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ABSTRACT. This note is concerned with the convergence of a finite difference scheme to the solu-

tion of a second order ordinary differential equation with the right-hand-side nonlinearly dependent

on the first derivative. By defining stability as the linear growth of the elements of the inverse of

a certain matrix and combining this with consistency, convergence is demonstrated. This stability

concept is then interpreted in terms of a root condition.
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1. Introduction

Convergence of finite difference methods (linear multistep methods) to y′ =

f(t, y) was first studied by [2]. Since that famous paper, the subject has been treated

by a number of authors, most notably [4] whose analysis is quite general in that it

includes the methods of [6], [7] and [5].

However, it would appear that no one has considered the problem of conver-

gence for second order ordinary differential equations whose right-hand-side function

contains y and y′. This note seeks to remedy this.

Consider

(1.1) y′′ = f(t, y(t), y′(t))

subject to

y(0) = ỹ0, y(h) = ỹ1

and the associated difference scheme

(1.2) yn+1 − 2yn + yn−1 = h2f(tn, yn, (yn − yn−1)/h)
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where yn ≃ y(tn) is defined on the grid

tn = nh, n = 0, 1, . . . , N.

Here h = 1/N is the (constant) mesh spacing.

It will be assumed that the function f is Lipschitz continuous in its second and

third variable, i.e. there exists L1, L2 such that

(1.3) |f(t, y, z) − f(t, y∗, z∗)| < L1|y − y∗| + L2|z − z∗|.

2. Consistency

Re-write (1.2) as

y′
n − yn/h + yn−1/h = 0(2.1)

yn+1 − 2yn + yn−1 = h2f(tn, yn, y
′
n)(2.2)

Consider the totality of (2.1) and (2.2):
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or

(2.3) Ahxh = h2BhFh + gh

where

xh = (y0, y1, y
′
1, y2, y

′
2, · · · , yN−1, y

′
N−1, yN)T ,(2.4)

Fh = (f(t0, y0, y
′
0), f(t1, y1, y

′
1), f(t1, y1, y

′
1), f(t2, y2, y

′
2), f(t2, y2, y

′
2),

. . . , f(tN−1, yN−1, y
′
N−1), f(tN−1, yN−1, y

′
N−1), f(tN , yN , y′

N))T ,(2.5)

gh = (ỹ0, ỹ1, 0, . . . , 0)T ,

are 2N × 1 vectors.

Note Ah and Bh are 2N × 2N matrices with elements

(Ah)ij, (Bh)ij, i, j = 0, 1, . . . , 2N − 1.

Define the vectors

(2.6) x = (y(t0), y(t1), y
′(t1), y(t2), y

′(t2), . . . , y(tN−1), y
′(tN−1), y(tN))T

and

F =
(

f(t0, y(t0), y
′(t0)), f(t1, y(t1), y

′(t1)), f(t1, y(t1), y
′(t1)), f(t2, y(t2), y

′(t2)),

f(t2, y(t2), y
′(t2)), . . . , f(tN−1, y(tN−1), y

′(tN−1)), f(tN−1, y(tN−1), y
′(tN−1)),

f(tN , y(tN), y′(tN))
)T

.(2.7)

The local truncation errors associated with (2.1) and (2.2) are, respectively, O(h2)

and O(h3). We may write the totality of local truncation errors as

θh =
(

(θh)0, (θh)1, (θh)2, . . . , (θh)2N−2, (θh)2N−1

)T

,

where

(2.8) (θh)0 = O(h2) and (θh)1 = O(h2)
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and

(2.9) (θh)n =

{

O(h2), n ≥ 2, n even

O(h3), n ≥ 3, n odd.

Thus consistency may be expressed as follows:

(2.10) Ahx − h2BhF − g = θh,

where, here,

g = (y(t0), y(t1), 0, . . . , 0)T .

3. The inverse matrix

The proof of convergence will depend upon the behaviour of A−1
h , and in particular

the behaviour of its elements as N → ∞.

Although the results of [3] may be invoked it is a simple matter in this case

to compute the elements directly whereupon we observe that there exists an M ,

independently of N , such that

(1/N) max
0≤i≤j≤2N−1

|(A−1
h )ij | ≤ M.

Furthermore, direct computation shows that

(3.1) (A−1
h )ij = 0, j = 2, 4, . . . , 2N − 2, i 6= j.

These can be formally established by induction.

We also note that Ah may be written as

(3.2) Ah =

(

I 0

d AN

)

where I is the 2 × 2 unit matrix and d and AN are clear. Thus

(3.3) A−1
h =

(

I 0

−A−1
N d A−1

N

)

.

4. Convergence

Subtract (2.3) from (2.10) to obtain

Ah(x − xh) = h2Bh(F− Fh) + θh

or

(4.1) x − xh = h2A−1
h Bh(F − Fh) + A−1

h θh.

i.e. when i = j.

We first note that

Bh(F − Fh) = (0, 0, 0, f(t1, y(t1), y
′(t1)) − f(t1, y1, y

′
1), 0, f(t2, y(t2), y

′(t2))
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−f(t2, y2, y
′
2), 0, f(t3, y(t3), y

′(t3)) − f(t3, y3, y
′
3), . . . , 0,

f(tN−1, y(tn−1, y
′(tN−1)) − f(tN−1, yN−1, y

′
N−1))

T .

Thus, taking moduli and using the triangle inequality in (4.1) results in

|(x − xh)2i+1| ≤ h2 max
0≤i≤j≤2N−1

|(A−1
h )ij |

i
∑

j=1

|f(tj, y(tj), y
′(tj)) − f(tj , yj, y

′
j)|(4.2)

+ max
0≤k≤2N−1

|(A−1
h θh)k|

and

|(x − xh)2i| ≤ h2 max
0≤i≤j≤2N−1

|(A−1
h )ij |

i−1
∑

j=1

|f(tj, y(tj), y
′(tj)) − f(tj, yj, y

′
j)|(4.3)

+ max
0≤k≤2N−1

|(A−1
h θh)k|.

By appealing to (4.3) we observe that

max
0≤k≤2N−1

|(A−1
h θh)|k|

≤ max

{

max
0≤i≤2N−1

|(A−1
h )i0| |(θh)0|, max

0≤i≤2N−1
|(A−1

h )i1| |(θh)1|,

max
0≤i≤2N−1
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using (4.1).

Thus

max
0≤k≤2N−1

|(A−1
h θh)k|

≤ max
0≤i≤j≤2N−1

|(A−1
h )ij |max

{

|(θh)0|, |(θh)1|,
N−1
∑

j=1

|(θh)2j+1|

}

.

Furthermore, by using the Lipschitz condition (2.3) we may write

|(x − xh)2i+1| ≤ h2 max
0≤i≤j≤2N−1

|(A−1
h )ij |

i
∑

j=1

{L1|y(tj) − yj| + L2|y
′(tj) − y′

j|}

+ max
0≤i≤j≤2N−1

|(A−1
h )ij |max{|(θh)0|, |(θh)1|,

N−1
∑

j=1

|(θh)2j+1|}.(4.4)
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Let L = max{L1, L2} and recall that there exists an M , independent of N , such that

max
0≤i≤j≤2N−1

|(A−1
h )ij | < MN.

Thus the inequality (5.4) becomes

|(x − xh)2i+1| ≤ h2LMN

2i
∑

j=0

|(x − xh)j|

+ MN max

{

|(θh)0|, |(θh)1|,
N−1
∑

j=1

|(θh)2j+1|

}

Note that N = 1
h

and further that (θh)0 = O(h2), (θh)1 = O(h2) and
∑N−1

j=1 |(θh)2j+1| ≤

N max
1≤j≤N−1

|(θh)2j+1|.

Thus we have

|(x − xh)2i+1| ≤ M̃h

2i
∑

j=0

|(x − xh)j | + δ

where δ = O(h), and M̃ = LM is independent of N .

By a similar argument we observe that

|(x − xh)2i| ≤ M̃h

2i−1
∑

j=0

|(x − xh)j| + δ.

Thus we have

|(x − xh)k| ≤ M̃h

k−1
∑

j=0

|(x − xh)j| + δ, k = 1, 2, . . . , 2N − 1

and an application of (a mild generalization of) the standard discrete Gronwall lemma

(see eg. [1]) results in

|(x − xh)k| ≤ δ exp(M̃kh) ≤ δ exp(M̃(2N − 1)h) < δ exp(2M̃)

since Nh = 1 and so convergence of O(h) has been demonstrated.

The restriction that the initial starting values be O(h2) is unnecessary; the as-

sumption was employed to minimise the complexity of the argument. From (4.3) we

note that d has only a small finite (i.e. independent of N) non-zero elements implying

that (A−1
N d)ij are independent of N , that is (A−1

h )ij (i = 0, 1, . . . , 2N − 1, j = 0, 1) are

independent of N allowing the last term in (5.4) to be replaced by

max

{

max
0≤i≤2N−1

|(A−1
h )i0‖(θh)0|, max

0≤i≤2N−1
|(A−1

h )i1‖(θh)1|,

max
0≤i≤j≤2N−1

|(A−1
h )ij|

N−1
∑

j=1

|(θh)2j+1|

}
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5. Associated root condition

When [2] introduced linear multistep methods for solving y′(t) = f(t, y(t)) he

characterized them by the polynomials ρ(z) and σ(z). He defined zero-stability to

be the case when ρ(z) has a single root at unity (required for consistency) and all

the remaining roots strictly inside the unit circle or lying on the unit circle with

multiplicity of one. He then proved that convergence was dependent on zero-stability

and consistency.

In this note we have demonstrated convergence subject to the method being

consistent and the elements of A−1
h being such that |(Ah)ij/N | are uniformly bounded

with respect to N . It is, however, natural to ask if there exists an associated root

condition. We shall now demonstrate that such root condition does in fact exist.

First let us characterize the matrix AN in (3.2) by the two polynomials

g1(AN , z) = 1 − Nz + Nz3 and g2(AN , z) = 1 − 2z2 + z4.

We introduce the functions

gn
j (AN , z) =

1

2

2
∑

ℓ=1

(−1)2−(ℓ−1)(n−1)gj(AN , (−1)ℓ−1z), n = 1, 2,

and the associated matrix

T (AN , z) =

(

g1
1(AN , z) g2

1(AN , z)

g2
2(AN , z) g1

2(AN , z)

)

.

We now define the vector

g(AN , z) = (g1(AN , z), g2(AN , z))T .

It is not difficult to show that

T (AN , z)g(A−1
N , z) = g(I, z) = (1, 1)T ,

where we must interpret g(A−1
N , z) as a truncated (vector) power series where all the

terms of order 2N and above have been neglected.

Since T (AN , z) is a 2 × 2 matrix its inverse can be calculated in the normal way

from the quotient of its adjoint and its determinant. Each element of its adjoint is

simply sums and products of polynomials. Clearly how g(A−1
N , z) behaves depends

on the behaviour of (det T (AN , z))−1.

In this case det |T (AN , z)| is easily computed:

det |T (AN , z)| =

∣

∣

∣

∣

∣

1 −Nz + Nz3

0 1 − 2z2 + z4

∣

∣

∣

∣

∣

= (1 − z)2(1 + z)2
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providing the O(N) growth of the elements of A−1
N which have clearly been established

by direct computation. Thus, the associated root condition, i.e. the zero-stability

equivalent for the finite difference scheme applied to y′′ = f(t, y, y′) is

det |T (AN , z)| = 0.

For the differential equation (1.1) this may be stated simply: the polynomial

det |T (AN , z)| must have a zero at one of multiplicity two (necessary for consistency)

and all the other roots must either lie strictly within the unit circle, or if they lie on

the unit circle their multiplicity may not be greater than two.

6. Concluding remarks

This note has analyzed a finite difference scheme which approximates a second

order differential equation. It has been shown to be zero-stable (in the sense of

Dahlquist) and convergent. The fact that this scheme is zero-stable means that

consistency, itself, implies convergence. Although this work has treated a simple

finite difference scheme, the ideas are quite general and may, in principle, be applied

to demonstrate the convergence of other more sophisticated schemes.
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