
Neural, Parallel, and Scientific Computations 24 (2016) 305-315

AN EFFICIENT PDE-BASED NONLINEAR ANISOTROPIC

DIFFUSION MODEL FOR IMAGE DENOISING

SANTOSH KUMAR, MOHD. SARFARAZ, AND M. K. AHMAD

Department of Mathematics, Aligarh Muslim University, Aligarh, India

ABSTRACT. In this paper, we propose a new nonlinear anisotropic diffusion model for image

denoising. The main idea is to apply a priori smoothness on the solution image. We present proof

of the viscosity solution for our model. The results of our model using explicit numerical schemes

are compared with other known image denoising models.
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1. Introduction

The nonlinear diffusion techniques and PDE-based variational models are very

popular in image denoising and restoration. The nonlinear diffusion method for image

denoising and edge detection was first introduced by Perona and Malik [13]. This

method is based on a diffusion process governed by a partial differential equation

(PDE), where diffusion amount depends on the gradient of images.

Mathematically, u0 : Ω → R represents a noisy version of a true image, and it is

obtained by the following imaging process

(1.1) u0(x) = u(x) + n(x),

where u(x) denotes the desired clean image, u0(x) denotes the pixel values of a noisy

image for x ∈ Ω, Ω ⊂ R
2 is a bounded domain, usually a rectangle and n(x) is

additive white noise assumed to be close to Gaussian. The values n(i, j) of n at the

pixels (i, j) are independent random variables, each with a Gaussian distribution of

zero mean and variance σ2.

In our tests, we will use the peak signal to noise ratio (PSNR) as a criteria for

the quality of restoration:

(1.2) PSNR = 10log10

(

R2

1
mn

∑n
i,j(u(i, j) − unew(i, j))2

)

,

where {u(i, j) − unew(i, j)} is the difference of the pixel values between the restored

and original images.
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The choice of the diffusivity c is very important in controlling the smoothing and

even enhancement of edges. The Charbonnier diffusivity c(s) = 1√
1+(|s|2/K2)

, that is

related to the convex regularizer ψ(s2) =
√
K4 +K2s2 −K2, see references [8, 22], is

used in our experiments.

In this paper, we propose a new nonlinear anisotropic diffusion model which

incorporates adaptive information computed from the image at scale t. Following

[1, 4], well-posedness of the proposed scheme is proved using the theory of viscosity

solutions. We present proof of the viscosity solution of our model. We have tested

our algorithm on various types of images. To quantify the results, the experimental

values in terms of PSNR are given in Tables 1–3.

2. Total variation based denoising algorithms

In general, variational deblurring and denoising of an image can be achieved by

minimizing the energy functional presented in [23],

(2.1) E(u) =

∫

Ω

ψ(|∇u|2) dx+
λ

2

∫

Ω

(u− u0)
2 dx.

The Euler-Lagrange equation associated with (2.1) with homogeneous Neumann

boundary conditions is given by

(2.2)

0 = − div(ψ
′

(|∇u|2)∇u) + λ (u− u0), x ∈ Ω,

∂u

∂~n
= 0, x ∈ ∂Ω,

where ∂Ω is the boundary of Ω and ~n is the outward normal to ∂Ω.

The resulting gradient descent equation is

(2.3) ut = div(c(|∇u|)∇u) − λ (u− u0),

with u(x, 0) given as initial data (the original noisy image u0(x) used as initial guess),

homogeneous Neumann boundary conditions, i.e., ∂u
∂~n

= 0 on the boundary of the

domain. It is also known as diffusion-reaction equation where the diffusion term with

diffusivity c(s) = ψ′(s2) is related to the regulariser in the energy functional.

Applying a priori smoothness on the solution image, our nonlinear anisotropic

diffusion model becomes,

(2.4) ut = div(c(|∇Gσ ∗ u|)∇Gσ ∗ u) − λ (Gσ ∗ u− u0).

Witkin [24] noticed that the convolution of the signal with Gaussians at each

scale was equivalent to solving the heat equation with the signal as initial datum.

The term (Gσ ∗∇u)(x, t) = (∇Gσ ∗u)(x, t), which appears inside the divergence term

of (2.4), is simply the gradient of the solution at time σ of the heat equation with

u(x, 0) as initial datum.
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In order to preserve the notion of scale in the gradient estimate, it is convenient

that this kernel Gσ depends on a scale parameter [12]. In fact, the function Gσ can

be considered as “low-pass filter” or any smoothing kernel, i.e., a denoising technique

is used before solving the nonlinear diffusion problem [1, 5].

We use the following class of functions for the diffusion equation, given in [3, 20],

(2.5) c(x, |∇u|) = α(x)cg(|∇u|).

Here α is the adaptive parameter estimated at each pixel x ∈ Ω. The function cg

depends on the gradient image |∇u| and can be chosen similar to c(s). If we choose

α(x) = 1, cg = c(s) and Gσ ∗ u as u then the model (2.4) can be written as:

(2.6)
∂u

∂t
= div(c(x, |∇u|)∇u)− λ(u− u0).

3. Theoretical considerations

In this section, motivated by Alvarez et al. [1] and Prasath et al. [14], we want

to present the viscosity solution for model (2.6).

(3.1)

∂u

∂t
= div(c(x, |∇u|)∇u)− λ(u− u0), x ∈ R

n, t ∈ R+,

u(x, 0) = u0(x), x ∈ R
n.

Let us first introduce two auxiliary functions depending on x and p from R
n, a

symmetric matrix-valued one a and a vector one χ. We denote

(3.2) aij(x, p) = c(x, |p|)δij + cy(x, |p|)
pipj

|p| ,

(3.3) χi(x, p) =
∂c(x, |p|)
∂xi

.

Here δij is Kronecker’s delta, and cy is the partial derivative of c(x, y) with respect

to the second variable.

Motivated by Alvarez et al. [2], we consider the case of spatially periodic boundary

conditions. We will assume that there is an orthogonal basis bi in R
n so that

(3.4) u(., x+ bi) = u(., x), x ∈ R
n, i = 1, 2, . . . , n.

Let u0 is Lipschitz and satisfies (3.4). Of course, c (and thus a and χ) should also

satisfy the same spatial periodicity restriction (with respect to x but not to y or p).

Functions a and χ are continuous, bounded, periodic and continuously differentiable

in x and their x-derivatives are uniformly (w.r.t. p) bounded,

(3.5) aij(x, p)ξiξj ≥ C

[

mod

(

∂a(x, p)

∂xk

)]

ij

ξiξj, k = 1, . . . , n, ξ, x, p ∈ R
n.

Here λ ≥ 0 and below C stands for a generic positive constant, which can take

different values in different lines.
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We first recall the definition of viscosity sub-/supersolution of (3.1), if for any

φ ∈ C2([0, T ]× R
n) and any point (x0, t0) ∈ (0, T ]×R

n, at which u− φ attains local

maximum/minimum [10].

(3.6)
∂φ(x0, t0)

∂t
−div(c(x0, |∇φ(x0, t0)|)∇φ(x0, t0))+λ(u(x0, t0)−u0(x0)) ≤ 0/ ≥ 0.

A viscosity solution is a function which is both a subsolution and a supersolution.

Lemma 3.1. Let A and B be quadratic matrices of order n. Assume that B is

symmetric and there is a constant M ≥ 0 such that

(3.7) MAijξiξj ≥ mod(B)ijξiξj, ∀ ξ ∈ R
n.

Then for any matrix U (of the same order but not necessarily symmetric) one has

(3.8) Tr2(BU⊤) ≤M‖B‖Tr(UAU⊤),

where ‖.‖ denotes the operator norm of a matrix and mod(B) be the matrix whose

entries are the absolute values of the entries of B.

Proof. Formula (3.7) and (3.8) are invariant with respect to orthogonal changes of

bases. Thus, without loss of generality, we may assume that B is already diagonalized

by an orthogonal transform. Then

Tr2(BU⊤) = (BiiUii)
2 ≤ ‖B‖|BiiU

2
ii

= ‖B‖(mod(B)iiU
2
ii ≤ ‖B‖(mod(B)iiUkiUkj

= ‖B‖(mod(B)ijUkiUkj ≤M‖B‖AijUkiUkj = M‖B‖Tr(UAU⊤).

Theorem 3.2. The problem (3.1) has a unique viscosity solution u in C([0, T ]×R
n)∩

L∞(0, T,W 1,∞(Rn)) for any T ∈ [0,∞), provided that u0 is Lipschitz continuous on

R
n, and if v ∈ C(Rn × [0, T )) is a viscosity solution of (3.1) with u0 replaced by

a Lipschitz continuous function v0, then for all T ∈ [0,∞), there exists a constant

C > 0, depending only on u0, v0 and T, such that

(3.9) sup
0≤t≤T

‖u(x, t) − v(x, t)‖L∞(Rn) ≤ C‖u0 − v0‖L∞(Rn).

Moreover, infRn u0 ≤ u(x, t) ≤ sup
Rn u0.

Proof. If u is a viscosity solution of equation (3.1) on R
n × R+, then

(3.10) inf
Rn
u0 ≤ u(x, t) ≤ sup

Rn

u0, on R
n × R+.

Let φ(x, t) = δt, then, at the point (x0, t0), t0 > 0, of the global maximum of

u(x, t) − δt, (3.6) gives δ + λ(u(t0, x0) − u0(x0)) ≤ 0, when u(x0, t0) < u0(x0), so we

get a contradiction since u(x0, t0) − δt0 ≥ u0(x0) due to the fact that (x0, t0) is the
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global maximum point of u(x, t)− δt; thus the function u(x, t)− δt attains its global

maximum at t = 0, and it remains to let δ → 0+, we get (3.10).

Now, we establish a formal a priori estimate for sup
Rn |∇u|. Observe that (3.1)

is equivalent to

(3.11)
∂u

∂t
= [aij(x,∇u)uxixj

+ χi(x,∇u)uxi
] − λ(u− u0).

Differentiating (3.11) with respect to each xk, k = 1, . . . , n, multiplying by 2uxk
and

taking a summation w.r.t. k, we get

(3.12)

γ(|∇u|2) :=
∂|∇u|2
∂t

− aij(x,∇u)
∂2

∂xi∂xj
|∇u|2 − ∂aij(x,∇u)

∂pl
uxixj

∂

∂xl
|∇u|2

− χi(x,∇u)
∂

∂i
|∇u|2 − ∂χi(x,∇u)

∂pl
uxi

∂

∂xl
|∇u|2 + 2λ(uxk

− (u0)xk
)uxk

= −2aij(x,∇u)uxkxi
uxkxj

+ 2
∂aij(x,∇u)

∂xk

uxixj
uxk

+ 2
∂χij(x,∇u)

∂xk

uxi
uxk

.

The Lemma 3.1 gives opportunity to discharge the undesired influence of the sec-

ond term in the right-hand side of (3.12). For the second term, due to the Lemma 3.1

and Cauchy’s inequality, we have

(3.13)

∣

∣

∣

∣

2
∂aij(x,∇u)

∂xk
uxixj

uxk

∣

∣

∣

∣

≤ C|uxk
|
√

aij(x,∇u)uxkxi
uxkxj

≤ aij(x,∇)uxkxi
uxkxj

+ C|∇u|2.
The sum of the absolute values of the subsequent terms of the right-hand side of

(3.12) does not exceed C(1 + |∇u|2). Thus,

(3.14) γ(|∇u|2) ≤ C(1 + |∇u|2),

so

(3.15) γ(e−Ct(1 + |∇u|2)) ≤ 0.

From the weak maximum principle for the weakly parabolic operator γ one easily

concludes that

(3.16) |∇u|2 ≤ C.

Using (3.10) and (3.16), by means of the approach from [2] we can get the uniform

Hölder estimate

(3.17) |u(x, t) − y(x, s)|2 ≤ C|t− s|.

From (3.10), (3.16) and (3.17), the solutions of these problems are uniformly bounded

and equicontinuous on R
n×[0, T ]. Then we can select a uniformly converging sequence
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of approximate solutions, and pass to the limit in the viscosity sense using the general

consistency/stability results from [9]. The uniqueness of solutions follows from the

stability estimate (3.9). This bound may be shown by revisiting the proof of a similar

bound in [17]. We only point out that the matrix τ [17] is replaced by

(3.18) τ =

(

D1

√
D1

√
D2√

D1

√
D2 D2

)

,

where

D1 = a

(

x0,
|x0 − y0|2(x0 − y0)

δ

)

, D2 = a

(

y0,
|x0 − y0|2(x0 − y0)

δ

)

,

and the notation within is taken from [17]. note that the 2n×2nmatrix τ is symmetric

and positive-semidefinite.

4. The Discrete Scheme

We still write Gσ ∗u as u. Let un
ij be the approximation to the value u(xi, yj, tn),

where

xi = i∆x, yj = j∆x, i, j = 1, 2, . . . , N,

N∆x = 1, tn = n∆t, n ≥ 1,

where ∆x,∆y and ∆t are the spatial step sizes and the time step size respectively.

The explicit partial derivatives of models (2.3) and (2.4) can be expressed as:

ut
ij =

1

2∆x
((cni+1,j + cni,j)(u

n
i+1,j − un

i,j) − (cni,j + cni−1,j)(u
n
i,j − un

i−1,j))

+
1

2∆x
((cni,j+1 + cni,j)(u

n
i,j+1 − un

i,j) − (cni,j + cni,j−1)(u
n
i,j − un

i,j−1)) − λ(un
ij − u0

ij),

where the diffusivity c(|∇u|) is discretised by,

cnij = ψ
′

(

(

un
i+1,j − un

i−1,j

∆x

)2

+

(

un
i,j+1 − un

i,j−1

∆x

)2
)

,

with homogeneous Neumann boundary conditions.

The explicit method is stable and convergent for ∆t
∆x2 ≤ 0.5, see [11].

5. Numerical implementation

We have used two gray scale images as shown in Figure 1. The pixel values of

all images lie in interval [0, 255]. The Gaussian white noise is added by the normal

imnoise function imnoise (I,‘Gaussian’, M, σ2), i.e., the mean M and variance σ2

in Matlab. We first scale the intensities of the images into the range between zero

and one before we begin our experiments. We have taken ∆t/∆x2 = 0.4, Charbon-

nier diffusivity K = 5 and Lagrange multiplier = 0.85 as in [6] and [7] in our all

experiments.
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(a) (b)

Figure 1. Original Test Images used for different experiments

(A) Lena: 256 × 256, (B) Boat: 256 × 256.

Table 1. Results obtained by using models (2.3) and (2.4) applied to the images in Figures 2(A)

and 3(A) with Gaussian white noise (σ2 = 0.002).

Images PSNR Images PSNR Images PSNR

Noisy Image (Model-2.3) (Model-2.4)

Fig. 2(A) 27.02 Fig. 2(D) 30.33 Fig. 2(G) 30.48

Fig. 3(A) 27.05 Fig. 3(D) 29.75 Fig. 3(G) 30.01

- - No. of 400 No. of 200

iterations iterations

Table 2. Results obtained by using models (2.3) and (2.4) applied to the images in Figures 2(B)

and 3(B) with Gaussian white noise (σ2 =0.004).

Images PSNR Images PSNR Images PSNR

Noisy Image (Model-2.3) (Model-2.4)

Fig. 2(B) 24.08 Fig. 2(E) 27.14 Fig. 2(H) 28.78

Fig. 3(B) 24.09 Fig. 3(E) 26.80 Fig. 3(H) 28.45

- - No. of 400 No. of 200

iterations iterations

Table 3. Results obtained by using models (2.3) and (2.4) applied to the images in Figures 2(C)

and 3(C) with Gaussian white noise (σ2= 0.006).

Images PSNR Images PSNR Images PSNR

Noisy Image (Model-2.3) (Model-2.4)

Fig. 2(C) 22.36 Fig. 2(F) 25.17 Fig. 2(I) 27.46

Fig. 3(C) 22.33 Fig. 3(F) 24.96 Fig. 3(I) 27.28

- - No. of 400 No. of 200

iterations iterations
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. (top row) Noisy Lena images with different levels of Gauss-

ian noise (A)-(C), σ2 = 0.002, 0.004, 0.006, respectively; (second row)

(D)-(F) corresponding denoised images by model (2.3); (third row) (G)-

(I) by model (2.4).

6. Concluding Remarks

We have presented a second order partial differential equation based new nonlin-

ear diffusion model for image denoising. The main idea is to apply a priori smoothness

on the solution image. The forward-backward difference schemes are used to discretize

models (2.3) and (2.4). The model (2.4) gives larger PSNR values than that of model
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. (top row) Noisy Boat images with different levels of Gauss-

ian noise (A)-(C), σ2 = 0.002, 0.004, 0.006, respectively; (second row)

(D)-(F) corresponding denoised images by model (2.3); (third row) (G)-

(I) by model (2.4).

(2.3) even at relatively small iteration numbers. Thus we can say the model (2.4)

gives better denoised images than that of model (2.3).
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