
Neural, Parallel, and Scientific Computations 24 (2016) 277-304

ON SOLVING OPTIMIZATION-CONSTRAINED
DIFFERENTIAL EQUATIONS BY USING KKT CONDITIONS

XIAO ZHAO

IBG-1, Biotechnology, Forschungszentrum Juelich GmbH
52425 Juelich, Germany, x.zhao@fz-juelich.de

ABSTRACT. The work studies the theoretical solution of optimization-constrained differential
equations (OCDE) and proposes a numerical algorithm to solve it. Regularity conditions are given
such that OCDE can be locally transformed into index-1 differential algebraic equation (DAE)
systems. At non-regular points, where strict complementarity condition is damaged, we study the
switching behavior of OCDE. Conditions are given at these non-regular points, such that one can
construct a new DAE system and continue simulation from there. To exactly locate the switching
time, i.e. where strict complementarity condition is damaged, an event function is proposed. Under
transversality conditions the proposed event function changes its sign. Two examples are provided
to illustrate the solution approach.
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1. INTRODUCTION

For x ∈ Rnx , v ∈ Rnv , denote P (x) as a parametric optimization [5, 10, 8, 9],

which takes the form of

min
v

g(x, v)(1.1a)

s.t. hi(x, v) = 0, i = 1, . . . , N,(1.1b)

lj(x, v) ≥ 0, j = 1, . . . ,M.(1.1c)

N andM are fixed integers. g : Rnx×Rnv → R, hi : Rnx×Rnv → R, lj : Rnx×Rnv → R
are sufficiently smooth functions. For each fixed x = x̄, P (x̄) looks for the local

minimums of the objective function g(x̄, v) subjected to constraints (1.1b)–(1.1c),

which are evaluated at x = x̄. We say that optimization problem P (x) is parametrized

by x.
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In this work, we consider solving the so-called optimization-constrained differen-

tial equations (OCDE), which takes the form of

ẋ = f(x, v), x(0) = x0,(1.2a)

v ∈ {v ∈ Rnv | v is a local minimizer of P (x)}.(1.2b)

f : Rnx × Rnv → Rnx is a sufficiently smooth function. By ẋ we mean that dx(t)/dt,

where x is a function of time t, t ≥ 0. x0 ∈ Rnx denotes the initial condition

at t = 0. Eq. (1.2) contains an upper level part (1.2a), which corresponds to a

classical ordinary differential equations (ODE), and a lower level part (1.2b), which

is a parametric optimization. Because of the bi-level structure of Eq. (1.2), solving

OCDE (1.2) requires to solve the inner optimization problem P (x(t)), ∀t ≥ 0.

In the literature, there exist already some works which use system (1.2) to model

and simulate technical systems. Landry et al. [13] present an OCDE model for the

simulation of dynamic phase transition for a single atmospheric aerosol particle that

exchanges mass with surrounding gas. They use Karush-Kuhn-Tucker (KKT) opti-

mality condition to reformulate the inner optimization problem and develop a mech-

anism to detect the discontinuity caused by activation and deactivation of inequality

constraints. Caboussat and Landry [1], Caboussat et al. [2] consider similar appli-

cations, but propose a numerical method based on an operator splitting scheme and

a fixed point algorithm. Kaplan et al. [11] apply the OCDE framework in modeling

and simulating metabolic networks for the estimation of biomass accumulation pa-

rameters. Their solution approach is based on the approximated KKT conditions.

The OCDE framework is also used in cybernetic modeling of microbial growth [19],

which is based on the understanding that cells make “rational” (optimal) decisions in

responding to its environment. Recently, Harwood et al. [6], Hoeffner et al. [7] pro-

pose the so-called dynamic flux balance approach, in which the OCDE formulation

includes a lexicographic linear programming.

Because solving OCDE requires that for each t ≥ 0, one solves problem P (x(t)),

parametric optimization is a closely related topic. General reviews of parametric op-

timization can be found in [4, 8]. Consider the parametric optimization problem P (x)

defined in Eq. (1.1), if we assume that local minimizers of P (x) are locally unique, we

can denote the optimal solution of P (x) by v∗(x), where v∗(·) is an implicitly defined

function. One of the important questions of parametric optimization is to ask, how

does the function v∗(·) looks like? For example, is it locally smooth? This question

is important to study the theoretical solutions of OCDE (1.2), because if such func-

tion is known, one can directly replace v = v∗(x) in Eq. (1.2a), which results in an

ordinary differential equation (ODE)

(1.3) ẋ = f(x, v∗(x)), x(0) = x0.
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However, we need to note that the right hand side of Eq. (1.3) may not be smooth,

because function v∗(·) may be nonsmooth.

The question of local smoothness of function v∗(·) is already studied by the sta-

bility issue of parametric optimization. It is shown that, function v∗(·) may show

non-smooth behavior, i.e. continuous (but non-smooth) or discontinuous, for smooth

functions g, hi and lj [4]. Simple examples of this situation are presented in [10]. To

author’s knowledge, the discussion of the stability issue can be roughly classified into

two categories: results based on the application of the Implicit Function Theorem

(IFT), refer to Theorem 1 in the appendix, and results where the IFT is not appli-

cable. Generally speaking, IFT-based results are easier to follow, which lead directly

to the smoothness of function v∗(·). Non-IFT-based results are more difficult. This

paper will restrict the discussion to IFT-based results.

The major contribution of this work is to study the theoretical solutions of OCDE

(1.2) by applying the results of parametric optimization. We formulate sufficient

conditions such that OCDE (1.2) can be locally transformed into a smooth index-1

DAE system at regular points. At non-regular points, where sufficient conditions

are damaged, switching behavior of OCDE (1.2) is observed and analyzed. At these

points, we define new DAE systems and propose transversality conditions such that

solution of the original OCDE can be continued. To locate switching points, an event

function is proposed, which can implemented straightforwardly in numerical DAE

solvers. A numerical algorithm for OCDE is presented at the end.

In comparison to the work [13], our results are based on a more general nonlinear

formulation of OCDE (1.2), while the discussion there is oriented to a special applica-

tion. We give sufficient conditions, such that the solution of OCDE can be described

by DAE systems both at regular and non-regular switching points. Transversality

condition is proposed to study the switching behavior and a numerical algorithm

for OCDE is proposed at the end. In comparison to the work [6, 7], we consider a

nonlinear inner optimization problem and use KKT-based reformulation, which leads

to a less restrictive approach. We have to note that, more complicated behaviors of

OCDE, e.g. vanish/born of local minimizer, appearance of limits points, refer to the

examples in [10], are not covered in this work. The studied switching behavior is only

one type of singularity behaviors when solving OCDE. Studying more complicated

behaviors of OCDE remains an open question in the future.

The paper is organized as follows. In Section 2, we review the relevant results of

parametric optimization. In Section 3 we talk about the solution method of OCDE,

based on the presented results so far. In Section 4, we present two numerical examples,

one of which comes from systems biotechnology.
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2. PARAMETRIZED KKT CONDITIONS

This section discusses the usage of Karush Kuhn Tucker (KKT) conditions (also

known as the Kuhn Tucker conditions) to characterize and tract local minimizers

of P (x). The presented results are based on the work of [10, 9, 8, 5, 4], which are

reorganized to fit to the discussion of this paper. Parametrized KKT conditions will

be used later to transform OCDE (1.2) into differential-algebraic equation (DAE)

systems, which can be solved by classical DAE solvers.

Denote I = {1, . . . , N} and J = {1, . . . ,M} as the index sets for equality and

inequality constraints of P (x), respectively. For any fixed point x, denote

(2.1) Mx = {v ∈ Rnv | hi(x, v) = 0, i ∈ I, lj(x, v) ≥ 0, j ∈ J}

as the feasible set of P (x). Denote

(2.2) A(x, v) = {j ∈ J | lj(x, v) = 0}

as the index set of active inequality constraints, which is evaluated at point (xT , vT )T .

A(x, v) is also called the active set of P (x), evaluated at v. Define

(2.3) L(x, v, λ, µ) = g(x, v) +
∑
i∈I

λihi(x, v)−
∑
j∈J

µjlj(x, v)

as the Lagrangian function of P (x), where λi ∈ R, i ∈ I, and µj ∈ R, j ∈ J .

Denote λ := (λ1, . . . , λN)T ∈ RN and µ := (µ1, . . . , µM)T ∈ RM . λ and µ are

called Lagrangian multipliers for equality and inequality constraints, respectively. To

simplify notation, we denote z = (vT , λT , µT )T .

For any given subset J∗ of J , i.e. J∗ ⊆ J , define function

(2.4) FJ∗(x, v, λ, µ) =


∇vL

T (x, v, λ, µ)

hi(x, v), ∀i ∈ I
−lj(x, v),∀j ∈ J∗

µj,∀j /∈ J∗

 .

∇vL ∈ R1×nv refers to a row vector. Therefore, by choosing different subsets J∗ ⊆ J ,

we can obtain different functions FJ∗(·). For example, a special case of FJ∗ is FA(x̄,v̄),

which is obtained by choosing J∗ = A(x, v)|x=x̄,v=v̄.

Definition 2.1 (LICQ). For fixed x = x̄, linear independence constraint qualification

(LICQ) is said to hold for P (x̄) at v = v̄, if the vectors ∇vhi(x̄, v̄), i ∈ I, ∇vlj(x̄, v̄),

j ∈ A(x̄, v̄) are linearly independent.

Note that there exist other constraint qualifications (CQ) [17], e.g. MFCQ [14]

and SMFCQ [12]. LICQ is stronger than MFCQ and SMFCQ, and in this work we

only need the definition of LICQ.
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It is well known that under suitable CQ, e.g. LICQ, there exist Lagrangian multi-

pliers such that FJ∗=A(x̄,v̄) = 0 holds at local minimums of P (x). We state this result

formally for completeness.

Theorem 2.2 (First order necessary optimality condition, refer to e.g. Theorem 12.1

in [15]). For fixed x = x̄, if v∗ is a local minimum of P (x̄) and if LICQ holds at

v = v∗, then there exist λ∗ ∈ RN and µ∗ ∈ RM , such that

0 = FA(x,v)(x, v, λ, µ),(2.5a)

0 ≤ lj(x, v), ∀j ∈ J,(2.5b)

0 ≤ µj, ∀j ∈ J,(2.5c)

hold, for x = x̄, v = v∗, λ = λ∗ and µ = µ∗.

We note that Eq. (2.5a) is said to hold for x = x̄, v = v∗, λ = λ∗ and µ = µ∗, if

(2.6) 0 = FA(x̄,v∗)(x̄, v
∗, λ∗, µ∗).

Eq. (2.5) is the so-called KKT necessary optimality condition of P (x). At x = x̄,

vector z∗ = (v∗T , λ∗T , µ∗T )T is called a KKT point of P (x̄), if z∗ satisfies Eq. (2.5).

From Theorem 2.2, roughly speaking, the task of finding local minimums can be

transformed to finding the solutions of Eq. (2.5), i.e. finding KKT points.

We note that, Theorem 2.2 provides a necessary condition for local minimizers.

It is obvious that some KKT points may not be local minimums, e.g. a saddle point.

To guarantee that KKT points are local minimums, we state a second order sufficient

condition, which will be used later.

Definition 2.3 (Strict complementarity (SC) condition). For fixed x = x̄, assume

that z∗ = (v∗T , λ∗T , µ∗T )T is a KKT point of P (x̄), i.e. x̄, z∗ satisfy Eq. (2.5), we say

that strict complementarity (SC) condition holds for z = z∗, if

(2.7) µ∗j > 0, ∀j ∈ A(x̄, v∗).

In other words, SC condition requires that Eq. (2.5c) strictly holds for all active

inequality constraints.

Let H be any symmetric n × n real matrix and T ⊂ Rn be a linear space. By

H|T we mean some matrix in the family

V = {V THV | V is matrix with n rows,

whose columns form a basis of space T},

refer to [10]. It is known that, the numbers of positive, zero and negative eigenval-

ues of V THV do not depend on the specific choice of V . Therefore, the numbers of
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positive, zero and negative eigenvalue of H|T can be defined according to the corre-

spond numbers of V THV [10]. For example, H|T is said to be non-singular (positive

definite), if matrix V THV is non-singular (positive definite).

For any n ×m matrix A, KerA := {y ∈ Rm | Ay = 0} denotes the kernel of A.

For fixed x = x̄, denote Tv∗Mx̄ as the tangent space of the feasible setMx̄ at v = v∗,

i.e.

(2.8)

Tv∗Mx̄ : =
⋂
i∈I

Ker∇vhi(x̄, v
∗) ∩

⋂
j∈A(x̄,v∗)

Ker∇vlj(x̄, v
∗)

= Ker [. . . ,∇T
v hi(x̄, v

∗), . . .︸ ︷︷ ︸
i∈I

, . . . ,∇T
v lj(x̄, v

∗), . . .︸ ︷︷ ︸
j∈A(x̄,v∗)

]T .

Tv∗Mx̄ is therefore a linear subspace of Rnv .

Theorem 2.4 (Second order sufficient optimality condition, refer to Lemma 3.2.1 in

[4]). For fixed x = x̄, if there exists point z∗ = (v∗T , λ∗T , µ∗T )T such that Eq. (2.5)

and SC condition hold, and if

(2.9) ∇2
vL(x̄, v∗, λ∗, µ∗)|Tv∗Mx̄ is positive definite,

then v∗ is a strict local minimum of P (x∗), i.e. there exists a neighborhood of v∗ such

that there does not exist any feasible v′ 6= v∗ such that g(x̄, v′) ≤ g(x̄, v∗).

In the previous discussions, we have talked about the optimality conditions of

P (x) at a given fixed point x = x̄. Next, in order to study the dependence of local

minimums v∗ on x, i.e. function v∗(·), we will consider an unfixed point x. We note

that, although studying the dependence of local minimum points v∗ on x is desirable,

in the following text we will restrict to study the dependence of KKT points (which

may or may not be local minimizers) on variable x. The discussion can be adapted

to local minimum points, if one assumes that the conditions in Theorem 2.4 hold.

To study the local dependence of KKT points on x, let us firstly give a lemma

about Eq. (2.4). This lemma is frequently accessed later in this work. ∀J∗ ⊆ J ,

denote

BJ∗(x, v) = [. . . ,∇vh
T
i , . . .︸ ︷︷ ︸

i∈I

, . . . ,∇vl
T
j , . . .︸ ︷︷ ︸

j∈J∗

] ∈ Rnv×(|I|+|J∗|)

as a matrix, whose columns are gradients of equality (i ∈ I) and inequality constraints

(j ∈ J∗).

Lemma 2.5 (Non-singularity of ∇zFJ∗ , refer to Lemma 1 in the appendix). For any

J∗ ⊆ J , ∇zFJ∗(x, z) is non-singular at a point (xT , zT )T , if and only if

BJ∗(x, v) has full column rank,(2.10a)

∇2
vL(x, z)|KerBT

J∗ (x,z) is non-singular.(2.10b)
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Proof. Apply Lemma 1 to

∇zFJ∗ =


∇2

vL ∇vh
T
i , i ∈ I −∇vl

T
j , j ∈ J∗ −∇vl

T
j , j /∈ J∗

∇vhi, i ∈ I 0 0 0

−∇vlj, j ∈ J∗ 0 0 0

0 0 0 diag(1, . . . , 1)T

 .

Lemma 2.5 has important consequences to our discussions. Consider now that

(2.11) FJ∗(x, z) = 0

holds at x = x̄, z = z̄. By applying the IFT, non-singularity of∇zFJ∗(x̄, z̄) guarantees

that there exists a neighborhood Ux̄ of x̄, such that Eq. (2.11) implicitly defines

sufficiently smooth functions v : Ux̄ → Rnv , λ : Ux̄ → RN and µ : Ux̄ → RM ,

satisfying FJ∗(x, v(x), λ(x), µ(x)) ≡ 0, ∀x ∈ Ux̄.

At x = x̄, if we consider z = z∗ is a KKT point and we choose

(2.12) J∗ = Ā := A(x̄, v∗),

in Eq. (2.11), the derived system is denoted as

(2.13) FĀ(x, z) = 0.

From Lemma 2.5, it is straightforward to prove that:

Corollary 2.6. ∇zFĀ(x̄, z∗) is non-singular, if and only if

LICQ holds at (x̄T , z∗T )T ,(2.14a)

∇2
vL(x̄, z∗)|Tv∗Mx̄ is non-singular.(2.14b)

Proof. If J∗ = Ā, Ker BT
J∗(x̄, v

∗) = Tv∗Mx̄, refer to Eq. (2.8).

Denote the solution set of Eq. (2.13) as

(2.15) ΩĀ = {(xT , vT )T ∈ Rnx+nv | FĀ(x, v, λ, µ) = 0},

where Ā is defined in Eq. (2.12). We have the following lemma which says that in a

small neighborhood the active set A(x, v), for (xT , vT )T ∈ ΩĀ, does not change and

the feasibility constraints (2.5b)–(2.5c) always hold.

Lemma 2.7. Consider that (v∗T , λ∗T , µ∗T )T is a KKT point for x = x̄, where Condi-

tions (2.14) and SC condition hold. Denote Ā = A(x̄, v∗) as the active set at x = x̄,

z = z∗. Then there exists a neighborhood U0 of (x̄T , v∗T )T such that ∀(xT , vT )T ∈
U0 ∩ ΩĀ,

A(x, v) = Ā, i.e. the active set does not change ,(2.16a)

Eqs. (2.5b)–(2.5c) hold.(2.16b)
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Proof. From Corollary 2.6 and the IFT, Eq. (2.13) implicitly defines function v(x),

λ(x) and µ(x), which are sufficiently smooth. Eq. (2.16a) follows from

(2.17) lj(x̄, v
∗) > 0, j /∈ Ā,

and the continuity of functions lj(·) and v(·).

To prove Eq. (2.16b), because of Eq. (2.16a) it is equivalent to prove ∀(xT , vT )T ∈
U0 ∩ ΩĀ,

0 ≤ lj(x, v), ∀j ∈ Ā,(2.18a)

0 ≤ lj(x, v), ∀j /∈ Ā,(2.18b)

0 ≤ µj, ∀j ∈ Ā,(2.18c)

0 ≤ µj, ∀j /∈ Ā.(2.18d)

Eqs. (2.18a), (2.18d) hold because of the definition of FĀ(x, z). Eq. (2.18b) holds,

because 0 < lj(x̄, v
∗), ∀j /∈ Ā, and the continuity of lj(·), v(·). Eq. (2.18c) holds,

because of the SC condition 0 < µ∗j , ∀j ∈ Ā and the continuity of µ(·).

Eq. (2.16a) says that the active set does not change for ∀(xT , vT )T ∈ U0 ∩ ΩĀ.

Eq. (2.16b) says that the inequality constraints in KKT condition also hold in this

region. Therefore, to solve Eq. (2.5) near a given KKT point, one can solve Eq. (2.13)

and neglect inequality constraints (2.5b)-(2.5c). This is the main idea of solving

OCDE at regular KKT points, refer to Section 3.1. We note here that, one can not

directly apply the IFT to Eq. (2.5a), because the subindex A(x, v) of F is not fixed

(In Eq. (2.13) the subindex Ā is fixed.).

To summarize the consequences of Corollary 2.6 and Lemma 2.7, we have that

Theorem 2.8. Consider that (v∗T , λ∗T , µ∗T )T is a KKT point for P (x̄), if Condition

(2.14) and SC hold, then there exists a neighborhood Ux̄ of x̄, such that: (1) Eq. (2.13)

implicitly defines sufficiently smooth functions v : Ux̄ → Rnv , λ : Ux̄ → RN , µ : Ux̄ →
RM . (2) v(x̄) = v∗, λ(x̄) = λ∗, µ(x̄) = µ∗. (3) (v(x)T , λ(x)T , µ(x)T )T are KKT points

of P (x), ∀x ∈ Ux̄, i.e. (xT , v(x)T , λ(x)T , µ(x)T )T satisfy Eq. (2.5).

Note that, because Eq. (2.9) implies Eq. (2.14b), if the other conditions in The-

orem 2.8 hold, the derived function v(x) corresponds to strict local minimums. In

other words, if the second order sufficient conditions in Theorem 2.4 and LICQ are

fulfilled, Eq. (2.13) locally defines smooth functions which correspond to strict local

minimums, refer also to Theorem 3.2.2 in [4].

Consider OCDE (1.2) and variable x as a function of time t, Theorem 2.8 suggests

a way to locally track the KKT points of P (x(t)) by using Eq. (2.13). This property

leads to a proposed solution algorithm of OCDE, which will be presented next.
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3. SOLUTION METHOD

This section presents a solution method to solve OCDE (1.2). The method is

based on the KKT condition (2.5), which transforms an OCDE into a set of DAE

systems. In this section, we first talk about solving OCDE under regularity condi-

tions, i.e. under the conditions of Theorem 2.8. After that, we analyze the switching

behavior of OCDE, when SC condition is damaged. At the end, we give an algorithm

based on the obtained results so far.

3.1. Solving OCDE at regular points.

Definition 3.1 (Regular KKT point). At x = x̄, consider z∗ = (v∗T , λ∗T , µ∗T )T as

a KKT point. This point is called a regular KKT point, if Condition (2.14) and SC

condition (2.7) hold.

From Theorem 2.8, we know that the KKT points of P (x) near a given regular

KKT point is implicitly defined by Eq. (2.13). Therefore, if we assume that at x = x0,

z∗ = (v∗T , λ∗T , µ∗T )T is a regular KKT point of P (x0). To solve OCDE (1.2) starting

from x(0) = x0 and z(0) = z∗, one can solve the following DAE system

ẋ = f(x, v), x(0) = x0,(3.1a)

0 = FĀ(x, v, λ, µ),(3.1b)

where Ā := A(x0, v
∗), as it is defined in Eq. (2.12).

From Corollary 2.6, it can be seen straightforwardly, this DAE system is of index-

1. Therefore, DAE (3.1) can be integrated by classical DAE solvers. Note that, the

formulation of Eq. (3.1b) requires the determination of set Ā. This can be done by

solving P (x0) using standard nonlinear optimization (NLP) solvers.

3.2. Switching behavior of OCDE at non-regular points. From the definition

of regular KKT points, any violation of Condition (2.14) and/or SC condition (2.7)

will cause the KKT points to become non-regular. At non-regular points, because one

may not be able to apply the IFT (when Codnition (2.14) is damaged) or continued

simulation may violate Eqs. (2.5b), (2.5c) (when SC condition is damaged), KKT

points defined by Eq. (2.5) may not smoothly depend on variable x. We note that,

a general analysis of this issue is complex, see e.g. [10]. This work is restricted

to the case that Condition (2.14) (more exactly, Condition (3.3)) is fulfilled, but

SC condition (2.7) is damaged. We note also that the presented discussion in this

subsection is motivated by the discussions in [18] and the second type of degenerate

points presented in [10]. In comparison to their work, however, this work does not

use Fritz John conditions and the SC condition is allowed to be violated for multiple

inequality constraints. Moreover, we consider the task of solving OCDE, while the

previous-mentioned works do not.
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Assume that at x = x̄T , z∗ = (v∗T , λ∗T , µ∗T )T is a KKT point corresponding to

time t = t̃. Denote

S := {j ∈ J | µ∗j = 0, lj(x̄, v
∗) = 0}

as the index set of active inequalities at t = t̃, which do not satisfy SC condition. We

have therefore

S ⊆ A(x̄, v∗) = Ā ⊆ J,

where Ā denotes the active set of inequalities at x = x̄, v = v∗. In this work, we

consider the non-regular point z∗, for which S 6= ∅. That is, SC condition is damaged

for x = x̄, z = z∗.

Denote

Θ = {S∗ | S∗ is a subset of S, i.e. S∗ ⊆ S}.

Because S contains finite elements, Θ contains also finite elements. ∀S∗ ∈ Θ (S∗ may

be chosen an empty set), denote DAE(Ā/S∗) as the following DAE system

ẋ = f(x, v), x(t̃) = x̄,(3.2a)

0 = FĀ/S∗(x, v, λ, µ),(3.2b)

where Ā/S∗ := {j ∈ J | j ∈ Ā, j /∈ S∗}. Eq. (3.2b) is derived by setting J∗ = Ā/S∗

in Eq. (2.4). The initial condition of DAE(Ā/S∗) refers to the non-regular KKT

point, x(t̃) = x̄, v(t̃) = v∗, λ(t̃) = λ∗ and µ(t̃) = µ∗.

We assume that

∇vhi(x̄, v
∗), i ∈ I, ∇vlj(x̄, v

∗), j ∈ Ā, are linearly independent (LICQ),(3.3a)

∇2
vL(x̄, z∗)|KerBT

Ā/S
is non-singular.(3.3b)

Lemma 3.2. If Condition (3.3) hold, then ∀S∗ ∈ Θ, Condition (2.10) holds for

J∗ = Ā/S∗.

Proof. Because Ā/S∗ ⊆ Ā, it is straightforward to see that, if we choose J∗ = Ā/S∗,
Condition (3.3a) ensures that Condition (2.10a) holds, ∀S∗ ∈ Θ. Because Ā/S ⊆
Ā/S∗,

KerBT
Ā/S ⊇ KerBT

Ā/S∗ .

Therefore, Condition (3.3b) ensures Condition (2.10b) for J∗ = Ā/S∗, ∀S∗ ⊆ S.

An important consequence of Lemma 3.2 is that, ∀S∗ ∈ Θ, DAE(Ā/S∗) is locally

index-1. Therefore, ∀S∗ ∈ Θ, solutions of Eq. (3.2) are well defined. In other words,

we find a number of index-1 DAE systems, which are initialized from the non-regular

KKT point x = x̄, z = z∗. We note that, because SC condition is voilated at non-

regular points, continued simulation of DAE(Ā/S∗) may violate Eqs. (2.5b), (2.5c).

Therefore, the trick of solving OCDE from a non-regular point is to properly select a
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S∗0 ∈ Θ such that Eqs. (2.5b), (2.5c) are fulfilled for t > t̃. Note also that, if S = ∅,
i.e. SC condition holds, then Condition (3.3) reduces to Condition (2.14).

To set up the relationship between the solution of Eq. (3.2) and the KKT points,

defined in Eq. (2.5), we next prove that, if a proper S∗ is chosen, the solution of

index-1 system (3.2) is the solution of OCDE (1.2) starting from a non-regular KKT

point.

Lemma 3.3. ∀S∗ ∈ Θ, if (xT , vT , λT , µT )T satisfies Eq. (3.2b), then

(3.4) Ā/S∗ ⊆ A(x, v),

where Ā := A(x̄, v∗) refers to the active set of inequalities at the non-regular point

x = x̄, z = z∗.

Proof. The proof follows directly from the definition of function FĀ/S∗ . That is,

Eq. (3.2b) requires that

lj(x, v) = 0, ∀j ∈ A(x̄, v∗)/S∗.

Corollary 3.4. ∀S∗ ∈ Θ, if (xT , vT , λT , µT )T satisfies Eq. (3.2b), then it satisfies

Eq. (2.5a).

Proof. From the definition of FA(x,v) in Eq. (2.5a),

lj(x, v) = 0, ∀j ∈ A(x, v),

hold automatically. Therefore, we only need to prove that

µj = 0, ∀j /∈ A(x, v).

This equation is true, because

uj = 0, ∀j /∈ Ā/S∗,

which is ensured by Eq. (3.2b), and Eq. (3.4).

Hence, from the definition (3.2) of systemDAE(Ā/S∗), the solutions ofDAE(Ā/S∗)
always satisfy the “equality” part of the KKT conditions, namely Eq. (2.5a). The

“inequality” part, namely Eqs. (2.5b)–(2.5c), may get violated, however, because of

the damage of SC condition. A reasonable way to continue simulation from the non-

regular KKT point x = x̄, z = z∗ at t = t̃ is to choose a S∗0 ∈ Θ such that the solution

of DAE(Ā/S∗0 ) fulfills Eqs. (2.5b)–(2.5c) also.

More exactly, consider that the non-regular KKT point x = x̄, z = z∗ at t = t̃.

For each S∗ ∈ Θ, denote xS
∗
(t), zS

∗
(t) = (vS

∗
(t)T , λS

∗
(t)T , µS

∗
(t)T )T as the solution

of index-1 DAE(Ā/S∗) starting from t = t̃. From Corollary 3.4, we know that xS
∗
(t),

zS
∗
(t) always satisfy Eq. (2.5a) (Eqs. (2.5b)–(2.5c) may get violated). Assume that
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there exists a S∗0 ∈ Θ (The choice may not be unique!) such that inequality constraints

(2.5b)–(2.5c), i.e.

(3.5)
lj(x

S∗0 (t), vS
∗
0 (t)) ≥ 0, j ∈ J,

µ
S∗0
j (t) ≥ 0, j ∈ J,

hold for t ∈ [t̃, t̃ + ε]. ε > 0 denotes an arbitrarily small number. xS
∗
0 (t), zS

∗
0 (t) refer

to the solution of DAE(Ā/S∗0 ) starting from the non-regular KKT point at t = t̃.

Eq. (3.5) can be ensured by imposing the so-called transversality condition

(3.6)

dlj(x
S∗0 (t), vS

∗
0 (t))

dt
|t=t̃ > 0, ∀j ∈ S∗0 ,

dµ
S∗0
j (t)

dt
|t=t̃ > 0, ∀j ∈ S/S∗0 .

Eq. (3.6) is a sufficient condition of Eq. (3.5). It guarantees that SC condition is only

violated at t = t̃. This is proved in the following lemma.

Lemma 3.5. If Eq. (3.6) holds at t = t̃, then: (1) There exists ε > 0 such that

Eq. (3.5) holds for t ∈ [t̃, t̃ + ε]. (2) ∀t ∈ (t̃, t̃ + ε], SC condition holds, i.e. SC

condition is violated only at t = t̃.

Proof. From the definitions of J , Ā, S and S∗0 introduced above, we have S∗0 ⊆ S ⊆
Ā ⊆ J . Therefore,

0 = µ
S∗0
j (t̃), lj(x

S∗0 (t̃), vS
∗
0 (t̃)) >0, j ∈ J/Ā,(3.7a)

0 = lj(x
S∗0 (t̃), vS

∗
0 (t̃)), µ

S∗0
j (t̃) >0, j ∈ Ā/S,(3.7b)

0 = lj(x
S∗0 (t̃), vS

∗
0 (t̃)), µ

S∗0
j (t̃) =0, j ∈ S/S∗0 ,(3.7c)

0 = µ
S∗0
j (t̃), lj(x

S∗0 (t̃), vS
∗
0 (t̃)) =0, j ∈ S∗0 .(3.7d)

The first terms in Eqs. (3.7a)–(3.7d) correspond to Eq. (3.2b). Points (1) (2) follow

by applying Eq. (3.6) to the second terms in Eqs. (3.7c)–(3.7d).

Note that, Condition (3.6) is called transversality condition, because lj(x
S∗0 (t), vS

∗
0 (t)),

j ∈ S∗0 , and µ
S∗0
j (t), j ∈ S/S∗0 , change the signs around t = t̃. Note also that, Eq. (3.6)

can be evaluated numerically by applying the chain rule to Eq. (3.2b).

To summarize the discussion above,

Theorem 3.6. Denote (x̄T , z∗T )T as a non-regular KKT point where SC condition

fails for t = t̃, if Condition (3.3) holds and if there exists a S∗0 ∈ Θ such that the

transversality condition (3.6) holds, then: (1) DAE(Ā/S∗0 ), starting from x(t̃) = x̄

and z(t̃) = z∗, is locally of index 1. (2) There exists ε > 0, such that solutions xS
∗
0 (t),

zS
∗
0 (t) of DAE(Ā/S∗0 ) correspond to the KKT points of P (xS

∗
0 (t)) for t ∈ [t̃, t̃ + ε).

(3) Along the solution trajectory xS
∗
0 (t), zS

∗
0 (t), t ∈ [t̃, t̃+ ε), SC condition is violated

only at t = t̃.
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Theorem 3.6 says that to solve OCDE starting from a non-regular KKT point

(where SC condition fails) one can solve DAE system (3.2) with a properly selected

index set S∗0 . Sufficient conditions are given such that the derived DAE system (3.2) is

of index-1 and its solution satisfies KKT condition (2.5). The proposed transversality

condition (3.6) makes sure that SC condition is violated only at t = t̃, and therefore,

for t ∈ (t̃, t̃+ ε], zS
∗
0 (t) refers to regular KKT points of P (xS

∗
0 (t)).

The switching behavior can be now explained. Consider at t = t̃− < t̃, x(t̃−) and

v(t̃−) correspond to a regular KKT point. Denote Ā′ as the active set of P (x(t̃−)) at

t = t̃−, i.e.

(3.8) Ā′ = A(x(t̃−), v(t̃−)).

From Section 3.1, near this regular point we solve DAE(Ā′). Denote xĀ
′
(t) , zĀ

′
(t)

as the solution of DAE(Ā′). Assume that the solution of DAE(Ā′) can extend from

t = t̃− to t = t̃, where SC condition is damage at t = t̃. Denote

(3.9) Ā = A(xĀ
′
(t̃), vĀ

′
(t̃))

as the active set of P (xĀ
′
(t̃)) at t = t̃. We note that Ā′ ⊆ Ā (If at least an inequality

constraint is activated at t = t̃, Ā′ ⊂ Ā. Otherwise, when some positive Lagrangian

multipliers of active inequality constraints at t = t̃− become zeros at t = t̃, Ā′ = Ā.).

Denote S ′ as the index set of active inequality constraints at t = t̃, for which SC

condition fails. That is,

S ′ := {j ∈ J | j ∈ Ā, µĀ′j (t̃) = 0} 6= ∅.

At t = t̃, the following lemma gives sufficient conditions such that the solutions

xĀ
′
(t), zĀ

′
(t) of DAE(Ā′) violate inequality constraints (2.5b)–(2.5c) for t = t̃+ > t̃.

Lemma 3.7. (i) If ∃ j∗ ∈ S ′/Ā′ such that

(3.10)
dlj∗(x

Ā′(t), vĀ
′
(t))

dt
|t=t̃ < 0,

then lj∗(x
Ā′(t), vĀ

′
(t)) changes its sign from positive to negative around t = t̃, which

violates Eq. (2.5b).

(ii) If ∃ j∗ ∈ Ā′ ∩ S ′ such that

(3.11)
dµĀ

′
j∗ (t)

dt
|t=t̃ < 0,

then µĀ
′

j∗ (t) changes its sign from positive to negative around t = t̃, which violates

Eq. (2.5c).

Proof. (i) For j∗ /∈ Ā′, we have lj∗(x
Ā′(t), vĀ

′
(t)) > 0, at t = t̃− < t̃. For j∗ ∈ S ′,

we have lj∗(x
Ā′(t), vĀ

′
(t)) = 0 at t = t̃. Therefore, for j∗ ∈ S ′/Ā′, Eq. (3.10) ensures

that lj∗(x
Ā′(t), vĀ

′
(t)) changes its sign from positive to negative around t = t̃. (ii) For
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j∗ ∈ Ā′, we have µĀ
′

j∗ (t) > 0 at t = t̃− < t̃. For j∗ ∈ S ′, we have µĀ
′

j∗ (t) = 0 at t = t̃.

Therefore, for j∗ ∈ Ā′ ∩ S ′, we have µĀ
′

j∗ (t) changes its sign from positive to negative

around t = t̃.

Eqs. (3.10), (3.11) are also called transversality conditions, which are analogous

to Eq. (3.6). These conditions ensure that the solutions of DAE(Ā′), xĀ′(t) , zĀ
′
(t)

do not satisfy the feasibility conditions (2.5b)–(2.5c) for t > t̃.

Hence, at t = t̃ (the non-regular point) one has to construct a new DAE system,

denoted as DAE(Ā/S∗0 ), and solve DAE(Ā/S∗0 ) initialized from x(t̃) = xĀ
′
(t̃) and

z(t̃) = zĀ
′
(t̃). Because Ā′ 6= Ā/S∗0 , DAE(Ā′) andDAE(Ā/S∗0 ) are defined differently.

The structural change of solved DAE systems before and after t = t̃ leads to the

switching behavior of OCDE.

At the end, we note that it is assumed that S∗0 exists. In case that such S∗0 does

not exist, NLP solvers may be applied to find another local minimizers v∗∗, v∗∗ 6= v∗,

of P (x̄) and start simulation from there. In this case, jumps of variables v along the

solution trajectory will appear. Note also that, there may exist not only one S∗0 ∈ Θ

such that Eq. (3.6) is fulfilled. This situation seems to happen more frequently, when

S contains multiple elements. If thsi is the case, depending on the selection of S∗0 ,

the solution of OCDE may not be unique.

3.3. A solution algorithm. From the discussion above, to solve OCDE (1.2) at

regular points one can directly apply classical DAE solvers to Eq. (3.1). If non-regular

points (SC condition is damaged) are encountered at time t = t̃, one reconstructs a

new DAE system (3.2) with a properly selected S∗0 and restart the simulation from

there. This composes the major steps of solving OCDE.

To locate the switching points where SC condition is damaged, we propose the

following event function

(3.12) φj(t) := lj(x(t), v(t))− µj(t), ∀j ∈ J.

φj(t), j ∈ J , should be monitored along the solution trajectory for locating the

switching time t̃. Note that, if Eq. (3.10) or Eq. (3.11) hold, then ∃ j ∈ J such that

φj(t) changes the sign at t = t̃. If φj(t) changes the sign from negative to positive,

it indicates that a further simulation would violate Eq. (2.5c). If φj(t) changes the

sign from positive to negative, it indicates that a further simulation would violate

Eq. (2.5b), refer to Lemma 3.7. We note also that, methods of locating events (i.e.

finding out where the event function exactly changes the sign) for DAE systems are

already proposed in the literature. We refer to e.g. [20, 3] and the reference therein

for this issue.

Solution Algorithm:
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1. Initialize: At t = 0, x(0) = x0, solve P (x0) by NLP solvers. Denote the optimal

solution as z0 = (vT
0 , λ

T
0 , µ

T
0 )T . If z0 is not a regular KKT point, set t̃ = 0, go to

step 3. Otherwise set Ā = A(x0, v0), S∗0 = ∅, tstart = 0, xstart = x0, zstart = z0.

2. Major integration: Solve DAE(Ā/S∗0 ), defined in Eq. (3.2) with initial condition

x(tstart) = xstart and initial guess z(tstart) = zstart. Stop simulation until either

t = tend (in this case, stop and quit) or SC condition is violated at t = t̃ by

checking the event function (3.12). Go to step 3.

3. Switching: Set Ā = A(x(t̃), v(t̃)). Select a S∗0 ∈ Θ such Eq. (3.6) holds for

DAE(Ā/S∗0 ). Set tstart = t̃, xstart = x(t̃), zstart = z(t̃). Go to step 2.

Note that the initial guess of variable z, denoted as zstart, is to avoid starting simu-

lation from other local minimizers. Note also that in Step 3, if no S∗0 can be found,

one can use NLP solvers to solve P (xstart) for another local minimizer z′ and start

simulation from z = z′. In this case, jumps of variables z(t) will appear at t = t̃.

At the end, we need to note that, the proposed algorithm is limited to case

that conditions in Theorem 3.6, i.e. Conditions (3.3), (3.6) and the existence of S∗0 ,

hold. When any of them are violated, one may encounter numerical difficulties. This

remains interesting questions to be investigated in the further.

4. EXAMPLES

4.1. A mathematical example. We consider to solve the following example:

ẏ1 = 0.5 + x1x2, y1(0) = π/4,(4.1a)

ẏ2 = y1, y2(0) = 0,(4.1b)

(x1, x2) ∈ argminx1,x2 x
2
1 + x2

2,(4.1c)

s.t. 1.7 sin(y1) + x2 − e−x1 ≥ 0,(4.1d)

0.2 cos(y2) + 2− x2 ≥ 0.(4.1e)

y1, y2, x1, x2 ∈ R. y = (y1, y2)T refer to the states of the dynamic system. x =

(x1, x2)T refer to the optimization variables of the inner optimization problem P (y),

defined by Eqs. (4.1c)–(4.1e). We use lj(·) ≥ 0, j = 1, 2, to refer to the inequality

constraints (4.1d) and (4.1e), respectively. µj, j = 1, 2, refer to their Lagrangian

multipliers. φj := lj − µj, j = 1, 2, are derived event functions, refer to Eq. (3.12).

By applying the proposed solution algorithm, Fig. 1 to Fig. 4 show the computa-

tional results of solving OCDE (4.1) for t ∈ [0, 20]. Fig. 1 shows the optimal solution

x(t) of the inner optimization problem P (y(t)) for t ≥ 0. Fig. 2 shows the values of

inequality constraints l1(·) and l2(·), namely Eqs. (4.1d), (4.1e), along the solution

curve. It can be seen that the inequality constraints are always fulfilled for t ≥ 0.

Fig. 3 shows the values of Lagrangian multipliers µ1 and µ2 for t ≥ 0. As we can

see from the figure, µ1 and µ2 fulfill Eq. (2.5c) always. Fig. 4 shows the values of
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Figure 1. Simulation results of x1(t) and x2(t), t ∈ [0, 20].

Figure 2. Simulation results of inequality constraints l1(t) and l2(t),

t ∈ [0, 20].

event functions φj(t), j = 1, 2, defined in Eq. (3.12). When φj changes its sign from

positive to negative, it indicates that the inequality constraint lj(·) ≥ 0 is activated.

When φj changes its sign from negative to positive, it indicates that the inequality
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Figure 3. Simulation results of Lagrangian multipliers µ1(t) and

µ2(t), t ∈ [0, 20].

Figure 4. Simulation results of the event functions φ1(t) and φ2(t), t ∈ [0, 20].

constraint lj(·) ≥ 0 is deactivated. Cycles in Fig. 1 to Fig. 4 refer to the switching

time of OCDE.

Table 1 lists the computed switching time t̃k, k = 1, . . . , 9, the active set Ā =

A(y(t̃k), x(t̃k)), the index set S of inequality constraints, for which the SC condition
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Table 1. t̃k, k = 1, . . . , 9, refer to the switching time during the so-

lution curve of OCDE (4.1) for t ∈ [0, 20]. For each switching time t̃k,

Ā = A(y(t̃k), x(t̃k)) refers to the active set of the inner optimization

problem P (y(t)) at t = t̃k. Set S refers to the index of inequality con-

straints, for which SC condition is damaged at t = t̃d. S∗0 refers to a

selected subset of S, such that DAE(Ā/S∗0 ) is solved for t̃k ≤ t ≤ t̃k+1.

The solution of DAE(Ā/S∗0 ) corresponds to the solution of the original

OCDE for the time period [t̃k, t̃k+1].

t̃k Ā S S∗0 Ā/S∗0
3.4546 {1} {1} ∅ {1}
7.6931 {1} {1} {1} ∅
11.4608 {1} {1} ∅ {1}
13.2868 {1, 2} {2} ∅ {1, 2}
13.4506 {1, 2} {2} {2} {1}
13.6819 {1, 2} {2} ∅ {1, 2}
13.8492 {1, 2} {2} {2} {1}
15.6742 {1} {1} {1} ∅
19.4419 {1} {1} ∅ {1}

is violated, the selected subset S∗0 of S and the index set Ā/S∗0 for constructing DAE

system DAE(Ā/S∗0 ). We note that DAE(Ā/S∗0 ) is used to solve OCDE for the time

period [t̃k, t̃k+1]. At the starting time t = 0 and the end time t = 20, the inner

optimization problems P (y(0)) and P (y(20)) have regular KKT points.

To illustrate the proposed algorithm, let us look at the first and second switches

at t̃1 = 3.4546 and t̃2 = 7.6931. At initial time (t = 0), the active set A(y(0), x(0))

of P (y(0)) is empty and the optimal solution of P (y(0)) corresponds to a regular

KKT point. Therefore for t ∈ [0, t̃1] we solve DAE(A(y(0), x(0))) = DAE(∅). At

t = t̃1, the event function φ1(t) changes its sign from positive to negative, refer to

Fig. 4. This indicates that a continued simulation of DAE(A(y(0), x(0))) will violate

inequality constraint (4.1d). At t = t̃1, A(y(t̃1), x(t̃1)) = {1}, refer to Table 1, and

if we choose S∗0 = ∅, the resulted DAE(Ā/S∗0 ) = DAE({1}) satisfies transversality

condition (3.6). So for t ∈ [t̃1, t̃2], we solve DAE({1}) starting from y(t̃1) and x(t̃1).

The switching behavior of OCDE at t = t̃1 is caused by activating the first inequality

constraint (4.1d).

At t = t̃2, the event function φ1(t) changes its sign from negative to positive,

refer to Fig. 4. This indicates that a continued simulation will violate µ1 ≥ 0 (which

is imposed by the KKT condition (2.5c)). At this time point, Ā = A(y(t̃2), x(t̃2)) =

{1} and if we choose S∗0 = {1}, the resulted DAE(Ā/S∗0 ) = DAE(∅) satisfies the
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Figure 5. Bioreactor.

transversality condition (3.6) at t̃2. So for t ∈ [t̃2, t̃3], we solve DAE(∅) starting from

y(t̃2) and x(t̃2).

As we can see from the previous discussion, for t ∈ [0, t̃1] we solve DAE(∅),
for t ∈ [t̃1, t̃2] we solve DAE({1}), and for t ∈ [t̃2, t̃3] we solve DAE(∅). Switching

behavior is therefore expected at t̃1 and t̃2, because different DAE systems are solved

sequentially. This procedure is repeated analogously until the end time t = 20 is

reached.

4.2. Simulation of bioreactors. In this section, we present an OCDE example

from systems biotechnology and apply the presented solution algorithm to solve it.

Consider a fermentation process, which takes place in a continuous stirred-tank reac-

tor, shown in Fig. 5. A microorganism is placed inside the reactor, which transforms

substrate A to products F . Denote X ∈ R in [gBM/L] as the concentration of the mi-

croorganism in the fluid medium. Denote S, P ∈ R in [mmol/L] as the concentrations

of substrate A and product F in the fluid medium, respectively.

Fig. 6 shows a simplified metabolic network of the studied microorganism [21].

Rectangles represent metabolites, which are either intracellular (A, B, . . . , F ) or

extracellular (Aex, Eex and Fex). Diamonds represent reactions. The reaction rates

in [mmol/gBM/h] are denoted as vupt, v1, . . . , v7, respectively. “upt” is short for up-

take. One-direction arrows mean that the corresponding reactions are irreversible,

while two-direction arrows represent reversible reactions. Note that, metabolites Aex

and Fex refer to extracellular substrate and product, respectively. Eex represents a

metabolite which contributes to the growth of microorganism.

The mass balances of the fluid medium can be modeled by

Ẋ = v6X,X(0) = 1,(4.2a)

Ṡ = −vuptX,S(0) = 20,(4.2b)

Ṗ = v7X,P (0) = 0.(4.2c)
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Figure 6. Simplified metabolic network of studied microorganism.

In order to formulate the inner optimization problem, we define

d(t) =
1

a
√
π
e
−(t−ts)2

a2

as an approximated impulse function with trigger time ts = 0.5. a > 0 is chosen

sufficiently small (in our example a = 0.02). Approximated step function α(t) can be

therefore generated by integrating

α̇ = d(t), α(0) = 0,(4.3a)

ṫ = 1, t(0) = 0,(4.3b)

where derivatives of time t is explicitly given in Eq. (4.3b)1. α(t) takes the value of

0 at t = 0 and jumps to the value of 1 near the trigger time t = ts. α(t) will be used

later to formulate the inner optimization problem. Now if we consider (X,S, P, α, t)T

as variables x in Eq. (1.2a), Eqs. (4.2), (4.3) form the upper level part of OCDE (1.2).

To define the inner optimization problem, denote vector v = (vupt, v1, ..., v7)T ∈
R8. In Eq. (4.2), variables v6, v7 and vupt have to be determined from solving the

following optimization problem.

max
v

φ(v, α)(4.4a)

s.t.Mv = 0,(4.4b)

vupt =
vmS

S +Kupt

,(4.4c)

v6 ≥ 0,(4.4d)

v7 ≥ 0,(4.4e)

1Because we want to bring the obtained OCDE example (4.2), (4.3) and (4.4) in line with the
standard OCDE formulation (1.2).
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with vm = 3.8, Kupt = 1,

(4.5) φ(v, α) := (1− α)
v6√
vTv

+ α
v7√
vTv

and

M =



1 −1 0 0 0 0 0 0

0 1 −1 0 0 −1 0 0

0 0 −1 0 1 1 −1 0

0 0 1 −1 0 0 0 0

0 0 0 1 −1 0 0 0

0 0 0 1 1 0 0 −1

1 0 0 0 0 0 0 0


.

We note that problem (4.4) refers to the Flux Balance Analysis (FBA) [16]. The

objective function in Eq. (4.4a) is composed of two parts. Term v6/
√
vTv refers to

the growth rate of microorganism, while term v7/
√
vTv refers to the formation rate

of product. Since α(t) is an approximated step function, the objective function (4.4a)

firstly maximizes the growth rate of microorganism and then maximizes the formation

rate of product F .

Figure 7. Simulation results: States X(t), S(t), P (t) and α(t).

Simulation results of the defined OCDE in Eqs. (4.2), (4.3) and (4.4) are presented

in Fig. 7 to Fig. 10. Along the solution trajectories there are in total two switches.
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Figure 8. Simulation results: v6(t) and v7(t) in the inner optimiza-

tion. Cycles refer to switching times.

Table 2. t̃k, k = 1, 2, refer to the switching time during the solution

curve of the bioreactor example. For each switching time t̃k, Ā = A(t̃k)

refers to the active set of the inner optimization problem (4.4) at t =

t̃k. Set S refers to the index of inequality constraints, for which SC

condition is damaged at t = t̃k. S∗0 refers to a selected subset of S, such

that DAE(Ā/S∗0 ) is solved for t̃k ≤ t ≤ t̃k+1.

t̃k Ā S S∗0 Ā/S∗0
0.4881 {2} {2} {2} ∅
0.5071 {1} {1} ∅ {1}

One switch happens at t̃1 = 0.4881 and the other t̃2 = 0.5071, refer to Table 2. Fig. 7

presents the trajectories of the states of the computed OCDE example. Fig. 8 presents

the values of inequality constraints (4.4d), (4.4e), which are kept non-negative along

the solution trajectory. Fig. 9 presents the values of Lagrangian multiples for inequal-

ity constraints (4.4d), (4.4e), which are hold non-negative. Fig. 10 presents the values

of event functions, which change their signs along the solution trajectory. Cycles refer

to switching times.
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We use lj ≥ 0, j = 1, 2, to refer to the inequality constraints (4.4d) and (4.4e),

respectively. At initial time point t = 0, the active set A(t = 0) = {2}, S = ∅ (SC

condition holds) and this point corresponds to a regular KKT point. For t ∈ [0, t̃1]

we solve the derived system (3.1), denoted as DAE({2}). At t = t̃1, the event

function φ2(t) defined in Eq. (3.12) changes its sign from negative to positive, which

indicates that a continued simulation will violate inequalities µ2 ≥ 0 imposed by

Eq. (2.5c), refer to Fig. 9 and Fig. 10. At t = t̃1, A(t̃1) = {2}, S = {2}, and

if we select S∗0 = {2} ⊆ S the derived system DAE(A(t̃1)/S∗0 ) = DAE(∅) fulfills

the transversality condition (3.6) starting from t = t̃1. In other words, inequality

constraint (4.4e) is deactivated at t = t̃1.

At t = t̃2, the event function φ1(t) changes its sign from positive to negative,

refer to Fig. 10. This indicates that a continued simulation will violate inequality

constraint (4.4d), refer also to Fig. 8. At this time point, A(t̃2) = {1}, S = {1},
and if we choose S∗0 = ∅ the derived system DAE(A(t̃2)/S∗0 ) = DAE({1}) fulfills

the transversality condition (3.6) starting from t = t̃2. In other words, inequality

constraint (4.4d) is activated at t = t̃2. Simulation continues from t̃2 until the final

simulation time tend = 2 is reached.

Figure 9. Simulation results: Lagrangian multiplier µ1 and µ2 for

inequality (4.4d) and (4.4e).
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Figure 10. Simulation results: Event functions φ1 and φ2 near switch-

ing time t̃1 and t̃2. Cycles refer to switching times.

4.3. Implementation. All simulation results are computed in Matlab environment.

Numerical solver ode15s in Matlab is used to solve the derived DAE systems. Detec-

tion of event functions is realized by specifying the “Event Location Property” of the

applied DAE solver through command odeset in Matlab.

5. CONCLUSION

In this work, we discuss the theoretical solution of OCDE in the form of Eq. (1.2)

and propose a numerical algorithm to solve it. The analysis and the solution approach

is based on the KKT condition of nonlinear programming, which transforms the

original system into a sequence of constructed DAE systems. In order to solve the

original OCDE system, one solves this sequence of DAE systems instead.

Sufficient conditions are given at regular KKT points such that in a small neigh-

borhood the solution of the original system is the same as the solution of a derived

index-1 DAE system. At non-regular points, where strict complementarity condition

is damaged, we construct a new index-1 DAE system such that its solution starts from

the non-regular points and corresponds to the solution of the original OCDE. Because

the constructed DAE system at non-regular points may have a different formulation,

non-smooth points (switching behavior) along the solution trajectory are expected.
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To locate the time when switching happens, we propose an event function. Under

transversality conditions, it is proved that the proposed event function changes its

sign. The proposed solution algorithm has been successfully applied to two examples.

One example comes from the case study of simulating bioreactors.

We note that this work is subject to the following limitations. First, the main

results of this paper rely on the application of the IFT. In case that, the IFT can not

be applied, e.g. violation of Condition (3.3), the derived DAE system may be not

index-1 and the proposed solution algorithm may not work. Second, the proposed

algorithm is limited to tract only KKT points. There is no guarantee that these KKT

points are local minimizers. Third, we consider only deterministic dynamic systems,

in the sense that local minimizers of P (x) are locally unique and the solution of

OCDE is determined from a given initial condition. If this is not the case, e.g. local

minimizers are not unique, one may need the techniques of differential inclusions to

analyze the solutions of OCDE. These issues remain open topics for the future.
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APPENDIX

Theorem 1 (Implicit Function Theorem (IFT), refer to e.g. Theorem 2.4.1 in [4]).

Suppose f : Rn+m → Rn is a k times continuously differentiable mapping whose

domain is Ω. Suppose (x̄T , ȳT )T ∈ Ω, f(x̄, ȳ) = 0 and the Jacobian with respect to x,

∇xf(x̄, ȳ), is non-singular. Then there exists a neighborhood Uȳ of ȳ and an unique

function x : Uȳ → Rn, x(·) ∈ Ck, such that x(ȳ) = x̄ and f(x(y), y) = 0, ∀y ∈ Uȳ.

Lemma 1 (Lemma 2.4.3 in [9]). Let A be a symmetric n×n matrix, B a n×k matrix

and C a k × k matrix. Then the matrix(
A B

CBT 0

)

is non-singular, if and only if C is non-singular, rank B = k and A|KerBT is non-

singular.
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