In Table 1, the possible changes for right moving particles on the ith

interval, [xi−1, xi], are listed. Because of the assumption that particles move with a

constant velocity, v, right moving particles in the (i − 1)st interval, αi−1(t)v
∆t
∆x

, pass

into the ith interval in time period ∆t with probability unity. In the same manner,

right moving particles on the ith interval, αi(t)v
∆t
∆x

, cross into the next interval in

time period ∆t with probability unity. Besides, one right moving particle on the

ith interval changes its direction to the left with probability αi(t)vσγ1∆t. Moreover,

one left-moving particle changes direction and becomes a right-moving particle with

probability βi(t)vσγ2∆t. Last two terms in Table 1 build random part of the derived

BCRW equation for the right moving particle population. Changes and probabilities

in Table 2 are constructed for left moving particles, based on the similar argument

used to form Table 1. Tables 1 and 2 define a discrete stochastic model for BCRW in

one-dimension. Based on the discrete stochastic model, the particle population levels

αi(t) and βi(t) for i = 1, 2, . . .N , approximately satisfy the following SDE system (2.6)

and (2.7), where W̃i(t), Wi(t) are independent Wiener processes for i = 1, . . . , N :

dαi(t)

dt
=

(αi−1(t) − αi(t))v

∆x
− αi(t)σvγ1 + βi(t)σvγ2(2.6)

−
√

αi(t)σvγ1

dW̃i(t)

dt
+

√

βi(t)σvγ2

dWi(t)

dt

dβi(t)

dt
=

(βi+1(t) − βi(t))v

∆x
− βi(t)σvγ2 + αi(t)σvγ1(2.7)

−
√

βi(t)σ2vγ
dWi(t)

dt
+

√

αi(t)σ1vγ
dW̃i(t)

dt

In the systems (2.6) and (2.7), αi(t) and βi(t) are replaced by α(xi, t)∆x and

β(xi, t)∆x, respectively, where α(x, t) and β(x, t) are the right and left moving particle

population densities at position x and time t. Then, the resulting equations are

divided by ∆x to obtain the following system:

∂α(xi, t)

∂t
=

(α(xi−1, t) − α(xi, t))v

∆x
− α(xi, t)σvγ1 + β(xi, t)σvγ2(2.8)

−
√

α(xi, t)σvγ1

∆x

dW̃i(t)

dt
+

√

β(xi, t)σvγ2

∆x

dWi(t)

dt
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∂β(xi, t)

∂t
=

(β(xi+1, t) − β(xi, t))v

∆x
− β(xi, t)σvγ2 + α(xi, t)σvγ1(2.9)

−
√

β(xi, t)σvγ2

∆x

dWi(t)

dt
+

√

α(xi, t)σvγ1

∆x

dW̃i(t)

dt

Finally, a suitable two dimensional Brownian sheet is substituted for each Wiener

process in (3.8) and (3.9), and as ∆x approaches zero, the following SPDEs are

derived:

∂α(x, t)

∂t
= −v∂(α(x, t))

∂x
− α(x, t)σvγ1 + β(x, t)σvγ2(2.10)

−
√

α(x, t)σvγ1

∂2W̃ (t, x)

∂x∂t
+

√

β(x, t)σvγ2

∂2W (t, x)

∂x∂t

∂β(x, t)

∂t
=

v∂(β(x, t))

∂x
− β(x, t)σvγ2 + α(x, t)σvγ1(2.11)

−
√

β(x, t)σvγ2

∂2W (t, x)

∂xdt
+

√

α(x, t)σvγ1

∂2W̃ (t, x)

∂x∂t

where W (t, x) and W̃ (t, x) are two dimensional Brownian sheets. Specifically,

dWi(t) =
1√
∆x

∫ xi

xi−1

∂2W (t, x)

∂x∂t
dxdt for i = 1, 2, . . . , N

and

dW̃i(t) =
1√
∆x

∫ xi

xi−1

∂2W̃ (t, x)

∂x∂t
dxdt for i = 1, 2, . . . , N.

2.2. Derivation of Stochastic Biased and Correlated Random Walk in Two

Dimensions. Two dimensional equations are derived by considering four possible

directions (right, left, up, and down) of movement providing a simpler derivation pro-

cedure than in previous work [8]. It is assumed that the preferred absolute direction of

movement is independent of the location, i.e., the target of the particles is considered

to be located at infinity. As in one dimensional case, particles move with a constant

speed v. It is also assumed that only one event is possible in a small time interval,

i.e., the interaction and movement cannot happen simultaneously at each time step

∆t. Before determining the changes that occur in each rectangular region for a small

interval of time, some notation is first introduced:

Let A1(x, y, t) and A3(x, y, t) be the number of right and left moving particles at

position (x, y) per unit area at time t, respectively. Similarly, A2(x, y, t) and A4(x, y, t)

be the number of downward and upward moving particles at position (x, y) per unit

area at time t, respectively. Let σ be the probability of interaction of two particles.

Let γ1 be the probability of any particle changing its direction to the right after

an interaction, γ2 be the probability of any particle changing its direction to the

downward direction, γ3 be the probability of any particle changing its direction to
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Figure 1. Diagram of possible changes of particles in two dimensions

due to movement for [xi, xi+1] × [yj, yj+1] rectangle

the left, and γ4 be the probability of any particle changing its direction to the upward

direction. Note that γ1 + γ2 + γ3 + γ4 = 1.

When the change of direction probabilities are different than each other, there is

a globally preferred direction for the particles. For example, if γ1 is greater than the

other turning probabilities, then the right direction is the globally preferred direction,

i.e., there is a bias in the right direction. In time, the number of right moving particles

will increase.

First, a discrete stochastic model is derived. To do this, the plane is made discrete

by dividing [xmin, xmax] × [ymin, ymax] into I and J equal intervals, respectively. Let

∆x = xi+1−xi, for i = 0, 1, 2 . . . I−1, and ∆y = yj+1−yj , for j = 0, 1, 2 . . . J −1. So,

the summation Σ4
k=1

∫ xi+1

xi

∫ yj+1

yj
Ak(x, y, t)dy dx gives the total number of particles on

the rectangle [xi, xi+1] × [yj, yj+1]. Define αkij = Ak(xi, yj, t)∆x∆y for k = 1, 2, 3, 4.

Thus, for example, α1ij is the total number of particles moving in the right direction

in region [xi, xi+1] × [yj, yj+1] at time t. The other directions are defined similarly.

Diagram of possible changes of particles in two dimensions due to movement for

[xi, xi+1] × [yj, yj+1] rectangle is given in Figure 1. In addition, a possible change of

particles before and after an interaction in two dimensions for [xi, xi+1] × [yj, yj+1]

rectangle is represented in Figure 2. Table 3 defines a discrete stochastic model

for α1ij . The changes and the probabilities are shown. For instance, α1i−1jv∆t/∆x

particles go from [xi−1, xi] × [yj, yj+1] into [xi, xi+1] × [yj, yj+1] with probability 1.

In addition, particles are coming in or going out of [xi, xi+1] × [yj, yj+1] in the right
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Figure 2. Representation of a possible change of particles before and

after an interaction in two dimensions for [xi, xi+1]× [yj , yj+1] rectangle

Table 3. Changes and probabilities for the number of particles moving

in right direction in rectangle [xi, xi+1] × [yj, yj+1] for two-dimensional

BCRW

Possible Change (∆α1ij) Probability

α1i−1jv∆t/∆x 1

−α1ijv∆t/∆x 1

+1 α2ijσvλ1∆t

+1 α3ijσvλ1∆t

+1 α4ijσvλ1∆t

0 α1ijσv(1 − λ2 − λ3 − λ4)∆t

-1 α1ijσvλ4∆t

-1 α1ijσvλ2∆t

-1 α1ijσvλ3∆t

direction. The third line in Table 3 is an addition of one right moving particle due to

interaction and direction change of a particle moving in the downward direction. The

fourth and fifth lines of the table are defined similarly. The last three lines represent

the loss of a right moving particle due to direction change as a result of an interaction.

The stochatic models in Tables 4, 5 and 6 are created similarly as those in Table 3.

Based on the changes and probabilities in Tables 3, 4, 5, and 6, the particle population

levels αi for i = 1, 2, 3, 4 approximately satisfy the following SDE system:

dα1ij(t)

dt
=

(α1i−1j(t) − α1ij(t))v

∆x
+

4
∑

k=2

αkijσvλ1 −
4

∑

k=2

α1ijσvλk(2.12)

+
4

∑

k=2

√

αkijσvλ1

dWk1ij(t)

dt
−

4
∑

k=2

√

α1ijσvλk

dW1kij(t)

dt
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Table 4. Changes and probabilities for the number of particles mov-

ing in downward direction in rectangle [xi, xi+1] × [yj, yj+1] for two-

dimensional BCRW

Possible Change (∆α2ij) Probability

α2ij+1v∆t/∆y 1

−α2ijv∆t/∆y 1

+1 α1ijσvλ2∆t

+1 α3ijσvλ2∆t

+1 α4ijσvλ2∆t

0 α2ijσv(1 − λ1 − λ3 − λ4)∆t

-1 α2ijσvλ1∆t

-1 α2ijσvλ4∆t

-1 α2ijσvλ3∆t

Table 5. Changes and probabilities for the number of particles moving

in left direction in rectangle [xi, xi+1] × [yj, yj+1] for two-dimensional

BCRW

Possible Change (∆α3ij) Probability

α3i+1jv∆t/∆x 1

−α3ijv∆t/∆x 1

+1 α4ijσvλ3∆t

+1 α1ijσvλ3∆t

+1 α2ijσvλ3∆t

0 α3ijσv(1 − λ1 − λ2 − λ4)∆t

-1 α3ijσvλ1∆t

-1 α3ijσvλ2∆t

-1 α3ijσvλ4∆t

dα2ij(t)

dt
=

(α2ij+1(t) − α2ij(t))v

∆y
+

4
∑

k=1
k 6=2

αkijσvλ2 −
4

∑

k=1
k 6=2

α2ijσvλk(2.13)

+

4
∑

k=1
k 6=2

√

αkijσvλ2

dWk2ij(t)

dt
−

4
∑

k=1
k 6=2

√

α2ijσvλk

dW2kij(t)

dt
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Table 6. Changes and probabilities for the number of particles moving

in upward direction in rectangle [xi, xi+1]×[yj , yj+1] for two-dimensional

BCRW

Possible Change (∆α4ij) Probability

α4ij−1v∆t/∆y 1

−α4ijv∆t/∆y 1

+1 α1ijσvλ4∆t

+1 α2ijσvλ4∆t

+1 α3ijσvλ4∆t

0 α4ijσv(1 − λ1 − λ2 − λ3)∆t

-1 α4ijσvλ1∆t

-1 α4ijσvλ2∆t

-1 α4ijσvλ3∆t

dα3ij(t)

dt
=

(α3i+1j(t) − α3ij(t))v

∆x
+

4
∑

k=1
k 6=3

αkijσvλ3 −
4

∑

k=1
k 6=3

α3ijσvλk(2.14)

+

4
∑

k=1
k 6=3

√

αkijσvλ3

dWk3ij(t)

dt
−

4
∑

k=1
k 6=3

√

α3ijσvλk

dW3kij(t)

dt

dα4ij(t)

dt
=

(α4ij−1(t) − α4ij(t))v

∆y
+

3
∑

k=1

αkijσvλ4 −
3

∑

k=1

α4ijσvλk(2.15)

+

3
∑

k=1

√

αkijσvλ4

dWk4ij(t)

dt
−

3
∑

k=1

√

α4ijσvλk

dW4kij(t)

dt

Moreover, an SPDE system is derived for this problem. First, the equations

(2.12)-(2.15), are all divided by ∆x∆y. Then, αkij/∆x∆y is changed by Ak(xi, yj, t)

for k = 1, 2, 3, 4. Next, a suitable three dimensional Brownian sheet is substituted

for each Wiener process in (2.12)-(2.15). As ∆x and ∆y approach 0, SPDE system
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is derived:

∂A1(x, y, t)

∂t
= −v

∂A1(x, y, t)

∂x
+

4
∑

k=2

Ak(x, y, t)σvλ1(2.16)

−
4

∑

k=2

A1(x, y, t)σvλk

+
4

∑

k=2

√

Ak(x, y, t)σvλ1

∂3Wk1(x, y, t)

∂x∂y∂t

+
4

∑

k=2

−
√

A1(x, y, t)σvλk

∂3W1k(x, y, t)

∂x∂y∂t

∂A2(x, y, t)

∂t
= v

∂A2(x, y, t)

∂y
+

4
∑

k=1
k 6=2

Ak(x, y, t)σvλ2(2.17)

−
4

∑

k=1
k 6=2

A2(x, y, t)σvλk

+
4

∑

k=1
k 6=2

√

Ak(x, y, t)σvλ2

∂3Wk2(x, y, t)

∂x∂y∂t

−
4

∑

k=1
k 6=2

√

A2(x, y, t)σvλk

∂3W2k(x, y, t)

∂x∂y∂t

∂A3(x, y, t)

∂t
= v

∂A3(x, y, t)

∂x
+

4
∑

k=1
k 6=3

Ak(x, y, t)σvλ3(2.18)

−
4

∑

k=1
k 6=3

A3(x, y, t)σvλk

+
4

∑

k=1
k 6=3

√

Ak(x, y, t)σvλ3

∂3Wk3(x, y, t)

∂x∂y∂t

−
4

∑

k=1
k 6=3

√

A3(x, y, t)σvλk

∂3W3k(x, y, t)

∂x∂y∂t
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∂A4(x, y, t)

∂t
= −v

∂A4(x, y, t)

∂y
+

3
∑

k=1

Ak(x, y, t)σvλ4(2.19)

−
3

∑

k=1

A4(x, y, t)σvλk

+

3
∑

k=1

√

Ak(x, y, t)σvλ4

∂3Wk4(x, y, t)

∂x∂y∂t

−
3

∑

k=1

√

A4(x, y, t)σvλk

∂3W4k(x, y, t)

∂x∂y∂t

where, for example,

dW21ij(t) =
1√

∆x∆y

∫ yj+1

yj

∫ xi+1

xi

∂3W21(x, y, t)

∂x∂y∂t
dxdydt

This model reduces to unbiased correlated random walk model if λ1 = λ2 = λ3 = λ4.

2.3. SPDE for BCRW in Three Dimensions. In an analogous way, it is straight-

forward to derive the stochastic partial differential equations for BCRW in three di-

mensions. It is assumed that there are only six possible movement directions. The

resulting SPDE for right moving particles has the following form:

∂A1(x, y, z, t)

∂t
= −v

∂A1(x, y, z, t)

∂x
(2.20)

+
6

∑

k=2

Ak(x, y, z, t)σvλ1 −
6

∑

k=2

A1(x, y, z, t)σvλk

+

6
∑

k=2

√

Ak(x, y, z, t)σvλ1

∂4Wk1(x, y, z, t)

∂x∂y∂z∂t

−
6

∑

k=2

√

A1(x, y, z, t)σvλk

∂4W1k(x, y, z, t)

∂x∂y∂z∂t

The equations for the particles moving in different directions can be derived in a

similar manner.

3. COMPARISON OF NUMERICAL SOLUTIONS

In this part, one and two dimensional derived SPDEs for BCRW are solved numer-

ically by Euler’s Maruyama method and results are compared with the independently

formulated Monte Carlo (MC) calculations [18, 17]. An identical initial distribution

is considered for each computer experiment.
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In the first part, derived one dimensional stochastic partial differential equations,

(2.10) and (2.11), are numerically solved. Specifically, an Euler- Maruyama approxi-

mation to this SDE system, including (2.6) and (2.7), is used and given by:

αi(t + ∆t) ≈ αi(t) + αi−1(t)v∆t/∆x − αi(t)v∆t/∆x − αi(t)σv∆tγ1(3.1)

+βi(t)σv∆tγ2 −
√

αi(t)σv∆tγ1ν̃i +
√

βi(t)σv∆tγ2νi

βi(t + ∆t) ≈ βi(t) + βi+1(t)v∆t/∆x − βi(t)v∆t/∆x − βi(t)σv∆tγ2(3.2)

+αi(t)σv∆tγ1 −
√

βi(t)σv∆tγ2νi +
√

αi(t)σv∆tγ1ν̃i

where νi, ν̃i, are independent normally distributed numbers with mean zero and

variance unity for i = 1, . . . , N .

According to the initial distribution, there are 2800 particles on the interval

[−5, 5]. The distribution of right and left moving particles are assumed to be identi-

cal. The Number of the right and left moving particles are 150 on [−5,−2] ∪ [2, 5],

325x + 800 on (−2, 0], and 800 − 325x on [0, 2). Particles move continuously with a

constant velocity v = 1. Particles get an interaction with probability per unit distance

σ = 1. After an interaction occurs, the probability for right moving particles changing

direction is 0.1 and similarly the probability for left moving particles changing direc-

tion is 0.9. Distribution of the total number of particles on the interval [-1.25,1.25] is

observed at time 0.5.

In the numerical solution of the SPDEs, ∆x and ∆t are selected sufficiently

small to obtain an accurate approximation. For example, the position interval [−5, 5]

is divided into 1280 sub-intervals and time is divided into 200 sub-intervals such that

∆t = total time

200
. In the MC simulation, particles are tracked individually to check for

an interaction or direction change at each time step. For both of those independently

formulated programs, 500 sample paths are used to get accurate statistical results.

In Table 7, mean numbers and standard deviations of the right-moving particles on [-

1.25, 1.25] are calculated at times 0.0625, 0.125, 0.25, 0.5 by the numerical solution of

the SPDE and the MC simulation. Similar results are given for left-moving particles

in Table 8. Because of the global directional bias to the right, the number of right-

moving particles increases due to the scattering of left-moving particles. However

at further times the value of the right moving particles are observed to decrease as

well since once particles leave the spatial interval [−5, 5] they do not come back. In

Figure 3 mean numbers of right and left moving particles are given separately for

both SPDE and MC calculations at time 0.5 on the interval [−1.25, 1.25]. Similarly

standard deviations in the right and left moving particles are given in Figure 4 on

[−1.25, 1.25] at time 0.5 for both computational approaches. Tables and figures prove

that two different computational procedures provide similar results.
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Figure 3. Mean number of particles on [−1.25, 1.25] at time 0.5 for

SPDE and MC
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Figure 4. Standard deviations in the particles on [−1.25, 1.25] at time

0.5 for SPDE and MC

Table 7. Mean numbers and standard deviations (SD) of right mov-

ing particles by one-dimensional Monte Carlo (MC) and SPDE calcu-

lational results for 500 sample paths

Time Mean of α(SDE) Mean of α(MC) SD of α(SDE) SD of α(MC)

.0625 1991.3862 1988.0055 10.6121 10.5712

.125 2077.7744 2064.7517 14.2127 13.9821

.25 2226.2217 2189.0879 19.1703 18.8414

.5 2453.0867 2332.2134 23.5584 21.8746

In the second part, numerical solutions of two-dimensional SPDE equations are

compared with Monte Carlo calculations for two different turning probabilities. It is

assumed that the velocity of the particles is constant, v = 1 and there are 225 right,

downward, left, and upward moving particles for a total of 900 particles. Particles

are uniformly distributed on [0, 1] × [0, 1]. Initially, there are no particles outside of

the square. The distribution of the particles on [0, 1] × [0, 1] is watched until time
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Table 8. Mean numbers and standard deviations (SD) of left moving

particles by one dimensional Monte Carlo (MC) and SPDE calculational

results for 500 sample paths

Time Mean of β(SDE) Mean of β(MC) SD of β(SDE) SD of β(MC)

.0625 1807.2618 1809.9921 10.7935 10.5119

.125 1717.2837 1729.2633 13.9732 13.9642

.25 1554.5504 1592.5887 18.9341 18.8944

.5 1273.8884 1398.9347 22.7239 22.0114
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(a) Monte Carlo
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(b) SPDE

Figure 5. Mean number of particles in [0, 1] × [0, 1] from time 0 to

time 1 for λ1 = 0.1, λ2 = 0.1, λ3 = 0.1, and λ4 = 0.7

= 1.0. The unit square is divided into 256 smaller squares. To study this problem

computationally, (2.12)-(2.15) are solved numerically. For this, an Euler-Maruyama
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(a) Monte Carlo
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Figure 6. Standard deviation in number of particles in [0, 1] × [0, 1]

from time 0 to time 1 for λ1 = 0.1, λ2 = 0.1, λ3 = 0.1, and λ4 = 0.7

approximation to the equation (2.12) is used:

α1ij(t + ∆t) − α1ij(t) ≈ (α1i−1j(t) − α1ij(t))v∆t

∆x
(3.3)

+α2ijσvλ1∆t + α3ijσvλ1∆t + α4ijσvλ1∆t

−α1ijσvλ4∆t − α1ijσvλ2∆t − α1ijσvλ3∆t

+
√

α2ijσvλ1η21ij +
√

α3ijσvλ1η31ij

+
√

α4ijσvλ1η41ij −
√

α1ijσvλ4η14ij

−
√

α1ijσvλ2η12ij −
√

α1ijσvλ3η13ij

where α1ij(t) is the number of right moving particles at time t. Besides, ηk1ij and

η1lij for i = 0, 1, 2, . . . , 15, j = 0, 1, 2, . . . , 15, k = 2, 3, 4, and l = 2, 3, 4 are normally

distributed numbers with mean 0 and variance 1. Similar approximations are used

for equations (2.13)-(2.15). In the Monte Carlo simulation, each particle is tracked

individually and checked for a direction change at each time step.

In the first case considered, the turning probabilities are λ1 = 0.1, λ2 = 0.1,

λ3 = 0.1, and λ4 = 0.7. That is, there is a global bias in the upward direction
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(a) Monte Carlo
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(b) SPDE

Figure 7. Mean number of particles in [0, 1] × [0, 1] from time 0 to

time 1 for λ1 = 0.4, λ2 = 0.4, λ3 = 0.15, and λ4 = 0.05

whereas the turning probabilities are smaller for the other directions. The means and

standard deviations of the number of particles in unit square at time 1 are given for

1000 sample paths. In Figure 5, the means of SPDE and MC calculations are also

graphed for the same case with 1000 sample paths. Besides, the standard deviations

are graphed in Figure 6 for two methods. Tables and graphs show that two approaches

are in good agreement for the first case.

In the second case, turning probabilities are assumed to be λ1 = 0.4, λ2 = 0.4,

λ3 = 0.15, and λ4 = 0.05. That is, there is an equal global bias in the right and

downward directions. The turning probabilities for left and upward directions are

smaller. In Figures 7 and 8, the means and standard deviations are given from time

0 up to time 1. SPDE and MC also are in good agreement in the second case.

4. SUMMARY AND CONCLUSIONS

We have demonstrated that the method of derivation of the stochastic correlated

random walk models given by Bulut (2012) can be extended to a biased correlated

random walk, where globally preferred direction is considered besides the local di-

rectional bias. In this paper, stochastic partial differential equations are derived for
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Figure 8. Standard deviation in number of particles in [0, 1] × [0, 1]

from time 0 to time 1 for λ1 = 0.4, λ2 = 0.4, λ3 = 0.15, and λ4 = 0.05

biased and correlated random walk models in one, two, and three dimensions. In one

and two dimensional cases, numerical results of derived SPDEs are compared with

Monte Carlo calculations. A good agreement between two independently formulated

numerical procedures supports the validity of the derived SPDEs.

The initial assumptions for the models in this article may not be relevant to every

random walk models in the literature. For instance, we assumed that all particles

move with a constant velocity. However, this may not represent the case when the

particles have varying velocities depending on the environmental factors and changes.

Besides that, the target might be located at a position different than infinity. In this

case, the preferred direction depends on the location of the particles and should be

carefully considered.
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