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ABSTRACT. In this paper we study the strongly unequal permutations of symmetric group Sn

and its application to the counting of sudoku solutions. We present an estimate for the number of
strongly unequal permutations of Sn and a recursive relation for the same. The number of different
4× 4 sudoku solutions is presented using strongly unequal permutations of S4.
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1. PRELIMINARY RESULTS

In this paper we study about strongly unequal permutations of Sn, which is

defined as

Definition 1.1. Any two permutations σ1, σ2 ∈ Sn are said to be strongly unequal

if

(1.1) σ1(i) 6= σ2(i) ∀ i ∈ {1, 2, 3, . . . , n}

Let (|Un(σ)|) be the number of permutations of Sn which are strongly unequal

with σ. One may ask two basic questions namely, (i) given a permutation σ of Sn,

how many permutations are strongly unequal with σ? and (ii) whether the number of

strongly unequal permutations is same for every permutation of Sn? These question

leads to the study of partitioning of Sn and obtain

Theorem 1.2. Every permutation of Sn has exactly |Un| strongly unequal permuta-

tions, where

(1.2) |Un| = |Un(σ)| = n!− (n− 1)!− (n− 1)

(
n−2∑
k=1

(−1)k−1

(
n− 2

k

)
(n− (k + 1))!

)

This study of number of strongly unequal permutations of a given permutation

of Sn leads to a recursive relation
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Theorem 1.3. |Un+1| = n(|Un|+ |Un−1|), for n ≥ 2.

In other words, the number of strongly unequal permutations of any permutation

of Sn+1 is n times the sum of the number of strongly unequal permutation(s) of any

permutation of Sn and Sn−1. From the concept of strongly unequal permutation we

prove the following lemmas

Lemma 1.4. Any n+1 permutations of Sn are not strongly unequal with one another.

Lemma 1.5. There exist a collection of n strongly unequal permutations in Sn.

One of the main objectives of this study is to use these as tools to study sudoku

problems and solutions. Sudoku was first published anonymously by Garns (1979)

for Dell Pencil Puzzles. The Sudoku puzzle received a large amount of attention in

the United States and Europe in 2005 after a regular Sudoku puzzle began appearing

in the London Times.

A Sudoku problem is a partially filled m2 × m2 matrix which can be filled in

exactly one way. The m2 × m2 matrix is filled with integers from {1, 2, 3, . . . ,m2}
such that every row, every column and every m×m submatrices as shown below have

integers from {1, 2, 3, . . . ,m2} appearing exactly once. Such a filled matrix is called

as Sudoku solution.

Figure 1. A 4× 4 Sudoku problem and its unique solution (for m = 2)

Figure 2. A 9× 9 Sudoku problem and its unique solution (for m = 3)

For example in figure[1] we have listed a 4 × 4 Sudoku problem and its unique

solution (for m = 2). Sometimes 4×4 Sudoku problem is referred as Shidoku problem
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[10, 4]. In figure [2] we have listed a 9 × 9 Sudoku problem and its unique solution

(for m = 3).

The idea here is due to the observation that all the m2 rows (columns, sub-square)

of any m2 ×m2 Sudoku solution will have the following properties that,

• every row (column, sub-square) is an element of Sm2 , due to the rule that no

repetition of integers in every row(columns, sub-square). As said before Sm2 is

set of all m2! permutations of integers {1, 2, 3, . . . ,m2} for any m ∈ N.

• any two rows (columns) will be strongly unequal due to the rule that no repeti-

tion is allowed in every columns(rows).

Hence, given a Sudoku solution (m2 ×m2 matrix) all its m2 rows (columns) will

be strongly unequal with one another. In other words, the given Sudoku solution

is made out of m2 strongly unequal permutations of Sm2 . Lets prove by method of

contradiction. Suppose not, then there exist two rows such that ith entry of these two

rows are equal, then it implies the ith column has a repeated integer which leads to a

contradiction with the Sudoku rule. Similar argument holds for columns.

Definition 1.6. A collection of k permutations of Sn are said to be strongly unequal

if they are strongly unequal with one another. In other words, any two permutations

in the collection will be strongly unequal. Such a collection is referred as, a collection

of k strongly unequal permutations of Sn.

It is to be noted that any arrangement of m2 strongly unequal permutations

of Sm2 will not necessarily construct a Sudoku solution due to the rule that the

same integers may not appear twice in the sub-squares. We are interested in set of

m2 permutations that are strongly unequal with one another such that they form a

Sudoku solution.

The number of possible Sudoku problems and Sudoku solutions have been of

interest to many [2, 4, 5, 7, 8, 9]. That is, in how many ways one can fill the m2×m2

matrix without repeating any integers {1, 2, . . . ,m2} in each row, column and sub-

square.

For m = 2, Laura [10] proved that there are 288 different Sudoku solutions exist.

She has used a similar procedure followed by Felgenhauer and Jarvis [1] who used a

computer program to find the all possible solutions for m = 3. Felgenhauer and Jarvis

[1] used a computer program to show that there are 6,670,903,752,021,072,936,960

different Sudoku solutions for m = 3. Russell and Jarvis[3] showed that there are

5,472,730,538 essentialy different Sudoku solutions for m = 3. It is also to be noted

that a proof that does not use computer is not yet known[10]. The main objective

of introducing the concept of strongly unequal permutations is to attempt to give an

algebraic proof to the number of Sudoku solutions. In this paper we will prove the

following theorem for m = 2.
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Theorem 1.7. There are 288 different 4× 4 Sudoku Solutions.

A few observation and challenges in higher dimension is also given.

2. Proof of Theorem 1.2

Proof. Let σ = (a1, a2, . . . , an) be any arbitrary permutation of Sn. The idea here

is to remove all the permutations which are not strongly unequal with σ. Therefore

its enough to prove that there are N (as defined below) permutations which are not

strongly unequal with σ, where

(2.1) N = (n− 1)! + (n− 1)

(
n−2∑
k=1

(−1)k−1

(
n− 2

k

)
(n− (k + 1))!

)

Please refer to figure [3]. Its easy to verify that all possible n! permutations can be

divided into n subsets namely, Pa1 , Pa2 , . . . , Pan , each having (n − 1)! permutations,

where the subset Par contains all the permutations with ar arranged in the first place

as indicated in the figure [3]. (Why Par has (n − 1)! permutations for any r? and

prove that Pai
∩ Paj

= φ for any i 6= j. We leave these as exercise.)

Its to be observed that every permutation of Pa1 is not strongly unequal with σ,

since all the permutations of Pa1 starts with a1. Hence all the (n−1)! permutations of

Pa1 are to be removed. The term (n− 1)! in equation [2.1] is because of this analysis.

Now the idea is to identify the permutations in the remaining (n − 1) subsets,

namely Pa2 , Pa3 , . . . , Pan which are not strongly unequal with σ. Lets take an arbitrary

subset, Par , i.e., the set of all (n−1)! permutations starting with ar. Now we identify,

(n − 2) subsets of Par , namely P(ar,a2), P(ar,a3), . . . , P(ar,ar−1), P(ar,ar+1), . . . , P(ar,an),

where P(ar,al) is set of all permutations with ar in the first place and al is the lth place,

for any l ∈ {1, 2, . . . , n}/{1, r}. Its easy to verify that all the (n − 2)! permutations

of P(ar,al) are not strongly unequal with σ (because of al in the lth place). (Question:-

Why? P(ar,al) has (n − 2)! permutations? Since ar is in the first place, we are fixing

one of the remaining n−1 places except the rth place. Hence we will get n−2 subsets

each having (n−2)! permutations). We have to remove all the permutations of P(ar,al),

for all l ∈ {2, 3, 4, . . . , n}/{r}, therefore, we have to remove all the permutations of

n⋃
i=2
i 6=r

P(ar,ai)

Its to be noted that, |P(ar,ap)∩P(ar,aq)| = (n−3)! for any p 6= q since there are (n−3)!

permutations possible with ar in the first place, ap and aq at the pth and qth places

respectively (fixing 3 elements the remaining n−3 places can be permuted in (n−3)!

ways).
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Figure 3. Partitioning of n! permutations to identify permutations

which are not strongly unequal with (a1, a2, . . . , an)
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By inclusion-exclusion principle [6]

(2.2)

∣∣∣∣∣∣∣
n⋃
i=2
i 6=r

P(ar,ai)

∣∣∣∣∣∣∣ =
n−2∑
k=1

 ∑
φ 6=J⊆{2,3,...,n}/{r}

& |J |=k

(−1)k−1

∣∣∣∣∣⋂
j∈J

P(ar,aj)

∣∣∣∣∣


Claim:- Let J be any non-empty subset of {2, 3, . . . , n}/{r}, then∣∣∣∣∣⋂
j∈J

P(ar,aj)

∣∣∣∣∣ = (n− (|J |+ 1))!

Its easy to verify that
⋂
j∈J P(ar,aj) are set of all permutations having ar in the first

places and |J | elements arranged in their respective places. Hence |J | + 1 places

are fixed out of n places. The left over n − (|J | + 1) places can be permuted with

n − (|J | + 1) elements of {1, 2, 3, . . . , n}/J ∪ {r} in (n− (|J |+ 1))! ways and hence

the claim.

From the above claim it is to be noted that for any two non-empty subsets of

{2, 3, . . . , n}/{r}, namely, J and J
′

with |J | = |J ′ |

(2.3)

∣∣∣∣∣⋂
j∈J

P(ar,aj)

∣∣∣∣∣ =

∣∣∣∣∣∣
⋂
j∈J ′

P(ar,aj)

∣∣∣∣∣∣ = (n− (|J |+ 1))!

Equation [2.2] implies∣∣∣∣∣∣∣
n⋃
i=2
i 6=r

P(ar,ai)

∣∣∣∣∣∣∣ =
n−2∑
k=1

 ∑
φ 6=J⊆{2,3,...,n}/{r}

& |J |=k

(−1)k−1

∣∣∣∣∣⋂
j∈J

P(ar,aj)

∣∣∣∣∣


=
n−2∑
|J |=1

(
(−1)|J |−1

(
n− 2

|J |

)
(n− (|J |+ 1))!

)
Due to the fact that there are

(
n−2
|J |

)
ways to select subsets having |J | elements from

{2, 3, . . . , n}/{r}. The above equation gives the numbers of permutations starting

with ar and not strongly unequal with the (a1, a2, . . . , an), where r ∈ {2, 3, . . . , n}.
Please refer to the equation [2.1] due to the above analysis we have the following

(2.4) (n− 1)

(
n−2∑
k=1

(−1)k−1

(
n− 2

k

)
(n− (k + 1))!

)

Hence we have proved that there are N (as given in equation [2.1]) number of

permutations which are not strongly unequal with (a1, a2, . . . , an). Since there are

n! permutations possible, given any (a1, a2, . . . , an) there will be exactly n! − N (=

|Un(σ)|) permutations which are strongly unequal. Since σ is arbitrary |Un(σ)| = |Un|.
Hence the proof.
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3. Proof of Theorem 1.3 and a few Observations

A few observations: The table [1] list a few experiment on the number (|Un|) of

strongly unequal permutations of Sn for various n and is computed using theorem

[1.2]. Its easy to observe the pattern which leads to the identity.

|Un|
The number of strongly

n unequal permutations of any |Un| = (n− 1)× (|Un−1|+ |Un−2|) |Un|
|Un−1| ≈ n

given permutation of Sn n ≥ 3

1 0 - -

2 1 - -

3 2 2 2.000000

4 9 9 4.500000

5 44 44 4.888889

6 265 265 6.022727

7 1854 1854 6.996226

8 14833 14833 8.000539

9 133496 133496 8.999933

10 1334961 1334961 10.000008

11 14684570 14684570 10.999999

12 176214841 176214841 12.000000

13 2290792932 2290792932 12.999999

14 32071101049 32071101049 14.000000

15 481066515734 481066515734 14.999999

· · · · · · · · · · · ·
Table 1. Table of number of strongly unequal permutations of any

permutation of Sn (|Un|) for various n

Theorem 1.3 |Un+1| = n(|Un|+ |Un−1|), for n ≥ 2.

In other words, the number of strongly unequal permutations of any permutation

of Sn+1 is n times the sum of the number of strongly unequal permutation(s) of any

permutation of Sn and Sn−1.

Proof. In a much more simple words, the permutations of Un+1 can be constructed

from the permutations of Un and Un−1.

Let σ = (a1, a2, . . . , an, an+1) be any arbitrary permutation of Sn+1 and let Un+1 ⊂
Sn+1 be the set of all strongly unequal permutations of σ. The idea here is to prove

that |Un+1| ≥ n(|Un|+ |Un−1|) and |Un+1| ≤ n(|Un|+ |Un−1|).
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From our assumption, σ = (a1, a2, . . . , an, an+1) ∈ Sn+1

=⇒ ∃ ! i ∈ {1, 2, . . . , n+ 1} such that ai = n+ 1(3.1)

=⇒ (a1, a2, . . . , ai−1, ai+1, . . . , an, an+1) = σ ′ ∈ Sn(3.2)

Claim 1: |Un+1| ≥ n× |Un|

Let Un(σ ′) ⊂ Sn be the set of all strongly unequal permutations of σ′. Let

(b1, b2, . . . , bi−1, bi+1, . . . , bn+1) be any arbitrary permutation of Un(σ′).

(3.3) =⇒ aj 6= bj ∀j ∈ {1, 2, . . . , n+ 1}/{i}

Please note that we are playing with the index set for convenience.

Now, lets construct a permutation of Sn+1 by inserting n+1 in the ith place of the

arbitrary permutation of Un(σ′), namely γ = (b1, b2, . . . , bi−1, n + 1, bi+1, . . . , bn+1) ∈
Sn+1. Its easy to verify that γ is not strongly unequal with σ. (Why?, because

γ(i) = σ(i) = n + 1, that is, because of the fact that the ith entries of these two

permutations are equal to n+1.) Its is to be noted that the other entries of these two

permutations are unequal, that is, γ(j) 6= σ(j) ∀j ∈ {1, 2, . . . , i − 1, i + 1, . . . n + 1}
by equation [3.3].

Now the idea is to swap the ith entry of γ with the remaining n entries to get

strongly unequal permutations of σ. Let k 6= i and without loss of generality let

k < i. Define σ1 = (b1, b2, . . . , bk−1, n+ 1, bk+1, . . . , bi−1, bk, bi+1, . . . , bn). We have just

swapped the kth and ith entries of γ.

Claim 1.1: σ1 ∈ Un+1, that is σ1 is strongly unequal with σ. For j ∈ {1, 2, . . . , n +

1}/{k, i}

σ1(j) = bj (by definition)

6= aj (equation [3.3])

= σ(j) (by definition)

=⇒ σ1(j) 6= σ(j) ∀j ∈ {1, 2, . . . , n+ 1}/{k, i}

Now, σ1(k) = n + 1 6= σ(k), since σ(i) = n + 1 & i 6= k, hence σ1(k) 6= σ(k).

And, σ1(i) = bk & σ(i) = ai = n+ 1 =⇒ σ1(i) 6= σ(i) since bk 6= n+ 1.

Therefore σ1(j) 6= σ(j) ∀j ∈ {1, 2, . . . , n+ 1} hence σ1 ∈ Un+1.

Since the arbitrary k ∈ {1, 2, . . . , i − 1, i + 1, . . . , n + 1} its clear that we have

constructed n permutations of Un+1 from a permutation of Un. By this idea we have

generated n strongly unequal permutations of σ from an arbitrary permutations of

Un(σ′). Its easy to verify that if we apply this method for two different permutations of

Un(σ′) we get two different sets of n permutations such that they are strongly unequal

with σ. Therefore, we have generated n × |Un| permutations which are strongly
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unequal with σ. Hence |Un+1| ≥ n× |Un|. Let T1 be the set of all permutations that

are strongly unequal with σ and generated by this algorithm.

Claim 2: |Un+1| ≥ n× |Un−1|

We have σ = (a1, a2, . . . , an, an+1) ∈ Sn+1. By equation [3.1], we have ai = n+ 1.

Let k ∈ {1, 2, . . . , i−1, i+ 1, . . . , n+ 1} and without loss of generality let k > i. Now,

we construct a permutation σ′′ = (a1, a2, . . . , ai−1, ai+1, . . . , ak−1, ak+1, . . . , an+1) by

dropping ith and kth entries. It is to be noted that σ′′ is a permutation of n − 1

integers namely, {a1, a2, . . . , ai−1, ai+1, . . . , ak−1, ak+1, . . . , an+1}. Let W be the set of

all strongly unequal permutations of σ′′. Since, σ′′ is isomorphic to any permutation

of Sn−1, we get |W | = |Un−1|. Therefore, we have got |Un−1| permutations which

are strongly unequal with σ′′. Let (c1, c2, . . . , ci−1, ci+1, . . . , ck−1, ck+1 . . . , cn+1) be any

arbitrary permutation of W .

(3.4) =⇒ aj 6= cj ∀j ∈ {1, 2, . . . , n+ 1}/{i, k}

Please note that we are playing with the index set for our convenience. Now define,

(3.5) σ2 = (c1, c2, . . . , ci−1, ak, ci+1, . . . , ck−1, ai, ck+1 . . . , cn+1) ∈ Sn+1

Claim 2.1: σ2 ∈ Un+1, that is σ2 is strongly unequal with σ. For j ∈ {1, 2, . . . , n +

1}/{i, k}

σ2(j) = cj (by definition)

6= aj (equation [3.4])

= σ(j) (by definition)

=⇒ σ2(j) 6= σ(j) ∀j ∈ {1, 2, . . . , n+ 1}/{i, k}

Now σ2(i) = ak 6= ai = σ(i), since ai = n + 1 & i 6= k, hence σ2(i) 6= σ(i). And,

σ2(k) = ai = n+ 1 & σ(k) = ak =⇒ σ2(k) 6= σ(k) since ak 6= n+ 1.

Therefore σ2(j) 6= σ(j) ∀j ∈ {1, 2, . . . , n+ 1} hence σ2 ∈ Un+1.

Its clear that we have constructed |W | = |Un−1| permutations for a fixed k. Since

k ∈ {1, 2, . . . , i − 1, i + 1, . . . , n + 1}, there are n choices of k and hence we have

generated n × |Un−1| strongly unequal permutations of σ. Its easy to verify that

if we apply this method for two different permutations of W we get two different

sets of n permutations such that they are strongly unequal with σ. Therefore, we

have generated n × |Un−1| permutations which are strongly unequal with σ. Hence

|Un+1| ≥ n× |Un−1|. Let T2 be the set of all permutations that are strongly unequal

with σ and generated by this algorithm.

Claim 3: Let δ be any permutation of Un+1 then (δ ∈ T1 & δ /∈ T2) or (δ /∈ T1 &

δ ∈ T2). Let δ = (c1, c2, . . . , cn+1) ∈ Un+1(σ). Then ∀j ∈ {1, 2, . . . , n+ 1}

(3.6) cj 6= aj
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Since, δ ∈ Un+1 ⊂ Sn+1, ∃ k ∈ {1, 2, . . . , i−1, i+1, . . . , n+1} such that δ(k) = ck = n+

1. Without loss of generality lets assume that k < i. Now lets construct a new permu-

tation δ′ by swapping the ith and kth entries of δ, δ′ = (c1, c2, . . . ck−1, ci, ck+1, . . . , ci−1,

ck, ci+1, . . . , cn+1)

If ak = δ′(k) = ci then δ ∈ T2, this follows directly from the proof of claim 2.

Similarly, If ak 6= δ′(k) = ci then δ ∈ T1, this follows directly from the proof of claim 1.

From the above argument it follows directly that δ ∈ T1 iff δ /∈ T2. Hence the claim.

Claim 4: |Un+1| ≥ n× (|Un|+ |Un−1|)

From Claims 1, 2, and 3 this follows directly.

Claim 5: |Un+1| ≤ n× (|Un|+ |Un−1|)

From Claim 3 this follows directly. Hence the theorem.

4. Proof of Lemma 1.4 and 1.5

Lemma 1.4 Any n+1 permutations of Sn are not strongly unequal with one another.

Proof. Lets prove by the method of contradiction. Suppose there exist a collection

of n + 1 strongly unequal permutations of Sn, namely A1, A2, . . . , An+1. Then by

definition [1.6], for any i 6= j

Ai(k) 6= Aj(k), 1 ≤ k ≤ n

=⇒ A1(k), A2(k), . . . , An+1(k) are all unequal & Ai(k) ∈ {1, 2, . . . , n} ∀ i

⇒ ⇐

Which is a contradiction since n+ 1 different Ai(k)s are not possible. Therefore, the

existence of n + 1 strongly unequal permutations of Sn is not possible. Hence any

n+ 1 permutations of Sn are not strongly unequal with one another.

Lemma 1.5 There exist a collection of n strongly unequal permutations in Sn.

Proof. It’s enough to produce an example to prove the above statement. Let A1 be

any (a1, a2, . . . , an) ∈ Sn. By cycle notation of A1, we generate the next permutation

as A2 = (a2, a3, . . . , an, a1). Similarly we can generate n permutations and let the ith

permutation be Ai = (ai, ai+1, . . . , an, a1, . . . , ai−1) for any 1 ≤ i ≤ n. Now the claim

is A1, A2, . . . , An are all strongly unequal with one another. Suppose not, then there

exist a pair of permutations, Ai & Aj with i 6= j such that they are not strongly

unequal.

=⇒ ∃k ∈ {1, 2, . . . , n} s.t. Ai(k) = Aj(k) (by definition [1.1])

⇐⇒ a(i+k−1) mod n = a(j+k−1) mod n ( ∵ n ≡ 0 mod n, we let an mod n = an)

⇐⇒ i+ k − 1 mod n = j + k − 1 mod n (∵ al 6= am for l 6= m)
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⇐⇒ i+ k − 1 ≡ j + k − 1 mod n

⇐⇒ i ≡ j mod n (∵ a ≡ b mod n ⇐⇒ a + k ≡ b + k mod n for any

fixed k)

⇐⇒ i = j (∵ i, j ≤ n)

⇒⇐ Contradiction to the assumption that Ai 6= Aj. Hence the claim.

Observation 4.1. By combining lemmas [1.4] and [1.5] its easy to observe that the

maximum possible collection of strongly unequal permutations in Sn is n. Now, given

any n−1 strongly unequal permutations of Sn, there exist a unique permutation of Sn

such that these collection of n (= (n− 1) + 1) permutations will be strongly unequal

with one another. This follows directly from the definition of n strongly unequal

permutations. Hence the challenge of finding n strongly unequal permutations of Sn

reduces to finding n− 1 strongly unequal permutations of Sn.

5. A few observations and proof of Theorem 1.7

Lets start with an important observation between strongly unequal permutations

of S4 and existence of Sudoku solutions out of them. Let {σ1, σ2, σ3 , σ4} be a

collection of 4 strongly unequal permutations of S4. We claim that its always possible

to construct a Sudoku solution out of {σ1, σ2, σ3 , σ4}. Let σ1 = (a, b, c, d) and let

it fill the first row of the 4 × 4 Sudoku matrix. Now its easy to verify that one of

the permutations of {(c, d, a, b), (c, d, b, a), (d, c, a, b), (d, c, b, a)} will be σ2 and let it

fill the second row of the Sudoku matrix. Now the left over σ3 and σ4 can fill the

third and fourth row by similar argument. Hence the claim. Its to be noted that its

possible to construct at least 8 Sudoku solutions from a given collection of 4 strongly

unequal permutations of S4.

Theorem 1.7 There are 288 different 4× 4 Sudoku Solutions.

Proof. Given 4 strongly unequal permutations of S4, we can arrange them in 4! ways

and its clear that not all the arrangements are going to give a Sudoku solution because

repetition of numbers is not allowed in any sub-square as per the Sudoku rule.

Idea here is to look for all possible ways of identifying 4 strongly unequal permu-

tations such that they form a Sudoku solution.

First row can be any one of the permutations of S4, which can be selected in
4!C1 (=24 C1 = 24) ways. Let γ1 = (a, b, c, d) be any arbitrary permutation of S4

to fill the first row. By theorem [1.2], there will be 9 permutations of S4 which will

be strongly unequal with γ1. Its easy to list these nine permutations as follows,

(b,a,d,c), (b, c, d, a), (b, d, a, c), (c, a, d, b), (c, d, a, b), (c, d, b, a), (d, a, b, c), (d, c, a, b)

and (d, c, b, a). Lets fill the third row with any one of these 9 strongly unequal permu-

tations. Therefore, the third row can be filled in 9C1. Among these 9 permutations
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the permutation (b, a, d, c) which is a special one. Upon filling the third row by any

one of the remaining 8 permutations, the partially filled Sudoku becomes a Sudoku

problem, that is, it will lead to a unique Sudoku solution.

Among these 9 permutation there will be a permutation (b, a, d, c) which gives 4

different Sudoku solution,the rest(24 × 8) are all gives unique Sudoku solution.This

contributes (24× 1× 4) + (24× 8× 1) = 288

Observation 5.1. Can every collection of 9 strongly unequal permutations of S9 be

arranged to construct a 9× 9 Sudoku solution?

The answer is no. Here is the counter example. σ1 = (1, 2, 3, 4, 5, 6, 7, 8, 9),

σ2 = (4, 3, 1, 5, 6, 2, 8, 9, 7), σ3 = (5, 1, 2, 3, 4, 8, 9, 7, 6), σ4 = (2, 4, 5, 1, 9, 7, 3, 6, 8),

σ5 = (3, 5, 9, 8, 7, 4, 6, 2, 1), σ6 = (6, 9, 8, 7, 3, 5, 4, 1, 2), σ7 = (8, 6, 7, 9, 2, 3, 1, 4, 5),

σ8 = (9, 7, 4, 6, 8, 1, 2, 5, 3), σ9 = (7, 8, 6, 2, 1, 9, 5, 3, 4).

6. Results and Discussions:

In this article we have demonstrated the idea of using strongly unequal permu-

tations of S4 to find the number of 4× 4 Sudoku solutions. We have proved a closed

form representation for the number of strongly unequal permutations of any given

permutation of Sn. We have proved a recursive relation involving |Un−2|, |Un−1| and

|Un|. In the table [1] we have also observed a pattern in the ratio of Un with Un−1

and is shown for various values of n. As part of computational effort we have listed

all the permutations that are strongly unequal with the perumutation 324165 ∈ S6

in table [2] and have also listed all the permutations that are strongly unequal with

the perumutations 6712354, 1325467 ∈ S7 in table [3].

Future work: The same idea can be extended to find the number of 9 × 9 Sudoku

solutions. By lemma [1.5] there exist a set of 9 strongly unequal permutations of

S9. Is it possible to arrange such permutations to form a sudoku solution and from

observation [5.1] its clear that there do exist collection of 9 strongly unequal permu-

tations of S9 which can not be arranged to form a 9×9 Sudoku solution. A few basic

questions to work on are (i) given a collection of 9 strongly unequal permutations of

S9, how many 9 × 9 Sudoku solutions can be constructed. (ii) how many different

collections of 9 strongly unequal permutations of S9 is possible. Please note that, ob-

servation [4.1] may help us in finding a collection of 9 strongly unequal permutations

of S9 and observation [5.1] opens up lot of interesting questions in higher dimension.



STRONGLY UNEQUAL PERMUTATIONS 221

Table 2. Strongly Unequal Permutations of the Permutation

3 2 4 1 6 5 #265

612354 142356 413256 613452 613524 645312 536421 562341 645231 251643

162354 146253 641352 163452 163524 643512 635421 253416 642531 251436

162534 142653 461352 136452 136524 463512 632451 253641 462531 251346

612534 142536 416352 135426 135624 436512 632541 256341 462351 251634

615234 145236 413652 135642 135246 435612 635241 265341 642351 261534

165234 145623 413526 136542 132546 431526 532416 263541 462513 216534

156234 146523 415326 163542 132654 431652 532641 236541 642513 215634

152634 615423 415632 613542 136254 431256 536241 235641 645213 215346

152346 165423 416532 615342 163254 643251 563241 235416 465213 213546

512346 156423 461532 165342 613254 463251 653241 236451 456213 213654

512634 516423 641532 156342 132456 436251 653214 263451 452613 216354

516234 561423 451632 153642 631254 432651 563214 246351 542613 261354

561234 651423 451326 153426 631524 432516 536214 243651 546213 213456

651234 541623 541326 513426 531246 435216 532614 243516 652413

651243 541236 541632 513642 531624 435621 635214 245316 562413

561243 451236 651432 516342 531642 436521 632514 245631 256413

516243 451623 561432 561342 531426 463521 231456 246531 265413

512643 641523 516432 651342 631542 643521 231654 265431 246513

512436 461523 156432 651324 631452 645321 231546 256431 245613

152436 416523 165432 561324 635412 465321 235614 562431 241536

152643 415623 615432 516324 536412 456321 236514 652431 241653

156243 415236 146532 513624 563412 453621 263514 546231 241356

165243 412536 145632 513246 653412 453216 265314 542631 261453

615243 412653 145326 153246 546312 543216 256314 542316 216453

612543 416253 143526 153624 543612 543621 253614 452316 215436

162543 461253 143652 156324 453612 546321 562314 452631 215643

162453 641253 146352 165324 456312 653421 652314 456231 216543

612453 412356 143256 615324 465312 563421 652341 465231 261543
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Table 3. List of strongly unequal permutations of 6712354 and

1325467, #578

7651243 4671523 7564132 3651742 3564712 7431526 3574216 7653241 2436175 7456231 5264713 2143576

7561243 4167523 7654132 3657142 3574612 4631572 3546271 3257146 2436715 4576231 5274613 2143675

5671243 4176523 5164732 7631542 3547612 7643125 3546721 3251746 2437615 4567231 5247613 2146735

5167243 4157623 5174632 3671542 3546712 7463125 3547621 3271546 2473615 4657231 5246713 2147635

5176243 4156723 5147632 3167542 3546172 4673125 3574621 3261745 7243615 4267531 5246173 2174635

7156243 4156273 5146732 3176542 3541672 4637125 3564721 3267145 2463715 4276531 5241673 2164735

7146235 4157236 5143672 3157642 3574126 4631725 3564271 3276145 2463175 4257631 5274136 2164573

7164235 7641235 5143726 3156742 3547126 4631275 3654271 3271645 2643175 4256731 5247136 2146573

7146523 7461235 5143276 3154672 3541726 7436125 3654721 7231645 2643715 4253671 5241736 2174536

7164523 4671235 7154632 3154726 3541276 7431625 7634521 7236145 2643571 4253716 2541736 2147536

7154623 4167235 7164532 3154276 7534126 7436215 3674521 2631745 2463571 4253176 2547136 2154736

7154236 4176235 7146532 3147526 7534612 4637215 3647521 2637145 2436571 4237516 2574136 2154673

5147236 4136275 7143526 3174526 5634172 4673215 3467521 2673145 7243516 4273516 7254136 2156743

5174236 4136725 7143625 3146572 5634712 7463215 3476521 7263145 2473516 4236571 2541673 2157643

5146273 4137625 7134625 3164572 5643712 7643215 3457621 7231546 2437516 4263571 2546173 2176543

5146723 4173625 7134526 3164275 5643172 7436521 3456721 7253146 2453176 4263175 2546713 2167543

5147623 4163725 7136542 3164725 5463172 4637521 3456271 2573146 2453716 4263715 2547613 2671543

5174623 4163275 7163542 3174625 5463712 4673521 3457216 2537146 2453671 4273615 2574613 7261543

5164723 4163572 7153642 3147625 7543612 7463521 7634215 2531746 2456731 4237615 7254613 2657143

5164273 4136572 5134276 3146725 5473612 7643521 3674215 5231746 2457631 4236715 2564713 2651743

7654123 4173526 5134726 3146275 5437612 4653721 3647215 5237146 7246531 4236175 2564173 2561743

7564123 4137526 5134672 3471625 5436712 4653271 3467215 5273146 2476531 4231675 2654173 2567143

5674123 4153276 5136742 3476125 5436172 4563271 3476215 5263741 2467531 4231576 2654713 2576143

5647123 4153726 5137642 3467125 5431672 4563721 3241576 5273641 2647531 4271635 7264513 7256143

5641723 4153672 5173642 3461725 7543126 7453621 3241675 5237641 2674531 4276135 2674513 7251643

5641273 4156732 5163742 3461275 5473126 4573621 3246175 5236741 7264531 4267135 2647513 2571643

5461273 4157632 5173246 3641275 5437126 4537621 3246715 5234671 2654731 4261735 2467513 5271643

5461723 4176532 5137246 3641725 5431726 4536721 3247615 5234716 2564731 4261573 2476513 5276143

5467123 4167532 7153246 3647125 5431276 4536271 3274615 5234176 7254631 4271536 7246513 5267143

5476123 4671532 7163245 3674125 4531276 7453216 3264715 2534176 2574631 4251736 2457613 5261743

7546123 7461532 7136245 7634125 4531726 4573216 3264175 2534716 2547631 4257136 2456713 2153746

7541623 7641532 3176245 3641572 4537126 4537216 3264571 2534671 2546731 4251673 2456173 2137546

5471623 4657132 3167245 3461572 4573126 5437216 3246571 2536741 2543671 4256173 2451673 2173546

7541236 4651732 3671245 3471526 7453126 5473216 3274516 2537641 2543716 4256713 2457136 2163745

5471236 4561732 7631245 3451276 4531672 7543216 3247516 2573641 2543176 4257613 2451736 2173645

4571236 4567132 3157246 3451726 4536172 5436271 3254176 7253641 5243176 4276513 2471536 2137645

7451236 4576132 3571246 3457126 4536712 5436721 3254716 2563741 5243716 4267513 7241536 2136745

4571623 7456132 7531246 3451672 4537612 5437621 3254671 2653741 5243671 4657213 2461573 2134675

7451623 7451632 7653142 3456172 4573612 5473621 3256741 7263541 5246731 4567213 2641573 2134576

7456123 4571632 7563142 3456712 7453612 7543621 3257641 2673541 5247631 4576213 7264135

4576123 5471632 5673142 3457612 4563712 5463721 3276541 2637541 5274631 7456213 2674135

4567123 7541632 5637142 3476512 4563172 5463271 3267541 7236541 5264731 7546213 2647135

4561723 7546132 5631742 3467512 4653172 5643271 3657241 7234516 7654231 5476213 2641735

4561273 5476132 7536142 3647512 4653712 5643721 3567241 2634571 7564231 5467213 2461735

4651273 5467132 7531642 3674512 7643512 5634721 3576241 2634715 5674231 5647213 2467135

4651723 5461732 3571642 7634512 7463512 5634271 7536241 2634175 5647231 5674213 2476135

4657123 5641732 3576142 3654712 4673512 7534621 5637241 7234615 5467231 7564213 7246135

7641523 5647132 3567142 3654172 4637512 7534216 5673241 2431576 5476231 7654213 7241635

7461523 5674132 3561742 3564172 7436512 3547216 7563241 2431675 7546231 5264173 2471635
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